Attaining High Performance
in General-Purpose Computations
on Current Graphics Processors

Francisco Igual-Pena, Rafael Mayo-Gual, and Enrique S. Quintana-Orti

Depto. Ingenieria y Ciencia de los Computadores, Universidad Jaume I,
12.071-Castellén, Spain, {figual,mayo,quintana}@icc.uji.es

Abstract. The increase in performance of the last generations of graph-
ics processors (GPUs) has made this class of hardware a coprocessing
platform of remarkable success in certain types of operations. In this pa-
per we evaluate the performance of linear algebra and image processing
routines, both on classical and unified GPU architectures and traditional
processors (CPUs). From this study, we gain insights on the properties
that make an algorithm likely to deliver high performance on a GPU.

Key words: Graphics processors (GPUs), general purpose computing on
GPU, linear algebra, image processing, high performance.

1 Introduction

During the last years, since the emergence of the first generation of programma-
ble graphics processors (GPUs), many studies have evaluated the performance
of these architectures on a large number of applications. Thus, linear algebra
operations [10, 6], medical image processing [9, 12], or database querying [8] are
just a few examples of different arenas in which GPU computation has been
successfully applied.

Recently, the design of GPUs with unified architecture and the development
of general-purpose languages which enable the use of the GPU as a general-
purpose coprocessor has renewed and increased the interest in this class of pro-
cessors. Unfortunately, the rapid evolution of both the hardware and software
(programming languages) of GPUs has outdated most of the performance studies
available to date.

In this paper, we design and implement a reduced collection of “benchmark”
routines, composed of four linear algebra operations (matrix-matrix product,
matrix-vector product, saxpy, and scaling of a vector) and an image processing
kernel (convolution filter). These routines are employed to evaluate the impact
of the improvements introduced in the new generation of GPUs (Nwvidia G80),
comparing the results with those obtained on a GPU from a previous generation
(Nvidia NV44) and current general-purpose processors (AMD Athlon XP 2400+
and Intel Core 2 Duo). The ultimate purpose of this evaluation is to characterize

the properties that need to be present in an algorithm so that it can be correctly
and efficiently adapted into the GPU execution model.

The rest of the paper is organized as follows. Section 2 describes the basic
architecture and execution model of both the old and new generations of GPUs
Section 3 characterizes the routines in the benchmark collection. Sections 4 and 5
evaluate the performance of the benchmark routines on the Nvidia NV/4 and
the Nwvidia G80, respectively, comparing the results with those obtained on a
CPU, and identifying a set of properties that must be present in an algorithm
to deliver high performance on that GPUs. Finally, Section 6 summarizes the
conclusions that can be extracted from our analysis.

2 GPU Architecture and Execution Model

2.1 GPU graphics pipeline

The graphics pipeline consists of a set of sequential stages, each one with a
specific functionality and operating on an specific type of data. The process
transforms original graphical information (vertices) into data suitable for being
shown on display (pixels). Figure 1 illustrates the usual stages (or phases) that
form the graphics pipeline.

WVERTICES PRIMITIVES FRAGMENTS PIXELS
. o e o H W -
] e i O C g
= . LR | 1 g
=8 S TIT1] TED
o e . 111 =
= . -] 1 T}
1 Tl B | 1 =
L [TT 111 (41 e
o ° F-----—— - - - B 11 T (101 g
WERTEX PROCESS0RS FRAGMENT PROCESSORS

Fig. 1. Graphics pipeline process with its main stages.

Current GPUs implement this pipeline depending on the generation they be-
long to. Thus, classical GPUs have specific hardware units, known as shaders
(or processors), for each one of the stages of the graphics pipeline. On the other
hand, GPUs from the latest generation have a unified shader (or unified proces-
sor), with the ability to both execute any of the stages of the pipeline and work
with any type of graphical data.

2.2 Classical architecture

Until 2006 GPUs were based on a design where each pipeline stage was exe-
cuted on a specific hardware unit or processor inside the pipeline. Thus, e.g.,
vertices are processed by wvertex processors while pixels (also called fragments)
are transformed by fragment processors. In practice, general-purpose algorithms
implemented on these classical architectures exploit fragment processors only,

due to their larger number and broader functionality. Fragment processors op-
erate in SIMD mode, taking a fragment as input, and processing its attributes;
they can also process vectorial data types, working simultaneously on the four
components of a fragment (R, G, B, and A). This class of hardware is able to
read from random memory locations (commonly known as a gather operation in
graphics algorithms), but can only modify one memory position per processed
fragment, the one associated with the position of the fragment. This lack of
support for scatter is one of the main restrictions of the classical GPU.

In the latter generations of this “classical architecture”, programming capa-
bilities were added to vertex and fragment processors. Altogether, the previous
characteristics enable the use of fragment processors as a hardware platform to
process non-graphical data. Unfortunately, the graphical-oriented design of this
class of hardware, its SIMD execution model, the lack of a sophisticated memory
hierarchy and the use of graphical-oriented APIs are problems for an efficient
implementation of general-purpose applications on the GPU.

2.3 Unified architecture

In 2006 a new generation of GPUs was introduced, with a completely different
architectural design. These new platforms feature a unified architecture, with one
processing unit or unified shader that is able to work with any kind of graphical
data, transforming the sequential pipeline in Figure 1 into a cyclic one, in which
the behavior of the unified shader varies depending on the stage of the pipeline
that it is being executed at each moment.

There are several characteristics in the new generation of GPUs which specif-
ically favor their use as a general-purpose coprocessor: in general, the clock fre-
quency of the unified shader is much higher than that of a fragment processor
(even though it is still much lower than the clock frequency of current CPUs);
the shader consists of a large collection of computation units (up to 128, de-
pending on the GPU version), called Streaming Processors (SPs), which operate
in clusters of 16 processors in SIMD mode on the input data stream; and the
architecture includes a sophisticated memory hierarchy, which comprises a L2
cache and small fast memories shared by all the SP in the same cluster.

These hardware advances are complemented with the CUDA [3] general-
purpose programming library, which eases the programming effort on these plat-
forms. In fact, CUDA has been proposed as a standard (although only compati-
ble with Nvidia hardware) to program the new generation of GPUs, without the
requirement of learning more complex graphics-oriented languages.

3 Benchmark Collection

In order to identify the algorithmic properties that yield correct and efficient
codes for the GPU execution model, we have studied three major computational
aspects of algorithms:

Data parallelism. The replication of functional units inside the GPU (frag-
ment processors in the non-unified architectures, SPs in the unified architec-
tures) makes this class of architectures specially appropriate for applications
which exhibit a high degree of data parallelism.

Input data reutilization. The simple memory hierarchy in non-unified GPUs
makes it difficult to exploit the locality of reference; in these architectures,
high memory latency and limited bus bandwidth imply a penalty cost much
higher than in a CPU; for this reason, input data reutilization is one of the
biggest issues when trying to attain high performance on graphics processors.

Computational intensity per stream element. Due to the previous restric-
tion, to achieve high performance the expensive cost of memory references
should be masked with a high number of operations per memory access.

Our benchmark collection is composed of four Basic Linear Algebra Sub-
programs or BLAS [5]: the matrix-matrix product (SGEMM), the matrix-vector
product (SGEMV), the “saxpy” (SAXPY), and the scaling of a vector (SSCAL); and
a convolution filter, common in image processing. From the computational view-
point, the routines in the benchmark present the following properties:

SGEMM The matrix multiplication routine,
C=a-A-B+g-C

where A is m x k, B is k x n, and C is m x n, being « and (scalars, features
some properties that make it a good candidate to achieve good results when
mapped into graphics hardware. It exhibits a regular memory access pattern, a
high degree of data parallelism, and a very high computational load. On the other
side, it is interesting to study the importance of the high input data reutilization
in this type of algorithm.

For our study, we have chosen square matrices to evaluate the performance
of the routine, and a non-transposed memory layout. The scalars o and § were
set to 1. For a detailed study of the SGEMM performance on a GPU, refer to [1].

SGEMYV The matrix-vector multiplication routine
y = - A - + ﬂ . y

where A is a m X n matrix, z and y are vectors of length n and a and (8 are
scalars, exhibits a smaller input data reutilization than SGEMM. Thus, while each
input element for the SGEMM routine is used O(n) times to compute the result,
SGEMV reutilizes O(n) times the data of the input vector, but only O(1) times
the data of the input matrix. This behavior makes the matrix-vector product
routine a more streaming-oriented code, and so it is theoretically possible to
achieve better results on a GPU. The simplest form of de SGEMV routine will be
evaluated, with the matrix A not transposed in memory, and o = § = 1.

SAXPY and SSCAL The BLAS-1 routines SAXPY and SSCAL
y=a-xr+y r=a-x

where x and y are vectors, and « is a scalar, are specially interesting for graphics
processors, as they do not reutilize input data at all. These algorithms fit per-
fectly to the GPU architecture explained in Section 2. In fact, they can be seen
as fully stream-oriented algorithms, where the input is a stream of data (for the
SSCAL routine) or two streams (for the SAXPY), operations are performed over
each of the elements of the input stream, without any kind of data reutilization,
and finally an output data stream is returned.

The main difference between these two operations, from the performance
viewpoint, is the amount of computational load per stream element. Thus, SAXPY
performs twice as many operations as SSCAL per element. This difference offers
some information on the importance of the computational load in the perfor-
mance of the processor.

2D Convolution Image processing algorithms traditionally exhibit a high per-
formance when executed on graphics processors. More specifically, the convolu-
tion filters exhibit some properties which favor GPU hardware. First, the high
degree of data parallelism will take advantage of fragment processors (or SP)
replication of modern GPUs. Second, input data reutilization is very low (pro-
portional to the size of the applied filter, usually small). Third, the computational
load per calculated element is high, and based on multiply-and-add (MAD) op-
erations, for which the GPU is specially appropriate.

For our evaluation purposes, we have implemented a bidimensional convolu-
tion filter with a square mask of different sizes, comparing optimized versions on
CPU, using tuned BLAS libraries, and on GPU, using optimized Cg and CUDA
implementations.

4 Previous Generation GPU-CPU Comparison

4.1 Experimental setup

In this first experiment, we have chosen two experimental platforms of the same
generation, an AMD AthlonXP 2400+ CPU and a Nvidia NV44 GPU processor
(both from year 2004), so that we can do a fair comparison between general-
purpose and graphics processors. Details on these architectures are given in
Table 1. The GNU gcc 4.1.2 compiler is employed in the evaluation.

4.2 Implementation details

The highly tuned implementation of linear algebra kernels in GotoBLAS 1.15 [7]
was used to evaluate the performance of the CPU. The convolution filter im-
plementation was built on top of GotoBLAS, using exclusively fully optimized
BLAS operations.

CPU GPU

Processor AMD AthlonXP 2400+ Nwidia GeForce 6200
Codename Thoroughbred A NV44A

Clock frequency 2 GHz 350 MHz

Memory speed 2 x 133 MHz 2 x 250 MHz

Peak performance 8 GFLOPS 11.2 GFLOPS

Bus width 64 bits 64 bits

Max. bandwidth 2.1 GB/s 4 GB/s

Memory 512 MB DDR 128 MB DDR

Bus Type AGP 8x (2 GB/s transfer rate)

Year 2004 2004

Table 1. Description of the hardware used in our first experimental study.

On the other hand, the GPU was programmed using OpenGL and the Cg
language (version 1.5). The routines were adapted to the architecture of the
Nvidia NV44 in order to optimize performance, as is briefly described next.

For routine SGEMM, we start from a simple implementation, applying succes-
sive refinements in pursue of high performance. First, we adapt the original al-
gorithm using the vectorial capabilities of the fragment processors, as proposed
in [4]. This type of optimization usually yields a four-fold increase in perfor-
mance, and is frequently applied to all types of GPU codes. In addition, we
try to exploit the simple cache hierarchy of the Nvidia NV4/ by implementing
a multipass algorithm, following the ideas in [11]. The goal here is analogous
to blocking techniques for CPUs; however, this technique often delivers poorer
results on GPUs as the multiple memory writes after each rendering pass pe-
nalize the global performance. In general, an SIMD architecture attains higher
performance when the instructions are executed only once on the data stream.

We have also implemented optimized versions of routines SGEMV, SAXPY, and
SSCAL which exploit the vectorial capabilities of the GPU by applying analogous
optimizations to those described above for routine SGEMM.

Convolution filters allow us to introduce simple but powerful optimizations
starting from a basic implementation. Our proposal to achieve high performance
when executing this operation on a GPU is to divide the original N x N image
into four N/2 x N/2 quadrants. For simplicity, we assume here that N is a
multiple of 2; the overlap applied to the boundaries is not illustrated. We then
map the (4,7) elements of the four quadrants onto the four channels (R, G, B,
and A) of an N/2 x N/2 data structure. Since a GPU can process four-channel
tuples as a scalar element, we can get up to four times higher performance with
this type of optimization. Figure 2 illustrates the process. Although this strategy
is quite simple, it illustrates the type of optimizations that can be easily applied
when implementing general-purpose algorithms on a GPU.

4.3 Experimental results

By analyzing the experimental results, the goal to determine which algorith-
mic properties (computational aspects in Section 3) favor the execution of an
algorithm on a GPU with a classical architecture.

MFLOPs

ORIGINAL
N IMAGE —

N N/2

Fig. 2. Optimization applied to the computation of a convolution filters on a GPU
with a classical architecture.

Data reutilization: SGEMM vs. SGEMV

Figure 3 shows the results for routines SGEMM and SGEMV on the CPU and GPU.
On the latter architecture, we report two different MFLOPs rates, labeled as
“GPU”/“GPU w. TX”, obtained respectively by measuring only the execution time
on the GPU or timing also the period required to transfer data and results be-
tween RAM and video memory. The high input data reutilization of the matrix-
matrix product (see left-hand side plot) explains why the routine in Goto BLAS;,
which exploits the sophisticated cache hierarchy of the AMD CPU, outperforms
the GPU implementation by a factor up to 4. The right-hand side plot illustrates
how, when the data reutilization is lower as, e.g., in the matrix-vector product,
the difference in performance between the CPU and GPU routines decreases,
though still favors the CPU (between two and three times higher MFLOPs rate
on this architecture).

Test SGEMM Test SGEMV
8000 T T T T 30 T T
o—e MFLOPS CPU e—e MFLOPS CPU
m—m MFLOPS GPU =—m MFLOPS GPU
7000 | MFLOPS GPU w. TX. A — MFLOPS GPU w. TX
6000 _ & L WW
| oo .
5000|- g g : : 1 200,
H H o H
4000 B H 9 H
s :
= 150 .
3000 : : ol “u - h
2000 g /
++:Q;ﬁ-:!///*§ 100f-gf
1000)] : : , < :
—
900 400 600 800 1000 1200 1400 1600 1800 2000 5 1000 2000 3000 4000 5000
Matrix dimension Vector dimension

Fig. 3. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nwvidia NV44 GPU.

The figure also reports that the impact of the data transference, however, is
less important for routine SGEMM, which carries out a higher computational load
per element that is transferred through the bus. From the previous results, it is

MFLOPs

possible to conclude that the amount of data reutilization is an important factor
in order to achieve high performance on a GPU.

Computation load per stream element: BLAS-1 routines

Therefore, one could expect that BLAS-1 operations (SAXPY and SSCAL) will
deliver a high MFLOPs rate on this class of hardware. Surprisingly, as shown
in Figure 4, we get a poor performance for our implementations of SAXPY and
SSCAL, much lower than those of the corresponding CPU implementations.

This behavior can be explained as follows: the scarce amount of computa-
tional load per memory access in BLAS-1 operations limits their performance.
This is partially due to the lower efficiency of the memory system of the Nvidia
NV44 GPU, with a poor use of cache memories. The elaborated cache memory
of the CPU, and its efficient use by the optimized routines in Goto BLAS, are
the reasons for such a notable difference in efficiency. Furthermore, results on
the GPU are slightly better for SAXPY when compared with the corresponding
implementation on CPU than for SSCAL, as the computational load per stream
element calculated in the former operation is twice as high as that of SSCAL.

In conclusion, high computational load per stream element is one of the basic
conditions for an algorithm to deliver high performance when executed on GPU.

Test SAXPY Test SSCAL

o—e MFLOPS C|"U e—e MFLOPS CPU
=—m MFLOPS GPU 2000 =—a MFLOPS GPU
»—= MFLOPS GPU w. TX | »—= MFLOPS GPU w. TX
2000 :
/,.«HH*—HHH*‘-'*—\/\\ 150 /'\ Py
N N
1500 : /

2500

¥ g, o
: 9
H E 1000} &

1000 ,.\.1—-/./"'\-—-\.

500 P! . i 500
:

2000 7000 6000 8000 10000 05— 1000 2000 3000 7000 5000
Vector dimension Vector dimension

Fig. 4. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nwvidia NV44 GPU.

Bidimensional convolution filters

Convolution filters combine in the same operation a set of very favorable prop-
erties for GPUs: high data parallelism, low input data reutilization, and high
computational load per stream element. Figure 5 shows the results of the im-
plementations of the convolution filter on the CPU and GPU. The optimized

implementation on GPU (labeled as ¢“GPU4’’) employs the four channels of each
element of the input stream in order to store data (as explained at the end of
Section 4), attaining a speed-up factor close to 4x with respect to a basic GPU
implementation (labeled as “GPU’’). The comparison between this implementa-
tion and the optimized CPU version shows a comparable performance between
the optimized CPU implementation and the optimized GPU one.

Test Convolution - Image 512x512

e—e GFLOPS CPU

=—a GFLOPS GPU4
GFLOPS GPU4 w. TX

»— GFLOPS GPU

400 i NS ST

: EE— =
g '//r/ ;
5

-

8] 10
Filter Width

Fig. 5. Performance of the implementations of the convolution filter on the AMD
AthlonXP 2400+ CPU and the Nvidia NV44 GPU.

Convolution filters are the type of algorithms that better fit into the exe-
cution model of GPUs with classical architecture. These operations exhibit all
the properties that make good use of GPUs computational power and, at the
same time, hide those aspects in which CPUs are better than graphics processors
(basically at memory access).

Impact of data transfers

From the empirical results, it is possible to conclude that the data transfer stage
previous to any operation executed on GPU is a penalty to the final perfor-
mance, although the overhead introduced is not critical. For this generation of
GPUs, the AGP port is not a significative bottleneck for the overall computa-
tion process. In fact, the impact of data transfer is minimal for those routines in
which the computational load per transferred element is high, e.g. matrix-matrix
multiplication or convolution.

5 New Generation GPU-CPU Comparison

5.1 Comparison goals

Although the study of the non-unified generation of GPUs has identified some
of the characteristics desirable in algorithms that target GPUs with classical

architecture, it is also interesting to carry over this study to new generation
GPUs with unified architecture. The goal of this study is to verify if our previous
insights also hold for these new architectures, and to evaluate how the hardware
and software improvements (at computational power, memory hierarchies and
interconnection buses level) affect the performance of the implemented routines.

5.2 Experimental setup

In this second set of experiments, we again chose two experimental platforms
from the same generation, an Intel Core 2 Duo CPU and a Nvidia GeForce 8800
Ultra (with a Nvidia G80 processor) GPU (year 2007); see Table 2 for details.
The GNU gcc 4.1.2 compiler is employed in the evaluation. The multithreading
capabilities of Goto BLAS were enabled so that the two cores in the Intel CPU
cooperate in solving the linear algebra operations.

The implementations of the linear algebra routines in the the CUBLAS Ili-
brary ([2]) were used in the evaluation. This is a library developed by Nvidia,
implemented on top of CUDA, and optimized for unified graphics architectures
as the Nwidia (G80. The experimental evaluation showed that the implementa-
tions in CUBLAS outperformed our implementations using Cg.

CPU GPU
Processor Intel Core 2 Duo Nwidia GeForce 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Peak performance 14.9 GFLOPS 520 GFLOPS
Memory speed 2 x 333 MHz 2 x 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR 768 MB DDR
Bus PCI Express x16 (4 GB/s transfer rate)
Year 2007 2007

Table 2. Description of the hardware used in our second experimental study.

For the convolution filter, we implemented a tuned version using CUDA, with
intensive use of the fast shared memory per group of SP in order to optimize
performance. We also applied other optimization guidelines proposed in [3], and
common in the CUDA programming paradigm. On the CPU side, an optimized,
BLAS-based implementation of the bidimensional convolution filter was used.
This type of implementation is fully optimized with respect to the memory and
SSE unit, so the comparison is considered to be fair.

5.3 Experimental results
Input data reutilization: SGEMM vs. SGEMV

Figure 6 (left-hand side) shows the performance of routine SGEMM on both plat-
forms. Although this is not the most appropriate algorithm for the GPU (indeed,

it only delivers about 20% of the peak power of the GPU), the performance on
that platform is roughly 10 times higher than that obtained on the CPU.

1 Test SGEMM CUDA Test SGEMV CUDA
: © eGFLOPSCPU : oo GFLOPS CPU
‘ =—mGFLOPS GPU u—m GFLOPS GPU
120 . | < GFLOPS GPU w. TX. ~— GFLOPS GPU w. TX
H s |
100 i - ‘/.,.J' \.-/'/.

z . PO

GFLOPs
GFLOPs

fo N

9 0 400 600 800 1000 1200 1400 1600 1800 2000 0 1000 2000 3000 4000 5000
Matrix dimension Vector dimension

Fig. 6. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the Intel Core 2 Duo CPU and the Nwidia G80 GPU.

The impact of the data transfer bottleneck in the performance of a routine is
higher when its computational load decreases. For example, Figure 6 (right-hand
side) illustrates the performance of routine SGEMV. The decrease in the GFLOPS
rate is higher in this case when the transmission time is included. This difference
is so important for this routine that, in case the transfer time is considered in
the evaluation, the performance is lower on the GPU than on the CPU. When
transfer times are not considered, the implementation on the CPU outperforms
the CUBLAS implementation for large stream dimensions.

Note the different behavior of the SGEMV routine executed on CPU and on
GPU. While on a general purpose processor the peak performance is achieved for
relatively small amounts of data, obtaining worse results for bigger vectors, the
maximum performance on GPU is always attained for large vectors. In fact, the
optimized implementations of the BLAS, such as GotoBLAS, exploit very well
the sophisticated cache systems of the most modern processors, and thus benefits
the computation with small matrices. On the other hand, GPUs do not present
such advanced cache memories; this fact, and the stream-oriented architecture
of this class of processors, benefit the computation over big amounts or streams
of data, attaining poor results for small vectors.

Comparing routines SGEMM and SGEMV, the introduction of a sophisticated
memory hierarchy in the Nvidia G80 diminishes the impact of the data reuti-
lization. The results for routine SGEMM are better when we compare them with
CPU implementation than the results we obtain for routine SGEMV. The introduc-
tion of cache memories is one of the main differences between both generations
of GPU and, from the previous results, we can conclude it has an important in-
fluence in the performance of general-purpose algorithms on GPUs with unified
architectures.

Computational load per stream element: BLAS-1 routines

The amount of computational load per stream element is also critical in this
class of architectures. Figure 7 reports the results for routines SAXPY and SSCAL.
Compared with the results attained for the classical architectures in Figure 4,
although being better in absolute terms, the behaviors are similar: despite being
stream-oriented algorithms, without any type of input data reutilization, the
results are not comparable with those obtained by the tuned implementations in
GotoBLAS. As occurred in previous experiments, results are better for a more
computationally intensive algorithm such as SAXPY, attaining better results than
SSCAL. The transfer time is more relevant in this case, as the computational
load of the algorithms is quite low compared with that on more computationally
intense routines, such as SGEMM.

Test SAXPY CUDA Test SSCAL CUDA

—e GFLOPS CPU e—e GFLOPS CPU
m—m GFLOPS GPU m—m GFLOPS GPU
P »— GFLOPS GPU w. TX ; == GFLOPS GPU w. TX

T W
| h | /\ Ja
Al e \// \ '\o\‘
0 H 05 »
o H o
35 009 %9. 9oo0 S]
H A
e g
5 \ / 5
’ ._.,rr"v/'i/.‘.
H 2
0 2000 — 4000 6000 8000 10000 0 1000 2000 3000 4000 5000
Vector dimension Vector dimension

Fig. 7. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the Intel Core 2 Duo CPU and the Nwvidia G80 GPU.

Bidimensional convolution filter

Figure 8 shows the results obtained for the application of a convolution filter
on a 512 x 512 image and variable filter size. This application again presents
the most favorable properties for its execution on current GPU architectures,
attaining results up to 20 times better than those achieved for the same routines
on a CPU. This is, in fact, the highest speedup achieved in our study.

Impact of data transfers

Data transfers were not a critical stage for the past generation GPUs. However,
from the empirical results extracted for the most modern generation of graphics
processors, we have proved that communication through the PCIExpress bus is
now a factor to be considered.

Test Convolution - Image 512x512

o— GFLOPS CPU
2 — GFLOPS GPU w. TX
|_— GrLops Gpu

0.

8 10
Filter Width

Fig. 8. Performance of the implementations of the convolution filter on the Intel Core 2
Duo CPU and the Nvidia G80 GPU.

The impact of the transfer time is larger for the unified architecture compared
with non-unified architecture, with less powerful interconnection buses. In fact,
the peak performance of the Nvidia G80is about 20 times higher than that of the
Nvidia NV 44, but the speed of the interconnection bus in the unified platform
is only twice as fast as the one in the non-unified platform. This is a major
bottleneck in current graphics platforms, and determines that GPU algorithms
must be redesigned to reduce the communications so that data in video memory
is reused as much as possible before sending them back to RAM.

The latest GPU models from NVIDIA support the overlapping between mem-
ory transfer and computation on GPU, making it possible to hide the data
transfer bottleneck for some operations. Unfortunately, the tested GPU did not
support this feature.

6 Conclusions

We have presented a study of the properties which favor efficient execution of
general-purpose algorithms on a graphics processor, considering both classical
and unified architectures.

GPUs from previous generations, with classical architecture, are suitable for
certain types of general-purpose algorithms with three basic characteristics: low
input data reutilization, high data level parallelism, and high computational
load per stream element. Degpite their high computational power, the graphics-
oriented nature of this class of hardware carries a set of limitations at the ar-
chitecture level which ultimately limit the performance of certain types of algo-
rithms like, e.g., routines from BLAS. On the other hand, GPUs of this nature
obtain remarkable results for general-purpose algorithms which exhibit the three
properties specified above, outperforming in this case the CPU.

The improvements introduced in the new generation of GPU (unified archi-
tecture, higher processing units replication, more sophisticated memory hier-

archies, etc.) have increased the efficiency of this hardware to execute also for
general-purpose algorithms. In fact, current GPUs deliver higher performance
than that of timely CPUs in many applications.

Therefore, the last generation of GPUs appears as a high performance and low
cost co-processing platform for a larger variety of applications. The emergence
of general-purpose languages that facilitate their programming makes them even
more interesting hardware from general-purpose computations. Nevertheless,
GPUs still present some limitations in general-purpose computing such as nu-
merical precision, data transfer stages, memory hierarchies not as sophisticated
as CPU ones, etc. All this makes necessary to evaluate carefully the suitability
of GPU as an accelerator for calculations.

Acknowledgments

This work has been supported by the CICYT projectt TIN2005-09037-C02-02
and FEDER. Francisco Igual-Pena is supported as well by a research fellowship
from the Universidad Jaume I of Castellon (PREDOC/2006/02).

References

1. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Orti. Evalu-
ation and tuning of the level 3 CUBLAS for graphics processors. In Workshop on
Multithreaded Architectures and Applications, MTAAP 2008.

NVIDIA Corp. NVIDIA CUBLAS Library. 2007.

3. NVIDIA Corp. NVIDIA CUDA Compute Unified Device Architecture. Program-
ming Guide. 2007.

4. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of
GPU algorithms for matrix-matrix multiplication. Graphics Hardware, 2004.

5. Basic Linear Algebra Subprograms Technical (BLAST) Forum. Basic Linear Al-
gebra Subprograms Technical (BLAST) Forum Standard. 2001.

6. N. Galoppo, N. Govindaraju, M. Henson, and D. Monocha. LU-GPU: Efficient
algorithms for solving dense linear systems on graphics hardware. In ACM/IEEE
SC[05 Conference, 2005.

7. K. Goto and R. Van de Geijn. High-performance implementation of the level-3
BLAS. ACM Transactions on Mathematical Software.

8. N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computation
of database operations using graphics processors. Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 215-226, June
2004.

9. J.Y. Hong and M.D. Wang. High speed processing of biomedical images using
programmable GPU. In Image Processing, 2004. ICIP ’04. 2004 International
Conference on, volume 4, pages 2455 — 2458 Vol. 4, 24-27 Oct. 2004.

10. E.S. Larsen and D. McAllister. Fast matrix multiplies using graphics hardware. In
Supercomputing, ACM/IEEE 2001 Conference, pages 43 — 43, Nov. 2001.

11. A. Moravanszky. Dense matrix algebra on the GPU. 2003.

12. A. Ruiz, O. Sertel, M. Ujaldon, U. Catalyurek, J. Saltz, and M. Gurcan. Patho-
logical image analysis using the GPU: Stroma classification for neuroblastoma.
Proceedings IEEE Intl. Conference on Biolnformation and BioMedicine, 2007.

N

