
Implementing A Parallel NetCDF Interface for

Seamless Remote I/O Using Multi-Dimensional
Data

Yuichi Tsujita

Department of Electronic Engineering and Computer Science,
School of Engineering, Kinki University

1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan
Phone +81-82-434-7000, FAX +81-82-434-7011 tsujita@hiro.kindai.ac.jp

Abstract. Parallel netCDF supports parallel I/O operations for a view
of data as a collection of self-describing, portable, and array-oriented ob-
jects that can be accessed through a simple interface. Its parallel I/O
operations are realized with the help of an MPI-I/O library. However,
such the operations are not available in remote I/O operations. So, a re-
mote I/O mechanism of a Stampi library was introduced in an MPI layer
of the parallel netCDF to realize such the operations. This system was
evaluated on two interconnected PC clusters, and sufficient performance
was achieved with a huge amount of data.

Corresponding topics: Parallel and Distributed Computing, Cluster
Computing

1 Introduction

Recent parallel scientific computations require not only a huge amount of com-
puting power but also a huge amount of data storages. Scientific computations
usually output intermediate data for check-point restart or analysis by using
a visualization software after computation. In such the computation, common
portable data format and I/O interfaces are very useful because users want to
concentrate in their computations.

Several kinds of I/O interfaces such as netCDF [1] support such data format
and simple I/O interface. NetCDF was developed to support a view of data as
a collection of self-describing, portable, and array-oriented objects that can be
accessed through a simple interface. It provides a portable I/O interface which
supports not only fixed size arrays but also variable size arrays. It has been
widely used in many kinds of scientific computations such as meteorology.

NetCDF is a useful interface library, however, it only supports serialized
I/O operations. As a result, such I/O operations would be a bottleneck in par-
allel computation. A parallel I/O interface named parallel netCDF (hereafter
PnetCDF) was developed in order to realize effective parallel I/O operations for
netCDF data with the help of an MPI-I/O library [2] such as ROMIO [3]. It suc-
ceeded in scientific computation [4] and several visualization softwares support

II

its data format, however, the same operations among computers have not been
available. Seamless remote I/O is useful for a user’s client application such as a
parallelized visualization software. A remote MPI-I/O mechanism of a Stampi
library [5] has been introduced in a PnetCDF’s MPI layer in order to realize this
mechanism. The MPI-I/O mechanism supports automatic selection of local and
remote I/O operations based on a target computer name which is specified in an
MPI Info object by an MPI program. MPI functions of a PnetCDF library have
been replaced with the Stampi’s MPI functions to support seamless remote I/O
operations through a PnetCDF interface without paying attention to complexity
and heterogeneity in underlying communication and I/O systems. In this paper,
architecture and execution mechanism of this system are discussed in Section
2. Performance results are reported in Section 3. Related work is remarked in
Section 4, followed by conclusions in Section 5.

2 Remote I/O Through A PnetCDF Interface

In this section, we describe decompositions of multi-dimensional data, a derived
data type associated with the decompositions, and a remote I/O system with
such data type.

2.1 Decompositions of multi-dimensional data and associated
derived data types

In computer simulations, multi-dimensional data are frequently used to store
calculated results, for example. In this section, decompositions of n-dimensional
data sets and associated derived data types are discussed. We denote lengths
of each axis with index of 1, 2, . . . , n as L1, L2, . . . , Ln, respectively. In the data
sets, we suppose an array data in a C program. Let us assume that index of 1
is the most inner index and stands for the most significant dimension. On the
other hand, index of n is the most outer index and stands for the least significant
dimension.

Decompositions along the most inner and outer indexes make derived data
types as shown in Figures 1 (a) and (b), respectively. In Fig. 1 (a), each user
process accesses dotted non-contiguous data fields with L1/np for a block length
and rank × L1/np for a stride length, where np and rank stand for the number
of user processes and an unique ID in an MPI program, respectively. Each offset
is specified not to overwrite the data fields each other. On the other hand, Fig. 1
(b) shows a simple derived data type split evenly along the most outer index. It
is clear that splitting evenly along the most significant axis provides the most
complex data image and that along the least significant axis provides the most
simplest one. This kind of data type is easily created by MPI functions for
derived data types such as MPI Type vector(). In a PnetCDF interface, several
kinds of MPI functions are used to create such derived data types. This issue is
discussed in the next section.

III

np-1

L1/np

L1

0
rank

block length : L1/np
block count : L2*L3* ... * Ln

stride for each process : rank*L1/np

0

np-1

(L1*L2* ... * Ln)/np

L1*L2* ... *Ln

rank

block length : (L1*L2* ... *Ln)/np
block count : 1
stride for each process : rank*(L1*L2* ... *Ln)/np

(a) (b)

Fig. 1. Derived data types split evenly along (a) the most inner and (b) the most outer
indexes for n user processes

2.2 Support of PnetCDF in remote I/O

PnetCDF supports many kinds of parallel I/O interface functions, and their
parallel I/O mechanism is realized by using MPI functions inside them. As an
example, several PnetCDF functions and used MPI functions inside them are
listed in Table 1. In the PnetCDF, a native MPI library such as MPICH is

Table 1. Typical PnetCDF functions and MPI functions which are called inside them

PnetCDF functions Used MPI functions

ncmpi create(), ncmpi open() MPI File open(), MPI File delete(), etc.

ncmpi put var int() MPI Comm rank(), MPI File set view(),
MPI Type hvector(), MPI Type commit(),
MPI Type free(), MPI File write(), etc.

ncmpi put vars int all() MPI Comm rank(), MPI File set view(),
MPI Type hvector(), MPI Type commit(),
MPI Type free(), MPI File write all(), etc.

ncmpi close() MPI Allreduce(), MPI File close(), etc.

used. Parallel I/O operations inside the same MPI implementations are available,
however, remote I/O operations are not. As Stampi supports MPI functions
listed in the table, we have replaced native MPI functions with Stampi’s MPI
functions which start with MPI in order to develop the remote I/O system. As
the functions switch to local or remote I/O operations based on a destination
computer automatically, seamless I/O operations are available in the PnetCDF
layer. In the local I/O, portable interface functions of a native MPI library which
start with PMPI are called inside the Stampi layer. While in the remote I/O,
an I/O request and associated parameters such as message data size and a data
type are transfered to a corresponding remote MPI-I/O process. The MPI-I/O

IV

process plays requested I/O operations. Details of this mechanism are discussed
in 2.5.

2.3 Architecture of a remote I/O mechanism

Architecture of the I/O mechanism is depicted in Figure 2. MPI communica-

 Computation nodes

 Server node (IP reachable node)

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Computation nodes

< Local computer > < Remote computer >

 Vendor
MPI

 User process

 TCP/IP UNIX I/O

PnetCDF library
 Intermediate library

(Stampi)

 TCP/IP

 MPI-I/O process
(Stampi)

 Intermediate library
(Stampi)

 Vendor
MPI UNIX I/O

Fig. 2. Architecture of a remote I/O mechanism with PnetCDF interface support

tions inside a computer are carried out by using a native MPI library. When
a PnetCDF interface is called for I/O operations inside a computer, associated
Stampi’s MPI interface functions are called, and high performance I/O opera-
tions are carried out by calling a native MPI library by the Stampi’s functions.
If the native one is not available, UNIX I/O functions are used instead of it.

While in MPI communications among computers, user’s MPI processes in-
voke MPI processes on a remote computer by using rsh or ssh when a spawn func-
tion (MPI Comm spawn() or MPI Comm spawn multiple()) is called. MPI com-
munications between the local and remote MPI processes are carried out via
inter-connections established by TCP sockets. If computation nodes of a com-
puter can not communicate outside directly, a router process is invoked on an
IP reachable node to relay message data among computers. For remote I/O op-
erations, an MPI-I/O processes are invoked on a remote computer to play I/O
operations instead of the MPI processes when an MPI function to open such
as MPI File open() is called. In I/O operations by the MPI-I/O processes, a
native MPI library is used via a Stampi’s MPI interface library as default. If the
native one does not support MPI-I/O operations, UNIX I/O functions are used
instead of it.

2.4 Execution mechanism

An execution mechanism of the remote I/O operations is illustrated in Fig-
ure 3. Firstly, a user issues a Stampi’s start-up command to initiate a Stampi

V

 Server node

2. fork

3. start-up

: Router process: Stampi starter (jmpirun)

8. fork

1. issue
 a start-up command

5. connect
6. spawn

11. connect12. connect

13. ack

Computation nodes

user
process

9. start-up

: MPI starter (e.g. mpirun)

4. start-up

Local computer Remote computer

Disk

MPI-I/O
process

 7. remote
 start-up

10. start-up

Fig. 3. Execution mechanism of remote I/O operations

starter (jmpirun) (1). The starter process invokes a native MPI start-up pro-
cess (MPI starter) such as mpirun (3). Later the MPI starter process invokes
user’s MPI processes (4). For remote I/O operations, parameters such as a
hostname of a target computer, a user ID, and a working directory are spec-
ified in an MPI Info object. When ncmpi create() (for creating a new file) or
ncmpi open() (for opening an existing file) is called by the user processes, a
Stampi’s MPI File open() is called by the PnetCDF function. After this oper-
ation, MPI-I/O processes are invoked on a remote computer according to the
parameters in the MPI Info object (5-7, 9-12). If computation nodes where the
MPI processes or MPI-I/O processes are running can not communicate outside
directly, a router process is invoked on a server node by the Stampi starter (2, 8).
Once a communication path is established among them, remote I/O operations
are available by sending I/O requests from the user processes to the MPI-I/O
processes. After I/O operations, ncmpi close() is called in the user processes
to close a opened file, followed by calling MPI File close() to close the file and
terminating the MPI-I/O processes inside it.

2.5 Execution steps of PnetCDF functions

I/O operations with a derived data type are essential mechanisms to support
PnetCDF. Execution steps of remote I/O operations using ncmpi put vars int all()

are explained as an example. Execution steps of I/O operations using the func-
tion are illustrated in Figure 4. Before I/O operations, we need to specify sev-
eral parameters associated with the operations by using other PnetCDF and
MPI functions. Inside each PnetCDF function, several MPI functions are used
as listed in Table 1. Operations of this write function are grouped into two parts:
one is for creation of a derived data type, and other for I/O operations by using
the data type. The former part is carried out by using MPI Type hvector(),
MPI Type commit(), MPI File set view(), and so on. While the latter one is
carried out by using MPI File write all(). Execution steps for the former and
the latter operations are depicted in Figures 5(a) and (b), respectively. Firstly, a
derived data type is created by MPI Type hvector() and MPI Type commit() as
shown in Fig. 5(a). After a file view is created by MPI File set view(), several

VI

ncmpi_create()

ncmpi_put_att_text()

MPI_Info_set()

ncmpi_def_var()

ncmpi_def_dim()

ncmpi_put_vars_int_all()

ncmpi_close()

set parameters

create a new file

write a text in a header
< attribute mode >

define dimension

define variables

close a file

< define mode >

< data mode : I/O phase >

ncmpi_end_def() end of define mode

(MPI_File_open())

(MPI_Type_hvector(),
MPI_Type_commit(),
MPI_File_set_view(),
MPI_File_write_all())(MPI_File_close())

write data

Fig. 4. Execution steps of typical collective write operations

parameters such as a unit data type, a block length, a stride length, and so on
are stored in a list-based table provided by a Stampi library in each user process.
A request of the function and the parameters are transfered to a corresponding
MPI-I/O process by calling a Stampi’s function which starts with MPI . As the
data transfer is carried out by nonblocking TCP socket connections, overlap of
computation by user processes and the data transfer would be expected. After
each MPI-I/O process receives them, the same derived data type is created us-
ing the same functions, and they are stored in the similar table provided by a
Stampi library in each MPI-I/O process. Each process returns a status value to
a corresponding user process by using the Stampi’s function at the final step.

Once we succeed to make a derived data type, we can start I/O operations us-
ing it as shown in Fig. 5(b). Associated MPI functions such as MPI File write all()

are called in an MPI layer of a PnetCDF interface. I/O requests of each MPI
functions and associated parameters are transfered to a corresponding MPI-I/O
process, and message data are also transfered later. Once each MPI-I/O process
receives them, it plays I/O operations by using the derived data type. When
the I/O operations finish, each MPI-I/O process returns a status value to the
corresponding user process.

Concerning a derived data type, this system operates reordering striped data
across I/O nodes by using intra-computer communications as shown in Figure 6.
Each rectangle stands for an assigned memory buffer provided by this system.
This mechanism has been adopted in order to reduce performance degradation
by derived data type creation because times for reordering striped data with
intra-computer communications are quite shorter than those with inter-computer
communications.

VII

JMPI_Isend()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

 . .

< User process >

status values

< MPI-I/O process >

parameters

1

2

 . .

 add data type to list

JMPI_Isend()
JMPI_Wait()

_MPI_Pack()

MPI_Type_hvector()

MPI_Type_commit()

MPI_File_set_view()

_MPI_Send()

MPI_Type_hvector()

_MPI_Send()

_MPI_Recv()

_MPI_Unpack()

_MPI_Recv()

MPI_Type_commit()

MPI_File_set_view()

 add data type to list

TCP/IP

JMPI_Isend()
JMPI_Wait()

JMPI_Isend()
JMPI_Wait()

JMPI_Isend()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

1

2

3

. . .

 . .

_MPI_Recv()

_MPI_Unpack()

_MPI_Recv()

< User process >

returned values

message data

< MPI-I/O process >

parameters

 data manipulations

_MPI_Send()_MPI_Recv()

_MPI_Send()

_MPI_Send()

_MPI_Pack()

MPI_File_write_all() synchronization

TCP/IP

MPI_File_write_all()

(a) Creation of a derived data type (b) I/O operations

Fig. 5. Execution steps of (a) derived data type creation and (b) write operations.
Functions in rectangles which start with MPI are Stampi’s MPI interface functions.

3 Performance Evaluation

This system was evaluated among two PC clusters which were connected via 1
Gbps Ethernet. Specifications of the clusters are listed in Table 2. Each clus-
ter had one server PC node and four computation PC nodes. Interconnection
between the PC nodes was established via Gigabit Ethernet switches. In the
both clusters, MPICH [6] (version 1.2.7p1) was available as a native MPI li-
brary. PnetCDF version 0.9.4 was used in this system. PVFS2 [7] (version 1.4.0)
was available in the PC cluster II by collecting disk spaces of four computation
nodes. Network connections between the clusters were established by connecting
the both switches via a FreeBSD PC node which acted as a gateway.

In performance measurement, user processes were initiated on computation
nodes of the cluster I, and remote I/O operations to the PVFS2 file system were
carried out by invoking the same number of MPI-I/O processes on computation
nodes of the cluster II. The notation, np also stands for the number of MPI-I/O
processes in remote I/O operations. In this test, we used three-dimensional data
sets. The following four different message data sets were prepared by using an
integer data type (NC INT):

– 16× 16× 16 (16 Kbyte)
– 64× 64× 64 (1 Mbyte)
– 128× 128× 128 (8 Mbyte)
– 256× 256× 256 (64 Mbyte)

Firstly, we measured times for non-collective (ncmpi put(get) var int()) and
collective operations (ncmpi put(get) vars int all()) as shown in Figure 7.
It is remarked that the data were split along the z-axis evenly in the collec-

VIII

intra-computer communication

inter-computer communication

parallel I/O

 MPI-I/O
 rank = 0

 MPI-I/O
 rank = 1

 MPI-I/O
 rank = 2

 MPI-I/O
 rank = 3

 user process
 rank = 0

 user process
 rank = 1

 user process
 rank = 2

 user process
 rank = 3

I/O buffer

temporary
buffer

buffer

Fig. 6. Typical I/O and communications patterns in collective I/O with a derived data
type

tive operations. In the both operations, the collective functions outperformed
the non-collective ones at each message data size, however, the times were not
minimized so much with an increase in the number of user processes. This was
due to a bottleneck in network connection between the clusters. Inter-computer
communication was bottleneck and communication times basically depended on
total data size. Furthermore, there was a single network link between PC clus-
ters and the total data size was constant even if we change the number of user
processes. As a result, total I/O times were bounded by inter-computer network
sustained bandwidth. Although we have such the restriction, this system would
be usable because total I/O times are not degraded so much with an increase
in the number of user processes. It is also noticed that it may be possible to in-
crease its total performance if we have multiple physical network links by using
link aggregation between PC clusters, for example.

Secondly, times for collective functions were measured with respect to axis
to split a data image along. It is obviously expected that the more I/O pattern
becomes complex, the more the I/O times increase. In this test, we measured
the times for splitting along x, y, and z-axes. The results are shown in Figure 8.
In both the read and the write operations, splitting the data image along the
z-axis provided the most shortest times, and the times for the x-axis were the
worst. Difference between the times for the x and z axes was around 0.5 s. It is
also noticed that the I/O times were almost the same between the cases for two
and four processes except the case of 256× 256× 256 message data in the read
operations.

To find reasons for the increase in the I/O times with respect to axis to split
along, we measured times for creation of a derived data type, synchronization of
collective operations by MPI File sync(), and MPI File write all() in remote

IX

Table 2. Specifications of PC clusters used in performance measurement, where serv

and comp in a bold font denote server and computation nodes, respectively

PC cluster I PC cluster II

serv Dell PowerEdge800 × 1 Dell PowerEdge1600SC × 1

comp Dell PowerEdge800 × 4 Dell PowerEdge1600SC × 4

CPU Intel Pentium-4 3.6 GHz × 1 Intel Xeon 2.4 GHz × 2

Chipset Intel E7221 ServerWorks GC-SL

Memory 1 Gbyte DDR2 533 SDRAM 2 Gbyte DDR 266 SDRAM

Disc system
serv 80 Gbyte (Serial ATA) × 1 73 Gbyte (Ultra320 SCSI) × 1
comp 80 Gbyte (Serial ATA) × 1 73 Gbyte (Ultra320 SCSI) × 2

NIC Broadcom BCM5721 Intel PRO/1000-XT (PCI-X board)
(on-board PCI-Express)

Switch 3Com SuperStack3 Switch 3812 3Com SuperStack3 Switch 4900

OS Fedora Core 3
kernel 2.6.12-1.1381 FC3smp(serv) 2.6.12-1.1381 FC3smp (serv)

2.6.11-1SCOREsmp (comp) 2.6.11 (comp)

Ethernet Broadcom tg3 v3.71b (serv) Intel e1000 version 6.0.54 (serv)
driver Broadcom tg3 v3.58b (comp) Intel e1000 version 5.6.10.1 (comp)

MPI library MPICH version 1.2.7p1

I/O by using a pure MPI program. We supposed that those functions simulated
I/O patterns which were carried out in the PnetCDF program.

Concerning creation of a derived data type, processing times were constant
and negligible (around 0.05 ms and 0.08 ms for two and four user processes,
respectively) in the total I/O times. Times for MPI File sync() are shown in
Figure 9. They became long with an increase in the message data size. As the
Stampi’s MPI File sync() for remote I/O synchronized all the I/O synchroniza-
tion by MPI-I/O processes, required time for it increased with an increase in the
message data size. Figure 10 shows I/O times of MPI File write all() and
MPI File read all() in remote I/O. For example, there is difference around
0.5 s between the times for splitting the data image along the z-axis and oth-
ers. As it is hard to simulate operations of PnetCDF functions, this might be
rough analysis, however, it is concluded that the differences in the I/O times
with respect to axis to split along were mainly due to an increase in I/O times
of MPI File write all() and MPI File read all(). To check whether this is
coming from network data transfer or I/O operations on a remote computer, we
also measured local I/O times on the PVFS2 file system as shown in Figure 11.
It is obvious that the increase was coming from an increase in the times of the
local I/O operations. Moreover, the I/O times were almost the same and did not
scale with regard to the number of user processes. This might be due to bottle-
neck in intra-computer data transfer for collective operations or I/O operations
on a PVFS2 file system.

X

(a) read (b) write

Fig. 7. Times of non-collective and collective remote I/O operations. Read and Write

denote non-collective operations. While Coll-read and Coll-write denote collective oper-
ations, where numbers which follow np are the number of user processes and MPI-I/O
processes.

4 Related Work

Providing a common data format makes data I/O operations portable for ap-
plication programmers. This kind of implementations such as netCDF [8] and
HDF5 [9] has been proposed. NetCDF provides a self-describing and common
multi-dimensional data format and a simple interface. Its parallel I/O operations
have been realized in PnetCDF, which is an extension of the interface, by intro-
ducing MPI-I/O functions as an underlying parallel I/O library [4]. On the other
hand, HDF5 provides hierarchical data format in order to access huge amount
of data effectively. An HDF5 interface has two objects, one is “Dataset” and an-
other “Group”. The Dataset manages multi-dimensional array data, while the
Group provides relational mechanisms among objects. Parallel I/O operations
are also available with this interface by introducing MPI-I/O functions as an
underlying parallel I/O interface library [10].

An MPI-I/O interface in the MPI-2 standard [2] realizes parallel I/O oper-
ations in an MPI program. Several implementations of it are available such as
ROMIO [3]. Its MPI-I/O operations to many kinds of file systems are realized
through an ADIO interface [11]. It hides heterogeneity in architectures of each
systems and provides a common interface to an upper MPI-I/O layer. Remote
I/O operations using the ROMIO are available with the help of RFS [12]. An
RFS request handler on a remote computer receives I/O requests from client
processes and calls an appropriate ADIO library. On the other hand, Stampi
itself is not an MPI implementation but a bridging library among different MPI
implementations. It realizes seamless MPI operations among them by using TCP
socket communications.

Inter-operability among different MPI implementations is also important is-
sue, typically in a Grid computing environment. One of the representative works
is PACX-MPI [13]. It realizes inter-operable MPI communications by deploying
a common MPI interface library on top of each MPI implementation in order to
realize seamless MPI operations. This system provides high performance MPI

XI

(a) write (np = 2)
(b) write (np = 4)

(c) read (np = 2) (d) read (np = 4)

Fig. 8. Times of collective PnetCDF functions in remote I/O with respect to axis to
split a three-dimensional data along. X, Y, and Z denote axes to split along.

communications inside the same MPI implementations and seamless operations
among different ones. GridMPI [14] also realizes such mechanism in a Grid com-
puting environment. Inter-operable MPI communications are realized through
an IMPI interface by using P2P data communications. It is supported on many
kinds of MPI implementations. On the other hand, Stampi realizes the similar
communication mechanism with PACX-MPI with regard to a method to im-
plement a common communication layer on top of each MPI implementation.
However, it realizes a flexible communication mechanism where invocation of
proxy process is dynamically selected according to communication topology of
each parallel computer.

5 Conclusion

We have developed a seamless remote I/O system using a PnetCDF interface
among different MPI implementations by using a Stampi library. Its collective
I/O interface outperformed its non-collective one in remote I/O. We also mea-
sured I/O times of collective one with respect to axis to split evenly along using
three-dimensional data sets. Derived data types were created based on the asso-
ciated splitting pattern. It was expected that the more complex the data type
became, the more its I/O time increased due to an increase in the number of
intra-computer data transfers for collective I/O. We have evaluated such the

XII

(a) np = 2 (b) np = 4

Fig. 9. Times for MPI File sync() in remote I/O with (a) two and (b) four user pro-
cesses and MPI-I/O processes. X, Y, and Z denote axes to split a three-dimensional
data along.

(a) write (np = 2) (b) write (np = 4)

(c) read (np = 2) (d) read (np = 4)

Fig. 10. Times for MPI File write all()/ MPI File read all() in remote I/O. X, Y,
and Z denote axes to split a three-dimensional data along.

XIII

(a) write (np = 2)
(b) write (np = 4)

(c) read (np = 2)
(d) read (np = 4)

Fig. 11. Times of local collective I/O on a PVFS2 file system, where X, Y, and Z

denote axes to split a three-dimensional data along

I/O patterns in both remote and local I/O operations. In remote I/O by using
a PnetCDF interface, splitting along the most inner index provided the most
complex derived data type. As a result, its I/O times were the most longest. On
the other hand, times for splitting along the most outer index were the most
shortest. The increase in the times with regard to axis to split along was coming
from local I/O operations by using a native MPI library. The system did not
scale due to a bottleneck in inter-computer data transfer or I/O operations on a
PVFS2 file system, however, its performance was almost the same with respect
to the number of user processes. Optimization in message data transfer between
computers is considered as a future work. Implementation of non-blocking I/O
functions is also considered to minimize visible I/O times.

Acknowledgment

The author would like to thank staff at Center for Computational Science and e-
Science (CCSE), Japan Atomic Energy Agency (JAEA), for providing a Stampi
library and giving useful information.

This research was partially supported by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Grant-in-Aid for Young Scientists (B),
18700074 and by the CASIO Science Promotion Foundation.

XIV

References

1. Rew, R.K., Davis, G.P.: The unidata netCDF: Software for scientific data ac-
cess. In: Sixth International Conference on Interactive Information and Processing
Systems for Meteorology, Oceanography, and Hydrology, American Meteorology
Society (February 1990) 33–40

2. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. (July 1997)

3. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems. (1999) 23–32

4. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A high-performance
scientific I/O interface. In: SC ’03: Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, IEEE Computer Society (November 2003) 39

5. Tsujita, Y., Imamura, T., Takemiya, H., Yamagishi, N.: Stampi-I/O: A flexible
parallel-I/O library for heterogeneous computing environment. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Volume 2474 of Lecture
Notes in Computer Science., Springer (2002) 288–295

6. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI Message-Passing Interface standard. Parallel Computing
22(6) (1996) 789–828

7. PVFS2: http://www.pvfs.org/pvfs2/.
8. Rew, R., Davis, G., Emmerson, S., Davies, H., Hartnett, E.:

NetCDF User’s Guide. Unidata Program Center. (June 2006)
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/.

9. The National Center for Supercomputing Applications:
http://hdf.ncsa.uiuc.edu/HDF5/.

10. Ross, R., Nurmi, D., Cheng, A., Zingale, M.: A case study in application I/O on
Linux clusters. In: SC ’01: Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (CDROM), ACM Press (November 2001) 11

11. Thakur, R., Gropp, W., Lusk, E.: An abstract-device interface for implementing
portable parallel-I/O interfaces. In: Proceedings of the Sixth Symposium on the
Frontiers of Massively Parallel Computation. (1996) 180–187

12. Lee, J., Ma, X., Ross, R., Thakur, R., Winslett, M.: RFS: Efficient and flexible
remote file access for MPI-IO. In: Proceedings of the 6th IEEE International
Conference on Cluster Computing (CLUSTER 2004), IEEE Computer Society
(September 2004) 71–81

13. Gabriel, E., Resch, M., Beisel, T., Keller, R.: Distributed computing in a hetero-
geneous computing environment. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Volume 1497 of Lecture Notes in Computer Sci-
ence., Springer (1998) 180–187

14. GridMPI: http://www.gridmpi.org/.

