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Abstract. In this study, comparison are made between advanced sta-
tistical modelling, hybrid modelling and the experiement from Lienhardt
and al (1) on the ahmed car body. Results are showing an slight improve-
ment when using hybrid modelling however, all approaches are overesti-
mating the detachment of the flow on the rear slant of the geometry.

1 Introduction

The context of this study is the evaluation of advanced turbulence modeling
for three dimensional unsteady turbulent flows at high Reynolds number. De-
spite numerous studies, there is still no universal approach to model accurately
such complex flows. Large eddy simulation is very efficient to model unsteady
separated flow but remains unaffordable for high Reynolds number flows where
classical URANS modelling is affordable but can’t provide reliable results when
a detachment occurs.
Because of the complexity of cars aerodynamics and in order to simplify studies,
Ahmed car body has become reference geometry. Past experimental studies have
shown that the topology of this complex fully three dimensional flow is depen-
dant from the slant angle of the geometry considered. When the slant angle is
below 30 degrees, the flow has an unsteady topology. Two vortices are created
on the side edges of the slant. Over the slant, the flow separates and reattaches
later on the slant. Two counter-rotating vortices are created on the rear face of
the body. When the slant angle is above 30 degrees, the vortex over the slant
doesn’t reattach and is then more intense as the sides vortices. For this case, the
flow remains steady. Figure 1 shows the evolution of average drag coefficient with
the slant angle, we can notice the discontinuity in drag variation for slant angle
above 30o. In this study, we will concentrate on the 25o slant angle geometries
which are well documented DESIDER and Ercoftac test cases. The test case is
based on experimental sudy from Lienhardt and al (1) where Reynolds number
is 768000, based on the body height.
From the point of vue of turbulence modelling, the ahmed car body is a very
tough test case, especially when considering the 25o slant angle configuration
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Fig. 1. Scheme of the flow topology observed and streaklines fo 25o (left) and 35o

(right) slant angle, Lienhardt and al (1)

because of a highly three dimensional unsteady flow.
The aim of this study is to evaluate the performances of advanced URANS tur-
bulence models (Organised Eddy Simulation and Scale Adaptative Simulation)
compared to hybrid approaches (Detached and Delayed Detached Eddy Simula-
tion) on the two test cases precited. First the turbulence approaches used and
the flow solver will be described before analysing the results obtained on the 25o

slant angle ahmed car body.

2 Turbulence modelling : macrosimulation for unsteady
flows

Averaged Navier-Stokes equation are considered according to the decomposi-
tion of Cantwell and Coles (2). Due to a non linear interaction of chaotic with
organised structure, the slope of the fluctuation spectrum in the inertial part
is different than the one of turbulence in equilibrium (Braza and al (3)). As a
consequence, production is not equal to dissipation like in URANS equilibrium
turbulence modelling, but instead we need to reconsider the turbulence time and
length scales.

2.1 Organised Eddy Simulation (OES)

In this context of advanced URANS methods, EMT2-IMFT has developped the
Organised Eddy simulation (O.E.S) approach (Braza and al (3)). This consists
in distinguishing the structures to be resolved from the one to be modelled on
the basis of their physical nature, organised or chaotic and not on their size
(this is the case in LES approach). According to this approach, the turbulence
spectrum, extended in the range from the low to the high wavenumbers, has
to be modeled by reconsidering the turbulence scales of the URANS modelling.
This is needed because of the non linear interaction between the coherent part
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and the random turbulence in the inertial range, that modifies the shape and
the slope of the spectrum.
From the second order moement closure DRSM (Launder and al (4)) a modified
two equation model has been derived, where the turbulence length scales have
been modified in the sense of evaluation of the Cµ eddy diffusion coefficient and
of the damping turbulence law towards the wall (Hoarau and al (5) and Jin and
Braza (6)). In addition, a tensorial OES eddy-viscosity model has been derived
to capture the non-equilibrium turbulence (Bourguet and al (7)) where the Cµ

eddy diffusion coefficient varies according to a directional criterion of stress-
strain misalignment. Isotropic OES model yields a two-equation low Reynolds
model (e.g. Chien (8)) and modification for OES are given by the following
equations :

Cµ = 0.02

fµ = 1− exp(0.0002y+0.000065y+2)

The advantages of this approach are the robustness at high Reynolds num-
ber wall bounded flows and the fact that the method is not intrinsically three-
dimensional.
This model was validated in numerous static studies and has given good results
( Bouhadji and al (9)).

2.2 Detached Eddy Simulation (DES)

As mentioned by Travin and al (10), “A Detached-Eddy Simulation is a three-
dimensional numerical simulation using a single turbulence model, which func-
tions as a sub-grid scale model in regions where the grid density is fine enough
for a Large-Eddy Simulation, and as a Reynolds-Average model in regions where
it is not”. The DES length scale is chosen according to the following equation :

d̃ = min(d, CDES∆)

where CDES is the DES constant calibrated by means of homogeneous, isotropic
turbulence spectrum, ∆ is the largest dimension of the elementary control vol-
ume cell, ∆ = max(∆x,∆y,∆z) and d is the URANS lengthscale which is the
distance to the nearest wall in the case of Spalart and Allmaras modelling and
a distance homogeneous to k3/2

ε otherwise, for example, for a k − ω turbulence
model, d =

√
k

βω and is replace in the dissipative term of the transport equation
of k by the test precited.
Therefore, the DES approach leads to an URANS computation in the near wall
region and to a subgrid LES approach in the farther region, where the vortices
detachment occurs . This approach is less dissipative than URANS thanks to
the choice of the lengthscale that allows the increase of the dissipation term in
the turbulence kinetic energy equation comparing to URANS.
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2.3 Delayed detached eddy simulation (DDES)

In order to avoid a transition from URANS to LES in the boundary layer that
could produce non physical artefacts, Spalart and al (11) introduces a modi-
fication of the rd parameter of the Spalart-Allmaras model ((12)) involved in
near-wall damping as follows :

rd =
ν + νt

Sijκ2d2

By adding ν on the numerator as a small parameter it is ensured that in high
Reynolds flows rd remains away from 0 in the near wall regions. Then a damping
function has been suggested write fd = 1− tanh[(8r3

d)] which is 1 away from the
wall an 0 in the near wall regions where rd << 1. Finally we have :

d̃ = d− fdmax(0, d− CDES∆)

If fd = 0, d̃ = d which yields to RANS modelling and if fd = 1, d̃ = min(d, CDES∆)
which yields to the classical DES modelling ((13)). The boundary layer is then
shielded from a transition from URANS to LES and that transition is moved
farther away from the wall in case of an excessive mesh refinement.

2.4 Scale Adaptative Simulation (SAS)

According to Menter (14), SAS approach represents a new class of the URANS
modelling different from the usual URANS formulation, using a turbulence
lengthscale adapted to the flow inhomogeneities. SAS is based on the use of
a second scale in the source term f the turbulence model. In addition to stan-
dard momentum equation in the form of first velocity gradient, SAS models rely
on a second scale, in the form of higher velocity gradient. According to this,
SAS satisfies the following beaviour : it provides proper URANS performances
in stable flow regions and allows the breakup of large unsteady structures into
a turbulent spectrum.
the SAS model used in this study derives from Menter’s k−ω Baseline-SST two
equation model ((15)). Governing equation only differs from SST original model
by adding the SAS source term QSAS in the ω transport equation. QSAS is then
defined as follows :

QSAS = max

[
ρζ2KS2

(
L

LvK

)
− C

2ρk

σΦ
max

(
|∇ω|2

ω2
,
|∇k|2

k2

)
, 0

]

Where L and LvK are repectively lenghtscale of modelled turbulence and von
Karman lengthscale. Those two lengthscales are explicitely defined in Menter
(14). The model parameters in the SAS source term are ζ2 = 3.51,σΦ = 2/3 ,
and C = 2.
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3 Flow solver

3.1 The governing equations

The solver used in this study is the NSMB sovler. This solver has been developed
within an european research project between research etablishments (EPFL,
KTH and CERFACS) and industrial partners (EADS Airbus, SAAB and CFS-
Engineering). Since 2004, NSMB is developped and used in a small consortium
composed of CFS Engineering, RUAG Aerospace, EPFL, ETHZ, IMFT, IMFS,
the Technical University of München, the University of the Army in München
and Astrium Space Transportation. The governing equations are the unsteady
Navier-Stokes equations which describe the conservation of mass, momentum
and energy. In 3D Cartesian coordinates (x, y, z), the Unsteady Compressible
Navier Stokes Equations can be expressed in conservative form as

∂

∂t
(W ) +

∂

∂x
(f − fv) +

∂

∂y
(g − gv) +

∂

∂z
(h− hv) = 0 (1)

where t denotes the time. The state vector W is given by

W =


ρ
ρu
ρv
ρw
ρE

 (2)

and the convective fluxes are defined as

f =


ρu

ρu2 + p
ρuv
ρuw

u(ρE + p)

 , g =


ρv
ρvu

ρv2 + p
ρvw

v(ρE + p)

 ,h =


ρw
ρwu
ρwv

ρw2 + p
w(ρE + p)

 (3)

Here ρ is the density, u, v and w are the cartesian velocity components, p is
the pressure and E is the total energy. The viscous fluxes are defined as

fv =


0

τxx

τxy

τxz

(τU)x − qx

 , gv =


0

τyx

τyy

τyz

(τU)y − qy

 , hv =


0

τzx

τzy

τzz

(τU)z − qz

 (4)

with the shear stress tensor τ given by
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τxx = 2
3µ
(
2∂u

∂x −
∂v
∂y −

∂w
∂z

)
τyy = 2

3µ
(
−∂u

∂x + 2∂v
∂y −

∂w
∂z

)
τzz = 2

3µ
(
−∂u

∂x −
∂v
∂y + 2∂w

∂z

)
τxy = τyx = µ

(
∂v
∂x + ∂u

∂y

)
τxz = τzx = µ

(
∂w
∂x + ∂u

∂z

)
τyz = τzy = µ

(
∂v
∂z + ∂w

∂y

)
where µ is the viscosity (Stokes hypothesis). The viscous dissipation in the

energy equation is calculated from

(τU)x = τxxu + τxyv + τxzw

(τU)y = τyxu + τyyv + τyzw

(τU)z = τzxu + τzyv + τzzw

and the heat flux due to conduction is calculated according Fourier’s law,

qx = −k ∂T
∂x

qy = −k ∂T
∂y

qz = −k ∂T
∂z

where T is the temperature and k the heat conductivity. For caloric perfect
gas flows the viscosity, µ, can be calculated from Sutherland’s law which for air
at standard atmosphere states

µ

µ∞
=
(

T

T∞

)3/2 (T∞ + S1)
(T + S1)

where µ∞ is the viscosity at the reference temperature T∞, and S1 a constant,
in general set to 110.3 for air. Assuming a constant Prandtl number (for air
Pr = 0.72), the heat conductivity can then be found by

k = µcp/Pr

The specific heats at constant volume and constant pressure are constant for
a caloric perfect gas, and can be calculated from cv = R/(γ − 1) and cp = γcv

respectively, with γ = 1.4, and R the gasconstant, equal to 287 (J/kgK) for air.
To close the system of equations the pressure p must be related to the state vector
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W . This relation depends on the model used to describe the thermodynamic
properties of the gas. For a caloric perfect gas this relation states

p = ρe(γ − 1) = ρcvT(γ − 1) = ρRT (5)

where e is the internal energy. The internal and total energy are related by

e = E− 1
2
(
u2 + v2 + w2

)
(6)

Many numerical fluxes are available in the solver and will not be described
here : Jameson’s central schemes, Roe’s and AUSM+ upwind schemes. High
order estimates of upwind solutions are carried out through the Total Variation
Diminishing (TVD) technique, i.e. variable extrapolation and slope limiters of
the Monotonic Upwind Scheme for Conservayion Laws (MUSCL) method or with
variable reconstruction with Lagrange polynomials of the Weighted Essential
Non-Oscillatory (WENO) method.

The system of equation is solved using Dual-Time Stepping and the LUSGS
method

3.2 Dual Time Stepping

After applying the second-order backward differencing time discretization to the
Navier-Stokes equations, the following non-linear system of equations has to be
solved at each time step:

H(Un+1) = (1+ξ)
∆Un

n
V −ξ

∆Un−1

n−1
V +θRn+1+(1−θ+φ)Rn−φRn−1 = 0 (7)

The starting point for the dual time-stepping approach is the unsteady residual
H as defined in Eq. (7) to be used in the following system of ordinary differential
equations:

V
dU

dt∗
+H(U) = 0 (8)

which is integrated in a fictitious time t∗ until steady state is reached, i.e. a
system of ordinary differential equations has to be solved for each physical time
step . For this, any appropriate time integration method can be used such as ex-
plicit or implicit methods developed for stationary problems. Also here, explicit
methods imply restrictions on the fictitious time step ∗.

Discretizing Eq. (8) in fictitious time using the backward Euler method yields:

V
∆Uν

∗ +H(Un+1,ν+1) = 0 (9)

where ν is the subiteration index and ∆Uν = Un+1,ν+1 − Un+1,ν . Linearizing
the unsteady residual around the fictitious instant ν yields the following linear
system: (

V
∗ I +

H(Un+1)
Un+1

∣∣∣∣ν)∆Uν = −H(Un+1,ν) (10)
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which is formally equal to that in Eq. (12). Writing out the linearization gives:(
V
∗ I + (1 + ξ)

V

∆t
I + θ

∂R

∂U

∣∣∣∣ν )∆Uν = −H(Un+1,ν) (11)

which can be solved using the LU-SGS method.

3.3 The Lower-Upper Symmetric Gauss-Seidel (LU-SGS)
Method

In the following subsection the LU-SGS scheme introduced originally by Yoon
and Jameson (16) is presented. The scheme is based on a lower-upper factor-
ization and a symmetric Gauss-Seidel relaxation. The governing equations are
discretized separately in space and in time. This ensures that the steady state
solution will be independent of the time discretization procedure and therefore
independent of the time step. Linearizing the residual from Eq. (1) about the
time level n leads to the following equation:(

V

∆t
I +

∂R

∂W

)
∆W = −R(Wn) (12)

with I being the identity matrix. Eq. (12) represents a large sparse linear
system which has to be solved at each time step. The term ∂R/∂W stands
symbolically for the Jacobian matrices resulting from the linearization of the
fluxes. The implicit scheme becomes the standard Newton’s method when the
time step ∆t tends to infinity. Note that the left hand side (LHS) of Eq. (12),
which is called the implicit operator, does not affect the accuracy of the steady
state solution. It has a large influence on the damping properties and hence on
the convergence rate of the scheme.

A direct method could be applied to solve the linear system which would
require the inversion of a large sparse block banded matrix. However, numerical
costs and storage requirements are prohibitive using this method. Instead, iter-
ative methods are applied and/or approximations are made to the linear system
itself.

The starting point is a diagonally dominant form of Eq. (12) in order to
meet the stability requirements for the relaxation method. This can obtained by
linearizing the numerical fluxes of a first order Steger and Warming flux vector
splitting. Inserting in Eq. (12) gives the following linear system:

[
V

∆t
I + A+

i+1/2 −A−i−1/2 + A+
j+1/2 −A−j−1/2 + A+

k+1/2 −A−k−1/2

]
∆Wi,j,k +

A−i+1/2∆Wi+1,j,k + A−j+1/2∆Wi,j+1,k + A−k+1/2∆Wi,j,k+1 − (13)

A+
i−1/2∆Wi−1,j,k −A+

j−1/2∆Wi,j−1,k −A+
k−1/2∆Wi,j,k−1 = −R(Wn)i,j,k
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where the split Jacobian matrix in the term A−i+1/2∆Wi+1,j,k is evaluated at
the cell side i + 1/2 using the state vector in cell i + 1, j, k. Note that the flux
vector splitting used for the derivation of the LHS in Eq. (13) is not applied to
the explicit residual R(Wn)i,j,k.

Instead of calculating the split Jacobian matrices explicitly, Yoon and Jame-
son (16) use the following approximation:

A± =
1
2

(A± rAI) (14)

with
rA = κ max (|λA |) (15)

where λA represents eigenvalues of the Jacobian matrix A. The convergence
and stability properties can be controlled with the constant κ which is greater
than or equal to one (Blazek (17)). Further simplifications can be introduced
into the implicit operator of Eq. (13) by writing

(A+
i+1/2 −A−i−1/2)i,j,k = (r̃A)i,j,k I (16)

where r̃A is evaluated at the cell center according to Eq. (15) using the mean
surface vector 1/2 (si+1/2 − si−1/2). To avoid the explicit computation of A the
terms A±∆W in Eq. (13) are replaced by:

A±∆W =
1
2

(∆F ± rA ∆W ) (17)

where ∆F denotes the time increment of the convective flux.
The LU-SGS method is best presented by decomposing the implicit operator

in Eq. (13) into a sum of three matrices:

(E + D + F ) ∆W = −Rn (18)

where

E = (A+
i−1/2)i−1,j,k − (A+

j−1/2)i,j−1,k − (A+
k−1/2)i,j,k−1

F = (A−i+1/2)i+1,j,k + (A−j+1/2)i,j+1,k + (A−k+1/2)i,j,k+1 (19)

D =
V

∆t
I + (A+

i+1/2 −A−i−1/2 + A+
j+1/2 −A−j−1/2 + A+

k+1/2 −A−k−1/2)i,j,k

Here, E contains only the lower triangular part, F the upper triangular part
and D the main diagonal of the implicit operator. System (18) can be inverted by
applying a Symmetric Successive Over Relaxation (SSOR) method. The method
sweeps through the mesh on planes with i + j + k = const, the so called oblique
planes. The SSOR method performs two sweeps per iteration, one forward and
one backward sweep. In operator form this can be written as (18):
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(E + D) ∆W k+1/2 = −Rn − F ∆W k

(F + D) ∆W k+1 = −Rn − E ∆W k+1/2
(20)

where k denotes the iteration index. By sweeping on the oblique planes, the
off-diagonal terms E∆W k+1/2 and F∆W k respectively become known and are
added to the right hand side. As a consequence, only a block diagonal matrix
has to be inverted. If the approximation of Eq. (16) is introduced, the implicit
operator can be even reduced to a scalar diagonal matrix. The LU-SGS method
is obtained when the LHS of Eq. (18) is factorized as follows (17):

(E + D) D−1 (F + D) ∆W = −Rn (21)

The LU-SGS scheme is now inverted by a forward and a backward sweep:

(E + D) ∆W ∗ = −Rn

(F + D) ∆W = D ∆W ∗
(22)

The sweeps are accomplished in exactly the same way as already described
for the SSOR method. Indeed, rewriting Eq. (22) by substituting D ∆W ∗ =
−Rn − E ∆W ∗ leads to the following form of the LU-SSOR scheme:

(E + D) ∆W ∗ = −Rn

(F + D) ∆W = −Rn − E ∆W ∗
(23)

By comparison of Eq. (23) with Eq. (20) it can easily be seen that the LU-
SGS method corresponds formally to the SSOR method if only one forward and
one backward sweep is performed and if the initial solution is set to ∆W 0 = 0.
In order to to solve the linear system more accurately, the standard SSOR relax-
ation method has also been implemented in the code and the number of iterations
can be specified by the user. Specifying one iteration means one forward and one
backward sweep and corresponds to the LU-SGS scheme. Performing more than
one Gauss-Seidel sweep improves the convergence rate particularly for high cell
aspect ratio grids. Numerical experiments will show that for certain test cases
the performance of the algorithm can be improved by using multiple sweeps.

As the time step ∆t→∞, the LU-SSOR method reduces to an approximate
Newton’s method. Using a large time increment might lead to divergence since
it is not ensured that the initial solution lies within the radius of convergence
of the Newton’s method. Also, the mismatch between the implicit and explicit
operator might give a restriction on the time step. On the other hand, a small
time step increases the diagonal dominance of the implicit operator and the
system will be more robust, but at the expense of slower convergence.

The extension of the steady LU-SGS method to dual-time stepping is straight-
forward and consists in including the fictitious time step, the factors (1+ ξ) and
θ in the implicit operator and adding source terms to the right hand side.
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NSMB is parallelised using Message Passing Interface MPI. The multibloc
decompostion of the structured grid is used for loadbalancing. The exchange of
data between different nodes is done at the block interfaces.

4 Flow in the wake of the Ahmed car body

4.1 Grids used and numerical configuration

The case studied is based on the experiment from Lienhardt and al (1). The
grid used is provided by Chalmers in the context of the DESIDER European
program. It is composed with an O topology near wall in order to ensure cells
orthogonality a C topology is used farther. The mesh is also composed of 3.6
million nodes dispached in 78 blocks. Time step is 0.05, space scheme is central
fourth order and time scheme is an implicit backwards second order with dual
time stepping.

4.2 Results

Fig. 2. Isosurface of Q criterion (Q=20) and streamlines

Flow topology observed The flow topology obtained was the same for the four
different turbulence model used. Contrary to what was observed by Krajnovic
(19), the detachment of the flow on the front part of the body is not predicted.
Four longitudinal vortices are predicted, the two first on the lower side edges of
the body are due to the ground effect and the two other are attached on the
upper sied edges of the slant. Those vortices are pairing on each side in the wake
of the Ahmed body (figure 4.2).
The flow detaches on the first edge of the slant and does not reattaches on the
contrary of what was observed in Lienhardt experiments.
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Fig. 3. Longitudinal velocity profiles on the slant of the Ahmed body

Fig. 4. Longitudinal velocity profiles in the wake of the Ahmed body
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Comparison with experimental results For the four turbulence models,
we can observe an overestimation of the flow detachment on the slant with no
prediction of the reattachment. However, we can observe that OES modelling
provides slightly better results on the slant than hybrid approaches due to a
more efficient model near wall whereas hybrid approaches are far more efficient
in the wake of the body thanks to their LES-like behaviour far from walls.
However, it seems that turbulence modelling has only a small effect on the results
obtained which are quite close. This could be due to the unpredicted separated
area on the front of the geometry that could produce a different developement of
the boundary layer which in the case of statistical modelling would become more
sensitive to adverse pressure gradient and then would produce an overestimateed
detachment. a second hypothesis would be that a 3.6 million nodes mesh is still
too coarse and a a more refined mesh especially on the first edge of the slant
and on the front of the body could be needed.

5 Conclusion

In this study we evaluate the performances of four turbulence models on a com-
plex unsteady turbulent flow : the ahmed car body. The 25o slant angle geometry
remains a tough test case that is still unpredicted with statistical approaches
nowadays.
All the turbulence model used are overestimating the detachment of the flow
even if DDES and OES approaches are showing promising behaviour.
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