
Improving Search Engines Performance on

Multithreading Processors

Carolina Bonacic1, Carlos Garcia1, Mauricio Marin2, Manuel Prieto1,
Francisco Tirado1, and Cesar Vicente1 ⋆

1 Depto. Arquitectura de Computadores y Automática
Universidad Complutense de Madrid

Contact-email: cbonacic@fis.ucm.es, {garsanca, mpmatias,

ptirado}@dacya.ucm.es

2 Yahoo! Research Santiago
University of Chile

mmarin@yahoo-inc.com

Abstract. In this paper we present strategies and experiments that
show how to take advantage of the multi-threading parallelism avail-
able in Chip Multithreading (CMP) processors in the context of efficient
query processing for search engines. We show that scalable performance
can be achieved by letting the search engine go synchronous so that
batches of queries can be processed concurrently in a simple but very
efficient manner. Furthermore, our results indicate that the multithread-
ing capabilities of modern CMP systems are not fully exploited when the
search engine operates on a conventional asynchronous mode due to the
moderate thread level parallelism that can be extracted from a single
query.

1 Introduction

The algorithmic design and implementation of current Web Search Engines is
based on the asynchronous message passing approach to parallel computing in
which each newly arriving query is serviced by an independent thread in a classi-
cal multiple masters/slaves scheme. Typical facilities for parallel query process-
ing at data centers are composed of a few thousand Linux boxes forming clusters
of computers.

On the other hand, the amount of work demanded by the solution of queries
follows the so-called Zipf’s law which in practice means that some queries, in
particular the ones composed of most popular terms, can demand large amounts
of processing times whereas others containing less frequent terms can require a
comparatively much smaller processing time.

⋆ This work has been partially supported by the research contracts CICYT-TIN
2005/5619, CYTED-506PI0293, FONDECYT 1060776 and Ingenio 2010 Consolider
CSD2007-20811. We also thank Sun Microsystems and the AulaSun of the UCM for
their support.

Thus under this asynchronous approach and hardware latencies a given query
can easily restrain smaller queries by consuming comparatively larger amounts
of resources in processor cycles, disk and inter-processors network bandwidths.

However, we have found that a careful design of the major steps involved in
the processing of queries can allow its decomposition in such a way that we can
let every query share the cluster resources evenly in a round-robin manner [8,
9]. We have observed that this scheme can be particularly useful in preventing
unstable behavior under unpredictable variations in the query traffic arriving to
the search engine.

In particular, we have observed for the standard asynchronous method of
query processing that sudden peaks in the query traffic can be very detrimental
to overall performance due to the Zipf’s law distribution of the workload per
query. We have also observed that the round-robin method of query processing
solves this problem efficiently. We have validated this claim through extensive
experimentation by running actual query logs upon actual 1TB samples of the
Web. Nevertheless, our experiments have been performed on standard machines
with coarse-grain threads implemented by Posix software running on clusters
supporting the distributed memory model and the MPI message passing com-
munication library.

Having said that, it is clear that this discussion is only valid at a macro-
scopic level in terms of “heavy” threads and operations for query processing in a
sharing nothing model for data distribution. However, state of the art computer
architectures integrate facilities for light threads and shared memory, which are
available to the programmer in the form of efficient realizations of the OpenMP

model of parallel computing. In fact, future improvements in processor perfor-
mance will predominantly come from Thread Level Parallelism, rather than from
increasing clock frequency or processor complexity [2]. In this regard, we think
that it is an interesting research problem to validate the above claims in the con-
text of these new architectures and if not, explore new optimizations to achieve
efficient performance under this new setting.

In this paper, we provide a first step in this direction by studying differ-
ent realizations of standard and round-robin search engines implemented upon
a state-of-the art Chip Multithreading system [11] and its respective OpenMP

realization. As experimental platform we have chosen a Sun Microsystems’ Ul-
traSPARC T1 processor – code-named as Niagara [6] and marketed by Sun as
CoolThreads technology – since it symbolizes the recent shift to CMP in the
server market and presents a radical new approach to enable throughput com-
puting and scalability with low power consumption.

For programming purposes the T1 can be seen as a set of logical proces-
sors that share some resources. Consequently, one may think that paralleliza-
tion schemes targeted for other shared-memory multiprocessors, such as SMP
systems, are also good candidates for this processor. However, the sharing of
resources introduced on the T1 for increasing utilization may cause serious bot-
tlenecks and hence, strategies that are appropriate for these machines may be

inappropriate or less effective for the T1. One of the goals motivating this study
is to revise the implementation of parallel search engines in this light.

The rest of this paper is organized as follows: Section 2 and 3 describe our
search engine and the experimental framework respectively. Section 4 presents
our parallel proposals and Section 5 shows some performance results. Finally the
paper ends with some conclusions and hints for future research.

2 Search engine overall description

2.1 Distributed inverted file

Web Search Engines use the inverted file data structure to index the text col-
lection and speed up query processing. A number of papers have been published
reporting experiments and proposals for efficient parallel query processing upon
inverted files which are distributed on a set of P processor-memory pairs [1, 3, 4,
7–10, 14]. It is clear that efficiency on clusters of computers is only achieved by
using strategies devised to reduce communication among processors and main-
tain a reasonable balance of the amount of computation and communication
performed by the processors to solve the search queries.

An inverted file is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of relevant terms found in the collection.
Each of these terms is associated with a posting list which contains the document
identifiers where the term appears in the collection along with additional data
used for ranking purposes. To solve a query, it is necessary to get the set of
documents ids associated with the query terms and then perform a ranking of
these documents so as to select the top K documents as the query answer.

Current search engines use the document partitioned approach to distributing
the inverted file on a set of P processors. In this case, the document collection is
evenly distributed at random on the processors and an inverted file is constructed
in each processor considering only the documents stored in the processor. Solving
a query involves to (a) place a copy of it in each processor, (b) let each processor
calculate their local top K results and (c) make a merge of all results to select
the global top K results.

Query operations over parallel search engines are usually read-only requests
upon the distributed inverted file. This means that one is not concerned with
multiple users attempting to write information on the same text collection. All of
them are serviced with no regards for consistency problems since no concurrent
updates are performed over the data structure. Insertion of new documents is
effected off-line.

2.2 Organizing query processing

At the parallel server side, queries arrive from a receptionist machine that we
call the broker. The broker machine is in charge of routing the queries to the

cluster’s processors (where for the scope of this paper each processor is a chip-
multiprocessor node of the cluster) and receiving the respective answers. It de-
cides to which processor routing a given query by using a load balancing heuristic.
The particular heuristic depends on the approach used to partition the inverted
file. Overall the broker tends to evenly distribute the queries on all processors.

More in detail, the parallel processing of queries is basically composed of a
phase in which it is necessary to fetch parts of all of the posting lists associated
with each term present in the query, and perform a ranking of documents in order
to produce the results. After this, additional processing is required to produce the
answer to the user. This paper is concerned with the fetching+ranking part. We
are interested in situations where it is relevant to optimize the query throughput.

A relevant issue for this paper is the way we organize query processing upon
the piece of inverted file stored in each processor. We basically apply the com-
bination of two strategies we have devised to efficiently cope with hardware
resource contention among queries and dynamic variations in the query traffic:

– Round robin query processing. We let queries to use a fixed quantum of
computation, communication and disk access before granting the resources
to another query in a round-robin fashion.

– Operation mode. We dynamically switch the mode of operation of the
search engine between the asynchronous and synchronous message passing
modes of parallel computation in accordance with the observed query traffic.

In the following subsection we describe both strategies in detail.

2.3 Iterative ranking and round-robin query processing.

The processor in which a given query arrives is called the ranker for that query
since it is in this processor where the associated document ranking is performed.
Every query is processed iteratively using two major steps:

– Fetching. The first one consists on fetching a K-sized piece of every posting
list involved in the query and sending them to the ranker processor. In
essence, the ranker sends a copy of every query to all other P nodes. Next,
all nodes send K/P pairs (doc id, frequency) of their posting lists to the
ranker which performs the first iteration of the documents ranking process.

– Ranking. In the second step, the ranker performs the actual ranking of doc-
uments and, if necessary, it asks for additional K-sized pieces of the posting
lists in order to produce the K best ranked documents that are passed to
the broker as the query results. We use the vectorial method for performing
the ranking of documents along with the filtering technique proposed in [12].
Consequently, the posting lists are kept sorted by frequency in descending
order. Once the ranker for a query receives all the required pieces of posting
lists, they are merged into a single list and passed throughout the filters. If
it happens that the document with the less frequency in one of the arrived
pieces of posting lists passes the filter, then it is necessary to perform a new
iteration for this term and all others in the same situation.

Thus the ranking process can take one or more iterations to finish. In every
iteration a new piece of K pairs (doc id, frequency) from posting lists are sent
to the ranker for each term involved in the query. This concept of iteration is
essential to distribute and allocate system resources to the queries in a round-
robin fashion: the quantum comes from the fact that we let queries work on
chunks of posting lists of size K and organize document ranking in iterations.

2.4 Operation Mode

As mentioned above, we dynamically switch the mode of operation in accordance
with the query traffic observed.

– Asynchronous mode. Low query traffic triggers an asynchronous mode
in which each query is serviced by a unique master thread in charge of
processing the query. This master thread can communicate with P other
slave threads, each located in one of the P cluster nodes.

– Synchronous mode. High query traffic triggers a mode in which all active
threads are blocked and a single thread takes the control of query processing
by grouping queries in batches and processing them sequentially. In this
case messages are buffered in all cluster nodes and sent out at the end of
the current batch being processed, point at which all processors are barrier
synchronized. Better utilization of system resources of this mode comes from
the fact that overheads such as thread scheduling and synchronization cost
are reduced significantly and communication is performed in bulk.

3 Experimental framework. Computing platform and

data set

As experimental platform, we have chosen a Sun Microsystems’ UltraSPARC T1
processor, whose main features are summarized in Table 1. Initially codenamed
as Niagara, the T1 is a special-purpose CMP designed by Sun for the server
market. It is available with four, six or eight CPU cores, and each core allows for
the execution of four threads concurrently. Essentially, T1 cores are fine-grain
multithreading (FGM) processors [5] that switch between threads of execution
on every cycle for hiding the inefficiencies caused by long operational latencies
such as memory accesses [13]. Single thread applications will perform better
on traditional processors, but multithreaded workloads may benefit from this
architecture: each thread is slower but this architecture yields better use of the
processor’s resources and potentially a higher overall throughput.

In our implementations, thread level parallelism has been exploited by means
of the OpenMP standard, which is supported by Sun’s native compilers.

3.1 Fixed-Point ranking

The UltraSPARC-T1 processor has a limited floating-point capability since it
only provides one floating-point unit to support all 8 cores on the chip, i.e.

Table 1. Main features of the target computing platform.

Processor

SUN UltraSPARC-T1 8 core processor (1.2GHz)
(4-way fine-grain multithreading core)

L1 Cache 16+8 KB (instruction+data)
(per core) 4-way associative, LRU
L2 Unified 3MB (4Banksx768KB)

Cache 12-way associative, pseudo-LRU

16 GBytes
Memory (4x4GBytes) DIMMS

533 MHz DDR2 SDRAM
Operating System SunOS 5.10 (Solaris 10) for UltraSparcT1

Sun C/C++ Compiler -fast -xarch=v9 -xipo=2
v5.8 Switches Parallelization with OpenMP: -xopenmp=parallel

only one thread can use it at a time. Furthermore, even if just one thread uses
the floating-point unit, there is a 40 cycle penalty to access the unit. Most
commercial applications have little or no floating-point content so it is not a
major handicap. However, in our target application, one of the most costly phases
is the ranker process, which uses floating-point arithmetic to classify the most
relevant documents for a query.

To overcome this potential bottleneck, we have modified the ranker to avoid
floating-point arithmetic. Our implementation uses a 32-bit fixed-point data rep-
resentation for holding the appearance frequency in the posting lists, instead of
the conventional floating-point representation, and performs computations using
a customized fixed-point library that takes advantage of the T1 integer ALUs –
there is an integer ALU per core –. The overhead introduced in the fixed-point
version by overflow checking is around 20 to 40%, but the large penalties in-
troduced by floating-point operations (the floating-point sqrt takes thousand of
cycles) compensate this cost.

Figure 1 illustrates the potential benefits of this optimization. It shows the
scalability of a synthetic benchmark that tries to mimic the kind of computa-
tions performed by the ranking process – it mixes different arithmetic operations
such as divisions, multiplications, logarithms and square roots –. As expected,
the performance of the floating-point version is really poor but the fixed-point
counterpart scales reasonable well.

3.2 DataSet Inputs

All the results of this work have been obtained using a Chilean Web database
sample taken from www.todocl.cl. The index structure contains around 1 million
Spanish terms – 1.5 GBytes in size –. Queries have been selected randomly from
a set of 127.000 queries extracting from todocl logs.

Fig. 1. Parallel efficiency of a synthetic benchmark that tries to mimic the kind
of computations performed by the ranking process using either floating-point or
fixed point arithmetic.

4 Parallel Scheme

As mentioned above, the availability of chip multithreading architectures in-
troduces a new scenario in which thread-level parallelism becomes the key for
achieving performance. In this regard, a critical issue here is the operation mode
of the search engine since it strongly influences the way in which thread level
parallelism can be extracted:

– Synchronous mode. Under high query traffic, batching the queries and let-
ting the search engine go synchronous introduces regular coarse-grain paral-
lelism. This parallelism can be easily translated into thread level parallelism
in a simple manner by running queries into separate threads. Thread man-
agement overheads are relatively small at the expense of synchronization
cost. The question here is whether this coarse-grain parallelization fits well
with CMP characteristics.

– Asynchronous mode. Under low query traffic, it is necessary to resort
to other sources of parallelism. The question here is whether intra-query
parallelism is high enough to be exploited efficiently on CMP architectures.

In the following subsection we describe both approaches more precisely.

4.1 Synchronous mode

The coarse-grain parallelism introduced by the synchronous mode can be easily
expressed by means of OpenMP directives using conventional query distribution
schemes. However, the similarities amongst the different threads – they execute

the same code with just a different query – may cause contention for the shared
resources of the T1, especially cache space and memory bandwidth. We have
tried to minimize these penalties with a data distribution and thread assignment
strategy that looks for batching queries with similar terms on the same processor.
Essentially, our idea is to take advantage of the available temporal locality, to
increase the cooperation between threads and avoid costly memory accesses as
much as possible.

Algorithm 1 Our parallel proposal for the synchronous web search engine.

At the broker machine do:
// group together queries with similar terms
query batch = build clustered batch(current queries);
broadcast to all processors(query batch);

In each processor do:

#pragma omp parallel for private(...) shared(...)
for q=1:Nqueries processor do

query = query batch[q];
for term=1:terms in query do

posting list[term] = fetch(term);
end for
best docs[query] = ranking(posting list, terms in query);

end for
...

Algorithm 1 shows the pseudo-code of our parallel approach with a first step
done by the broker machine (master), which tries to gather queries with some
terms in common, and then each processor (slaves) finds the best documents
associated to them in parallel.

4.2 Asynchronous mode

For the Asynchronous mode we use an OpenMP parallelization of the document
ranking routine executed by each query to get the top K documents. This par-
allelization involves deploying a team of OpenMP threads at various points of
the routine. In particular, for the cases of identical operations performed over
the complete piece of posting list for each query term, we do it in parallel by let-
ting each thread to work on a different segment of the posting list. The filtering
technique is a bit more involved. It needs synchronization to update the current
score barrier. Further documents down the posting list must beat this barrier in
order to be considered as candidates to be included in the top K results. The

barrier must be updated concurrently by the threads. This is solved by using a
critical section in the points at which this barrier is updated; though this occurs
less frequently during the processing of the posting lists.

Algorithm 2 Our parallel proposal for the asynchronous web search engine.

At the broker machine do:
// dispatch queries when they arrive
dispatch to processor P(query);

In each P processor do:

for term=1:terms in query do
#pragma omp parallel private(...) shared(...)
posting list[term] = parallel fetch and operations(term);

end for
best docs = parallel ranking(posting list, terms in query);
...

5 Performance Results

In this Section we attempt to answer those questions raised above. Performance
results have been obtained on a single UltraSPARC-T1 processor. This study
can be viewed as a first approach of a more complex distributed system based
on CMP processors which should behave as slaves in our context. Our objective
is to analyze in detail the best intra-node parallel approaches and outline some
preliminary conclusions which could be extrapolated for a real infrastructure.

5.1 Synchronous mode

Figure 2 shows the throughput achieved with our synchronous proposal. As
mentioned above, we have tried to improve implicit cooperation between threads
with a data distribution and thread assignment strategy that looks for batching
together queries with similar terms. To estimate the potential benefits of this
strategy we have compared two extreme scenarios. The gray column corresponds
to the most adverse situation: there is no common terms between subsequent
queries and all the threads of a given batch compete for the available resources.
The black column, in contrast, corresponds to the potentially most favorable
situation: all the threads of a given batch process queries with identical terms.

The noticeable difference between both scenarios when running 16 and 32
threads highlights the benefits of a conscious thread distribution. In any case,
the throughput is satisfactory enough in both scenarios. The speedup increases
proportionally with the number of threads and in the most favorable scenario,
our synchronous search engine reaches a speedup of 22 using 32 threads.

Fig. 2. Query throughput achieved by the synchronous mode in the most adverse
(gray column) and favorable (black column) scenarios.

5.2 Asynchronous mode

Essentially, the experimental results (see Figure 3) show that the gain coming
from parallelism is not really significant. This is mainly due to the fact that
in each round-robin iteration of the processing of a given query, the amount of
data (the ones involved in the pieces of posting lists of size K) that is processed
is small. For example, at various points in the document ranking process it
is necessary to sort candidate documents. However, trying to do that sorting
in parallel by using OpenMP threads is not worthwhile since the amount of
document to be sorted is not large enough.

Recall that round-robin is necessary to prevent large queries from consuming
all resources in detriment to small queries. In addition, the filtering technique
applied to avoid having to consider the complete posting list for each query term
is based on the update of a barrier which finally stop the ranking by deciding
that the remaining items in the involved posting lists are not able to include new
document among the top K results. When implemented using OpenMP threads
this barrier become a critical section of the ranking process whose serialization
introduces performance degradation.

We should emphasize that current search engines are fully asynchronous and
they are prone to this problem as well. In general these machines use techniques
to avoid scanning the complete posting list and thus they are essentially in the
same difficulties to get advantage of the capabilities provided by CMP systems.
In this regard, it can be argued that under high query traffic, the execution of
multiple queries would also overlap in the asynchronous mode and this overlap-
ping would provide enough parallelism. In the following we call this ideal case
Optimal-Async.

Fig. 3. Time (ms) per query using the asynchronous mode.

Figure 4 highlights that even in this case, an asynchronous engine will per-
form much worse than the synchronous counterpart. This figure shows the query
throughput achieved by the different modes. Despite the Optimal-Async model
exploits both sources of parallelism – inter and intra-query parallelism – in an
idealist and optimal way (thread management has been oversimplify in these sim-
ulations). Furthermore, for a given number of threads, we report the throughput
achieved by the optimal combination of inter and intra-parallelism, it does not
outperform the efficient synchronous model. Essentially, the overheads caused by
the asynchronous thread management and the limited intra-query parallelism in-
troduce an upper bound to the asynchronous scalability.

Fig. 4. Query throughput achieved by the different operation modes under study.

Fig. 5. Query throughput for the different numerical format representation:
floating-point (gray column) and fixed-point (black column).

5.3 Fixed-point arithmetic. Impact on performance and validation

Figure 5 analyzes the impact of fixed-point arithmetic on scalability. It shows the
number of queries per second that we are able to solve in the synchronous version
when performing the ranking process with either floating-point or fixed point
arithmetic – under high query traffic the asynchronous version behaves similarly
–. As expected, the floating-point version does not scale beyond a modest number
of threads.

To the best of the authors’ knowledge, this is the first study that explores
fixed-point arithmetic for ranking purposes. A final question here to conclude
our discussion is whether the use of fixed-point operations (instead of floating-
point ones) produces some effect in (1) the final set of documents selected as the
answer to each query and (2) their relative position within the top K results. We
evaluated this experimentally by running both fixed and floating-point document
ranking functions under the same inverted file and set of queries.

We performed two tests on the set of documents generated in both cases
for each query – tests on sets A for fixed-point results and B for floating-point
results. The first test calculates the ratio |A∩B|/|B| for which we obtained results
very close to 1; we observed average values between 0.99 and 1.0 for different and
very large sets of queries. This indicates that both sets are practically identical.

The second test calculates the Pearson’s correlation of the sets A and B to
measure the relative position of the documents in A with respect to their position
in the top K query results present in B. Again we obtained values very close to
1 indicating that there are almost no difference in the relative position of the
documents A in the top K results for the queries.

6 Conclusions

A logical view of the T1 processor suggests the application of the general prin-
ciples of data partitioning to get the multithreaded versions of our Web Search
Engine. Essentially, this partitioning is performed running queries into separate
threads.

This strategy can be easily expressed with OpenMP directives. However,
the similarities amongst the different threads may cause contention for shared
resources, especially cache space and memory bandwidth. We have tried to min-
imize these effects with a data distribution and thread assignment strategy that
looks for batching on the same processor and tries group together queries con-
taining common terms. This strategy aims at taking advantage of the temporal
data locality, and to avoid the costly memory access.

As further research we plan to increase locality by devising strategies that re-
organize the way in which the chunks of size K of posting are stored in main and
secondary memory in order to exploit locality. This should be made by taking
into consideration how frequently the terms appears in queries together, which
can be obtained from the logs that search engines maintain at their data centers.

References

1. A. Arusu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan. Searching the
web. ACM Trans., 1(1):2–43, 2001.

2. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K.A. Yelick. The
landscape of parallel computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec
2006.

3. C. Badue, R. Baeza-Yates, B. Ribeiro, and N. Ziviani. Distributed query process-
ing using partitioned inverted files. Eighth Symposium on String Processing and
Information Retrieval (SPIRE01), pages 10–20, 2001.

4. A. Barroso, J. Dean, and U. H. Olzle. Web search for a planet: The google cluster
architecture. IEEE Micro, 23(2):2002, 22-28.

5. J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006.

6. P. Kongetira, K. Aingaran, and Kunle Olukotun. Niagara: A 32-way multithreaded
sparc processor. IEEE Micro, 25(2):21–29, 2005.

7. M. Marin, C. Bonacic, V. Gil-Costa, and C. Gomez. A search engine accepting
on-line updates. In Euro-Par ’07: 13th International Conference on Parallel and
Distributed Computing, pages 348–357, 2007. LNCS 4641.

8. M. Marin and V. Gil-Costa. High-performance distributed inverted files. In CIKM
’07: Proceedings of the Sixteenth ACM Conference on Information and Knowledge
Management, pages 935–938, New York, NY, USA, 2007. ACM.

9. M. Marin and V. Gil-Costa. (Sync|Async)+ MPI Search Engines. In PVM/MPI,
pages 117–124, 2007. LNSC 4757.

10. W. Moffat, J. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for
distributed text query evaluation. Information Retrieval, published on-line, 5:2006,
October.

11. K. Olukotun, L. Hammond, and J. Laudon. Chip Multiprocessor Architecture:
Techniques to Improve Throughput and Latency. Number 3 in Synthesis Lectures
on Computer Architecture. Morgan and Claypool Publishers, 2007.

12. M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with
frequency-sorted indexes. Journal of the American Society for Information Sci-
ence, 47(10):749–764, 1996.

13. D. Sheahan. Developing and tuning applications on ultrasparc t1 chip multithread-
ing systems. Technical report, Sun Microsystems. Sun BluePrints Online, October
2007.

14. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2), 2006.

