
Parallel Eigensolvers for a Discretized Radiative
Transfer Problem?

Paulo B. Vasconcelos1, Osni Marques2, and Jose E. Roman3

1 Faculdade de Economia da Universidade do Porto,
Rua Dr. Roberto Frias s/n, 4200-464 Porto, Portugal

pjv@fep.up.pt
2 Lawrence Berkeley National Laboratory,

1 Cyclotron Road, MS 50F-1650, Berkeley, CA 94720-8139, USA
oamarques@lbl.gov

3 Instituto ITACA, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022 Valencia, Spain

jroman@dsic.upv.es

Abstract. In this work we consider the numerical computation of eigen-
pairs of a matrix derived from integral operators. The matrix is associ-
ated to a radiative transfer problem in stellar atmospheres that is formu-
lated by means of a weakly singular Fredholm integral equation defined
on a Banach space. We examine direct and iterative parallel strategies
for the eigensolution phase, using state-of-the-art numerical methods im-
plemented in publicly available software packages.

Keywords: High performance computing, eigenvalue computations, Fredholm integral

equation, weakly singular kernel.

AMS subject classification: 68W10, 65F15, 45B05, 65R20, 65D20, 32A55.

1 Introduction

The solution of many problems in natural sciences and engineering would be
unthinkable without the extensive use of approximations and numerical methods.
There is a great wealth of such methods, based on either direct or iterative
(projection-based) algorithms. Yet, without parallel processing many practical
problems would not be solvable or would require an unacceptably large amount
of time.

In the present contribution we focus on the numerical computation of eigen-
pairs of integral operators associated to a radiative transfer problem. This prob-
lem is formulated by a weakly singular Fredholm integral equation defined on a
? This work was partially supported by the Portuguese and Spanish governments via

an Integrated Action (resp. ref. E-41/07 and ref. HP2006-0004), and partly by the
Director, Office of Science, Advanced Scientific Computing Research Program, of
the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

Banach space. The numerical approach used to compute the (cluster of) eigen-
values and associated invariant subspace basis for the integral operator is based
on its projection into a finite dimensional subspace. By evaluating the projected
problem on a specific basis function, an algebraic eigenvalue problem is obtained;
further, the corresponding coefficient matrix is banded.

This work examines the numerical computation of eigenpairs of the matrix
of the integral operator using state-of-the-art numerical methods implemented
in publicly available software packages. Numerical results using both direct and
iterative parallel strategies are presented and discussed.

Section 2 provides a brief description of the problem and the necessary mathe-
matical formalism, from the discretization method used to the projected approx-
imate eigenvalue problem. Section 3 summarizes the computing platforms used
for the performance analysis, along with a description of the installed software
in each one of the platforms. In Sections 4 and 5, implementation details on the
data generation as well as on the numerical methods used are addressed. The
former section deals with numerical experiments with the ScaLAPACK library,
therefore focusing on direct methods capable of delivering all (or a subset of)
eigenpairs of the matrix problem. The latter section is driven by the SLEPc
library: a number of state-of-the-art iterative methods are tested, providing in-
sights in the more appropriate methods as well as in parameters specification.
Both ScaLAPACK and SLEPc are available in the ACTS Collection of the US
Department of Energy (DOE) [1]. The work finishes with conclusions and guide-
lines for the solution of similar problems in the context of high performance
computing.

2 Problem Description

We seek to solve
Tϕ = λϕ (1)

where T : X → X is an integral operator defined in X = L1 ([0, τ∗]), that
satisfies

(Tx) (τ) =
$

2

∫
τ∗
E1 (|τ − τ∗|)x (τ ′) dτ ′, 0 < τ ≤ τ∗ (2)

where τ is the optical depth of the stellar atmosphere, τ∗ is the optical thickness
of the stellar atmosphere, $ ∈ [0, 1] is the albedo, and E1 = $

2

∫∞
1

exp(−τµ)
µ dµ

is the first exponential-integral function. We refer the reader to [2, 3] for details
on the formulation of the problem. In a previous work two of the authors have
investigated techniques for the solution of the associated radiative transfer equa-
tion [4]. Here we apply direct and iterative parallel strategies to investigate the
spectral properties of the problem.

An integral equation of this type can be solved by a discretization mechanism,
for instance by projecting it into a finite dimensional subspace. In particular,
Tϕ = λϕ can be approximated by

Tmϕm = λmϕm (3)

in the finite dimensional subspace given by an m-dimensional subspace of X
spanned by m linearly independent functions (em,j)

m
j=1, Xm. Also, 0 = τm,0 <

τm,1 < . . . < τm,m = τ∗. A nonuniform grid can be used, taking into account
the boundary layer at 0. However, a symmetric matrix is obtained if a uniform
grid is used instead. Moreover, a symmetrization operation can be applied to
the non-symmetric operator matrix.

The projection approximation of T , Tm : X → Xm, is defined by

Tmx = πmTx =
m∑
j=1

〈x, T ∗e∗m,j〉em,j . (4)

being πm the projection in the finite dimensional space. This leads to the eigen-
value problem

Ax = θx (5)

of dimension m where A, large sparse and symmetric, corresponds to the restric-
tion of Tm to Xm. The coefficients of A are given by:{

$
[
1 + 1

di,i−1
(E3 (di,i−1)− 1

2)
]

, i > j
$

2di,i−1
[−E3 (di,j) + E3 (di−1,j) + E3 (di,j−1)− E3 (di−1,j−1)] , i 6= j

(6)

being di,j = |τm,i − τm,j |, E3(τ) =
∫∞

1
exp(−τµ)

µ3 dµ, and E3(0) = 1
2 . For further

details, we refer the reader to [2].
For computational purposes, the E3 function is evaluated according to [5].

Noteworthily, the values of A decay significantly from the diagonal and for prac-
tical purposes the matrix can be considered banded.

Our goal is to approximate Tmϕm = λmϕm by solving an associated sym-
metric eigenvalue problem Ax = θx for large values of m.

3 Test Cases and Computing Platforms

The performance analysis was performed using test problems of different size,
which were obtained by varying the resolution of the discretization mesh.

Our tests were performed on three platforms: bassi and jacquard, located
at DOE’s National Energy Research Center (NERSC), and odin, located at
Universidad Politécnica de Valencia. Bassi is an IBM p575 POWER 5 system
with 122 8-processor nodes and 32 GB of memory per node. Jacquard is an
AMD Opteron cluster with 356 dual-processor nodes, 2.2 GHz processors, 6 GB
of memory per node, interconnected with a high-speed InfiniBand network. Odin
is a cluster of 55 nodes with dual Pentium Xeon processor at 2 GHz with 1 GB
of memory per node and interconnected with a high-speed SCI network with 2-D
torus topology. On bassi we used the basic linear algebra subroutines (BLAS)
available in the ESSL library, while on jacquard we used the BLAS available
in the ACML library. The software installation on odin includes SLEPc 2.3.3,
PETSc 2.3.3, PRIMME 1.1, Hypre 2.0, and MUMPS 4.7.3.

For all cases showed in this paper we used $ = 0.75 (although not shown,
tests with larger values of $ required similar computing times). We used a
relative error ε ≤ 10−12 for the stopping criterion of the iterative method in
order to obtain solutions as “accurate” as the direct method, and also to perform
a more realistic comparison of the algorithms’ computational performance.

The test cases that have been used for analyzing the performance of the
solvers correspond to matrix dimensions (m) of 4K, 8K, 16K, 32K, 64K, 128K
and 216K. The average number of non-zero elements per row is about 75. For
example, the matrix of order 4K has 290,668 non-zero elements.

4 Solution Strategy with a Direct Eigensolver

4.1 Numerical Components

In this section we focus on ScaLAPACK’s pdsyevx [6] for the solution of eigen-
value problem (5). This routine can compute all eigenvalues and (optionally)
the corresponding eigenvectors, or only those eigenvalues specified by a range
of values or a range of indices. The calculations consist of the following steps:
reduction of the input (symmetric matrix) to tridiagonal form, computation of
the eigenvalues of the tridiagonal using bisection, computation of the eigenvec-
tors of the tridiagonal using inverse iteration, and (if eigenvectors are required)
multiplication of the orthogonal transformation matrix from the reduction to
tridiagonal form by the eigenvectors of the tridiagonal. Noticeably, pdsyevx may
fail to produce orthogonal eigenvectors for tighly clustered eigenvalues. Also, it
does not reorthogonalize eigenvectors that are on different processes (the extent
of reorthogonalization is determined by the memory available).

ScaLAPACK assumes that the global data has been distributed to the pro-
cesses with a one or two-dimensional block-cyclic data distribution. In the present
work we have generated A using a 1-D block column distribution, i.e. each pro-
cessor generates a block of columns of A. Since in our case A is banded, the 1-D
column distribution is more natural and easier to implement. It would be de-
sirable to take advantage of these properties but ScaLAPACK implements only
LU and Cholesky factorizations for band matrices.

4.2 Performance Results

Figures 1 and 2 show the timings for the generation of A, and the eigensolution
phase with pdsyevx, for matrices of dimension 4K, 8K, 16K and 32K, on up to 128
processors. As expected, the generation of A scales almost ideally when the num-
ber of processors is increased. Concerning the eigensolution phase, the timings
on bassi refer to the computation of all eigenvalues but no eigenvectors, while on
jacquard to the computation of the five largest eigenvalues and corresponding
eigenvectors. In both cases, the scaling of pdsyevx showed to be satisfactory for
the dimensions and number of processors that we have considered. Although
the generation of A following a 2-D block cyclic distribution might lead to a

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

4K (gen)
4K (syevx)

8K (gen)
8K (syevx)
16K (gen)

16K (syevx)
32K (gen)

32K (syevx)

Fig. 1. Execution times for the matrix generation and eigensolution (pdsyevx) phases
on bassi. The timings are for the computation of all eigenvalues but no eigenvectors.

better performance, we anticipate that for much larger matrices a direct method
would be penalizing. This is also because the matrices become more banded (a
property that currently we cannot take advantage of). It is well known that for
most cases the reduction to tridiagonal form dominates the costs. However, for
some pathological cases, where the eigenvalues are highly clustered, the costs for
computing eigenvalues and orthogonalizing them may also be significant [7]. For
our problems, the largest eigenvalues become very clustered as the dimension
increases. This means that the corresponding eigenvectors would probably have
to be orthogonalized more often, therefore increasing the computational costs.

5 Solution Strategy with an Iterative Eigensolver

An iterative eigensolver allows for the solution of larger problems, since one can
better exploit the characteristics of the associated matrices (such as sparsity)
and no direct transformation of the matrices is needed (such as reduction to
tridiagonal form). Also, an iterative eigensolver is usually cheaper than a di-
rect eigensolver when only a subset of eigenvalues and eigenvectors is required.
The price to be paid is the convergence rate when there are tightly clustered
eigenvalues, as well as the complexity of the different numerical algorithms that
have to be used in order to get a scalable solution. Fortunately, there are soft-

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

4K (gen)
4K (syevx)

8K (gen)
8K (syevx)
16K (gen)

16K (syevx)
32K (gen)

32K (syevx)

Fig. 2. Execution times for the matrix generation and eigensolution (pdsyevx) phases
on jacquard. The timings are for the computation of the five largest eigenvalues and
corresponding eigenvectors.

ware tools available that implement those algorithms, and their integration is
relatively easy as explained below.

5.1 Numerical Components

PETSc4, the Portable Extensible Toolkit for Scientific Computation [8], is a
parallel framework for the numerical solution of problems arising in applications
modeled by partial differential equations. Its design follows an object-oriented
approach in order to be able to manage the complexity of numerical methods for
very large and sparse problems on parallel computers. It is designed to provide
enough flexibility to make software reuse feasible in many different contexts, but
also with other goals in mind such as numerical robustness, computational effi-
ciency, portability to different computing platforms, interoperability with other
software, etc.

In PETSc all the code is built around a set of objects that encapsulate data
structures and solution algorithms. The application programmer works directly
with these objects rather than concentrating on the underlying data structures.
The data objects include management of index sets, vectors and sparse matrices
4 PETSc is available at http://www.mcs.anl.gov/petsc.

in different formats, as well as basic support for structured and unstructured
meshes. Built on top of this foundation are various classes of solver objects,
including linear, nonlinear and time-stepping solvers.

For solving linear systems of equations, PETSc provides a variety of iterative
methods such as Conjugate Gradient and GMRES, that can be combined with
different preconditioners such as the incomplete LU factorization. Additionally,
direct methods for linear systems are also available via complete factorizations
that are handled in a similar way to preconditioners. In both cases, PETSc allows
the use of external libraries that are seamlessly integrated in the framework, thus
complementing the offered functionality. Examples of such libraries are MUMPS
[9] for direct solvers and Hypre for preconditioners, the latter providing different
methods such as the algebraic multigrid preconditioner, BoomerAMG [10].

SLEPc5, the Scalable Library for Eigenvalue Problem Computations [11, 12],
is a software library for the solution of large, sparse eigenvalue problems on
parallel computers. It can be used for the solution of eigenproblems formulated
in either standard or generalized form (Ax = λx or Ax = λBx), both Hermitian
and non-Hermitian, with either real or complex arithmetic, as well as other
related problems such as the singular value decomposition.

SLEPc is built on top of PETSc, and extends it with all the functionality
necessary for the solution of eigenvalue problems. It provides uniform and effi-
cient access to a growing number of eigensolvers. Most of these solvers belong
to the class of Krylov projection methods, see [13]. In particular, SLEPc im-
plements several variants of the Arnoldi and Lanczos methods, as well as the
recently proposed Krylov-Schur method [14] that incorporates a very efficient
restarting mechanism. In addition to these solvers, SLEPc seamlessly integrates
third-party eigensolver software such as PRIMME [15]. The user is able to eas-
ily switch among different eigensolvers by simply specifying the method at run
time. Apart from the solver, many other options can be specified such as the
number of eigenvalues to compute, the requested tolerance, or the portion of the
spectrum of interest.

SLEPc also provides built-in support for different spectral transformations
such as the shift-and-invert technique. When such a transformation is applied,
the matrix inverses such as (A−σB)−1 are not computed explicitly but handled
implicitly via a linear system solver provided by PETSc.

For the application described in section 2, the algebraic problem is a standard
eigenproblem, that can be symmetric or non-symmetric depending on whether
the discretization grid is uniform or not. In the following, we will consider only
the symmetric case.

As mentioned in section 2, the sparsity pattern of the matrix is quite special.
In fact, it is not really sparse but banded, with a dense band. This will have some
implications when treating the matrix from a sparse perspective. In particular,
some operations may be quite inefficient with respect to the purely sparse case.

For moderate problem sizes, the Krylov-Schur method does a very good job
in computing the largest eigenvalues, i.e. those closest to $, and the correspond-
5 SLEPc is available at http://www.grycap.upv.es/slepc.

Table 1. Performance of SLEPc and PRIMME on several test cases: m is the matrix
size, k is the dimension of the subspace employed by the solver. For the Krylov-Schur
and Jacobi-Davidson methods, the required iterations (its) and elapsed time (in sec-
onds) is shown.

Krylov-Schur Jacobi-Davidson

m k its time k its time

4K 48 230 27 48 68 14

8K 96 145 103 48 79 44

16K 192 119 789 48 89 181

ing eigenvectors. However, as the problem size grows, it is increasingly difficult
for the method to have the solution converged. This difficulty is illustrated in
Table 1, with the execution time and number of iterations required to compute
5 eigenpairs of the smallest test cases. In order for the Krylov-Schur method to
get the solution in a reasonable number of iterations, it is necessary to increase
the dimension of the subspace used by the solver. The table also shows results
for the Jacobi-Davison method implemented in PRIMME, which is able to com-
pute the solution faster and without having to increase the subspace dimension.
Unfortunately, for larger test cases both methods fail to compute the solution in
a reasonable time.

The problem of slow convergence is due to the fact that eigenvalues get more
and more clustered around $ as the the order of the matrix grows, and it is well
known that convergence of Krylov eigensolvers gets worse when the separation
of eigenvalues is poor. Fortunately, the shift-and-invert spectral transformation
is a workaround for this problem that fits very well in this application. The idea
is to reformulate the eigenproblem as

(A−$I)−1xi = θixi. (7)

This transformation does not alter the eigenvectors, xi, and eigenvalues are mod-
ified in a simple way, (λi−$)−1 = θi, where λi are the eigenvalues of the original
eigenproblem. If the Krylov-Schur eigensolver is applied to the transformed prob-
lem, the eigenvalues closest to $ will be retrieved first, as before, the difference
being a more favourable separation of eigenvalues.

To illustrate the benefits of shift-and-invert, especially for large matrices, we
show some performance data in Table 2. The first eigenvalue is very close to $,
and the next ones are very tightly clustered, with a separation of order 10−9 in
the two largest test cases. With a basis size of 12 vectors, Krylov-Schur requires
more than 20,000 restarts to attain the requested tolerance. As mentioned before,
increasing the basis size would alleviate this bad convergence, but this is not
viable for the largest test cases. In contrast, shift-and-invert performs extremely
well, with only three restarts independently of the matrix size, and a total of
just 23 linear solves. In the sequel, we will consider only runs of Krylov-Schur
with shift-and-invert using a basis size of 12 vectors.

Table 2. Performance of SLEPc on several test cases: m is the dimension of the matrix,
λ1 is the largest eigenvalue, sep is the average distance among the 5 largest eigenvalues.
For the Krylov-Schur method (K-S) with and without shift-and-invert (S-I), the table
shows the required iterations (its) and elapsed time (with MUMPS in the latter case).

K-S K-S with S-I

m λ1 sep its time its time

4K 0.749999813794 1.12 · 10−6 21,349 298 3 0.21

64K 0.749999999272 4.37 · 10−9 N/A N/A 3 3.54

128K 0.749999999818 1.09 · 10−9 N/A N/A 3 7.09

The spectral transformation enhances convergence dramatically, and it is
provided by SLEPc in a straightforward manner. The downside is that the code
has to deal with an inverted matrix, (A −$I)−1. Of course, this matrix is not
computed explicitly. Instead, linear solves are performed whenever a matrix-
vector product is required by the eigensolver.

Two alternatives exist for solving linear systems: direct and iterative meth-
ods. And both alternatives are provided in the context of PETSc, as mentioned
before. For the shift-and-invert spectral transformation, it is more natural to use
a direct method, providing full accuracy for the computed vector. However, that
approach could lead to a non-scalable code or represent an exceedingly high cost.
The iterative solver alternative can be a cheap and effective solution, provided
that the requested tolerance is sufficient and that the convergence of the inner
iteration is guaranteed by a good preconditioner.

Since only a subset of the eigenpairs are computed with SLEPc, the eigensolu-
tion stage will be relatively fast and the higher cost will reside in the computation
of the matrix elements. Thus, the matrix generation stage has to be effectively
parallelized in order to achieve good overall performance.

In PETSc, parallel matrices are distributed by blocks of contiguous rows.
That is, a given processor owns a range of matrix rows and stores them in a
sparse format. The internal format may vary depending on which solver is going
to be used, but this is transparent to the code that sets the matrix elements.
For instance, direct solvers such as MUMPS use a particular storage scheme.

In order to exploit the data distribution scheme during the parallel matrix
generation, the different processors will compute only the matrix elements that
belong to their locally owned rows. With this simple rule, there is no commu-
nication involved in the creation of the matrix, and parallel performance should
be close to optimal provided that the matrix rows are equally distributed. How-
ever, it turns out that the number of non-zero elements is not uniform across
the different rows, and this may lead to load imbalance. This imbalance is not
severe, though, as will be illustrated in the performance results below. On the
other hand, there is no obvious way of predicting how elements decay in a given
row of the matrix, so the number of non-zero elements cannot be estimated prior
to the actual computation of matrix elements.

In addition to the scheme discussed in the previous paragraph, our actual
implementation incorporates the following enhancements:

1. Symmetry is exploited, that is, whenever a matrix element ai,j is computed,
it is set also in the position corresponding to the symmetric element, aj,i.
This reduces the cost of the computation roughly by half. The drawback is
that when the computation is done in parallel, the assembly of the matrix
will imply communication among the processors.

2. The computation of each E3(di,j) can be amortized because it is used in many
different matrix elements. It is difficult to determine a priori which are those
elements. Nevertheless, there is a locality effect that makes reuse more likely
in close matrix elements. In order to exploit this fact, we implemented a
simple caching mechanism that stores recently computed values of E3. With
a cache size of only 12 values, the percentage of cache hits in a typical run
is 75%, so three quarters of the computation is avoided.

The above optimizations are a detriment to parallel efficiency, but we opted for
prioritizing sequential performance and still retain good parallel behaviour.

5.2 Performance Results

For analyzing the parallel performance of the SLEPc-based code, the test prob-
lems have been solved on odin, requesting only 5 eigenvalues with a basis size of
12 vectors. In this section, only results are shown corresponding to the largest
test case. Despite the large matrix size, the eigensolver does a very good job in
getting the solution converged, because of the effectiveness of shift-and-invert in
this case.

If a direct linear solver is used for the systems associated to the shift-and-
invert transformation, then the computation with one processor is really fast. For
instance, with MUMPS the overall eigencomputation takes 7 seconds. However,
the situation is worse in parallel: 22.6 seconds with 2 processors, and this time
cannot be reduced with more processors, see the horizontal line in Figure 3.
Therefore, we discard the use of direct linear solvers in this setting, because
they are not scalable, at least in this type of platforms. It should be stressed
that the non-scalability comes from the problem properties, because MUMPS is
not optimized for the case of banded, dense matrices.

As discussed before, the alternative is to use an iterative linear solver for
the shift-and-invert transformation. In our application, GMRES combined with
the algebraic multigrid preconditioner works very well. With one processor the
computation is significantly slower (80 seconds), but scalability is remarkably
good up to 32 processors and it catches up soon. Figures 3 and 4 show the
execution time and the speed-up, respectively. Up to 32 processors, the execution
time decreases with constant slope, and speed-up is close to the optimal one. The
data for more processors are not shown in these figures, because the number of
iterations of the linear system solver changes significantly (e.g. with 40 processors
it makes a total of 115 linear iterations, whereas only 70 are necessary up to

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Matrix generation
Eigensolution

Eigensolution (MUMPS)

Fig. 3. Execution time in log-log scale for the matrix generation and eigensolution
stages with SLEPc corresponding to the 128K test case on odin computer.

32 processors), and thus those times are not comparable. It seems that the
preconditioner starts to lose effectiveness when the piece of the matrix assigned
to each processor becomes too small.

Regarding the generation of the matrix, Figure 3 shows a time curve that
starts with a significantly flatter slope. This is due to the fact that the en-
hancements discussed before make matrix generation sequentially very efficient.
The consequence is a moderate speed-up, as illustrated in Figure 4. Overall, the
efficiency of the computation is reasonably good.

In order to carry out a fair comparison of the performance for more than 32
processors, we run test cases with increasing problem size, so that the number
of matrix rows assigned to each processor remains constant. Table 3 presents
the obtained execution times, showing that the time for the eigencomputation
phase is more or less constant. The total of accumulated linear solve iterations
do not vary too much in this case. We can conclude that the computation of
eigenvalues with SLEPc and BoomerAMG scales linearly with the problem size.

 5

 10

 15

 20

 25

 30

 35

 1 4 8 16 32

S
pe

ed
-u

p

Number of processors

Ideal
Matrix generation

Eigensolution

Fig. 4. Speed-up in log-log scale for the matrix generation and eigensolution stages
with SLEPc corresponding to the 128K test case on odin computer.

6 Conclusions

In this contribution we considered the numerical computation of eigenelements
of integral operators associated to a radiative transfer problem, using direct
and iterative strategies available in publicly available software packages. The
generation of the associated matrices in parallel leads to a significant reduc-
tion in computing time. Concerning the eigensolution phase, the algorithm im-
plemented ScaLAPACK’s pdsyevx showed good scalability for the number of
processors used, for computing all eigenvalues only, or a subset of eigenvalues
and corresponding eigenvectors. Similarly, SLEPc showed good scalability for
the number of processors used for computing a subset of eigenvalues and cor-
responding eigenvectors. However, a closer look at Figures 1-2 and 3-4 reveals
that a direct method becomes more costly as the problem size increases, greatly
surpassing the (by itself costly) generation of the matrix. This results from the
O(n3) complexity of the algorithm (in particular the reduction to tridiagonal
form) and also because we cannot exploit the band structure of our problems.
A strong point in favor of a direct method would be the proper determination
of eigenvalue multiplicities. However, we have also been able to deal with such
cases with iterative methods. Therefore, for our applications, iterative methods
become the method of choice when a subset of eigenvalues is wanted.

Table 3. Scalability of SLEPc. For p processors, a problem of order m = 4000 · p is
solved. Tgen and Tsolve are the execution times (in seconds) for matrix generation and
eigencomputation, respectively. its are the accumulated GMRES iterations.

p m Tgen Tsolve its

1 4K 21 2.70 92

2 8K 40 2.85 92

4 16K 75 2.91 91

8 32K 145 2.91 89

16 64K 294 2.83 82

32 128K 630 2.94 73

54 216K 1012 3.37 86

References

1. Drummond, L.A., Marques, O.A.: An overview of the advanced computational
software (ACTS) collection. ACM Transactions on Mathematical Software 31(3)
(2005) 282–301

2. Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L1

refined projection approximate solution of the radiation transfer equation in stellar
atmospheres. Journal of Computational and Applied Mathematics 140 (2002) 13–
26

3. Rutily, B.: Multiple scattering theoretical and integral equations. In Cotanda,
C., Ahues, M., Largillier, A., eds.: Integral Methods in Science and Engineering:
Analytic and Numerical Techniques. Birkhauser (2004) 211–231

4. Marques, O.A., Vasconcelos, P.B.: Evaluation of linear solvers for astrophysics
transfer problems. In: High Performance Computing for Computational Science -
VECPAR 2006. Volume 4395 of Lecture Notes in Computer Science. (2007) 466–
475

5. Abramowitz, M., Stegun, I.A., eds.: Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables. Volume 55 of Applied Mathematics
Series. National Bureau of Standards, Washington, D.C. (1964) Reprinted by
Dover, New York.

6. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1997)

7. I. S. Dhillon: A New O(N2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem PhD. Thesis, University of California, Berkeley, 1997.

8. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.3.3, Argonne National Laboratory (2007)

9. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Computer Methods in Applied Mechanics and
Engineering 184(2–4) (2000) 501–520

10. Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics: Transactions of IMACS 41(1)
(2002) 155–177

11. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Transactions on Mathematical Software
31(3) (2005) 351–362

12. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc users manual. Technical
Report DSIC-II/24/02 - Revision 2.3.3, D. Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia (2007)

13. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., eds.: Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2000)

14. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM Journal
on Matrix Analysis and Applications 23(3) (2001) 601–614

15. Stathopoulos, A.: Nearly optimal preconditioned methods for Hermitian eigen-
problems under limited memory. Part I: Seeking one eigenvalue. SIAM Journal on
Scientific Computing 29(2) (2007) 481–514

