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Abstract. We describe some features of a three-dimensional numerical simula-
tor currently under development for studying water physico-chemical properties
during the flooding of hydroelectric plants reservoirs. The work is sponsored by
the Brazilian Electric Energy National Agency (ANEEL) and conducted with
Furnas Centrais Elétricas S. A., the leading Brazilian power utility company. An
overview of the simulator requirements is given. The mathematical model, the
software modules, and engineering solutions are briefly discussed, including the
finite element based transport module. We compare methods, iterative methods
and preconditioners used to solve the sparse linear systems which arise from the
discretization of three-dimensional partial differential equations.

1 Introduction

Is flooding of soils, consecutive to the creation of water reservoirs, a significant an-
thropic source of greenhouse gases (GHG) emissions? In a mid and long term per-
spective, can hydroelectrical energy be considered a clean energy? The answers of the
scientific and industrial communities to these questions are not conclusive [1], [2]. In
order to participate in this discussion, a group of researchers have been developing a nu-
merical simulator for studying water physico-chemical properties during the flooding
of hydroelectric plants reservoirs [3,4]. In the near future, this simulator will be able to
analyze the production, stocking, consumption, transport, and emission of carbon diox-
ide (CO2) and methane (CH4) in reservoirs. The simulator comprises a Graphical User
Interface (GUI) using OpenGL, and a Shell Interpreter. Geographical data in various
formats are fed to the Terrain module, that generates the level sets and prepares the site
geometry for the next module, Phyto. Drainage and phyto-physionomy data are added
by Phyto and handed over to the Mesh module which generates the grid for the transport
simulator. The prototype was developed with Matlab and is currently being rewritten
in C++. The Transport module comprises the core of the simulator and uses a mixed
finite element scheme.

The simulator is based on a nonlinear system of partial differential equations, the
Navier-Stokes equation and scalar transport [5,6], presented bellow in a nondimensional
form:
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where u, p are, respectively, the nondimensional velocity and pressure, Re is the Reynolds
number, νt is the nondimensional effective viscosity, c is the advected scalar, Sc is the
Schmidt number, Dt is the nondimensional effective diffusely and S is a font term.

In the current version, the simulator implements a cubic tetrahedron element, mini
element [7,8], with the velocity evaluated at the vertices and the centroid of the element;
pressure is evaluated only in the vertices, see Figure 1.

Fig. 1: Mini element with velocity in five points (centroid included) and pressure in four.

For the treatment of this equations a common approach is the Galerkin method [9]
which transforms the equations (1) in an system of ordinary differential equations:
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in equations (1) and (2) we are using the same symbols u, p, c for continuous and
discrete variables.

A semi-Lagrangian method [10] is used for the time discretization. This approach
changes the system (2) into:
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The variables from the previous time step are used to evaluate the chemical species
field, uncoupling the hydrodynamics from the transport of the scalars variable. As
the simulator models three-dimensional space, the linear systems arising from these
schemes are huge and is mandatory to implement iterative methods for their solutions.

2 Coupled and Segregated Methods

The first two equations of (3) yield the following linear system:(
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u
p

)
=
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)
or Ax = b, (4)

where A = ( 1
∆tM + 1

ReK) ∈ Rn×n is symmetric and positive definite, G, DT ∈
Rn×m and n ≥ m, both have complete rank. The unknown u represents the velocity
and p the pressure in each point. Vectors b1 = (b̂1 + 1

∆tM − un
d ) and b2 compose the

constant right-hand side. The matrix A is known as saddle point matrix [11]. The third
equation in (3) produces an easier system, that we are not treating is this work.

In order to uncouple the velocity and the pressure components in (4), one may use
a segregated approach performing a block LU factorization of the original matrix:(

A G
D 0

)
∼
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A 0
D −DÃ−1G

) (
I Ã−1G
0 I

)
, (5)

where Ã is either equal to A or an approximation of A that is easier to solve. For the
former, S = −DÃ−1G is the exact Schur complement matrix of the zero block of the
matrix A, and for the latter is an approximation of the Schur complement matrix. One
has to compute:

Algorithm 1 (Projection Method)
Let δu be an auxiliary variable.

1. Aδu = b1;
2. −DÃ−1Gp = b2 −Dδu;
3. u = δu− Ã−1Gp;

in a Fluid Dynamics framework, this alternative is called Projection method [12].
Depending on boundary conditions the complete system can be symmetric or non-

symmetric. When A is symmetric and positive definite (SPD) and G = DT , if Ã is
a diagonal matrix, then −DÃ−1G is also symmetric. In this case, both systems can



be solved using the preconditioned conjugate gradient method (PCG) [13, 14]. When
G 6= DT the approximated Schur complement matrix can be solved using GMRes [15]
or BiCGStab [16]. The right-hand side of (5) replaces the original matrix involved in
the linear system (4), and the computed solution accuracy depends on the quality of
the approximation Ã of A. Yet another segregated option is to obtain an approximation
for the Schur complement matrix −DÃ−1G instead of an approximation for A. In this
case, it is necessary to substitute the third step of Algorithm 1 by

Au = b1 −Gp, . (6)

The Schur complement matrix S, in our application, is dense and huge with order
equal to the number of vertices of a three-dimensional mesh. However, Figure 2 repre-
sents a typical S matrix with tiny entries spread out of a few central diagonals. One may

Fig. 2: An example of a Schur complement matrix with tiny entries far from the main diagonal.

implement implicit and explicit alternatives for treating S. In the implicit case the ma-
trix S is kept as the product −DÃ−1G and in the explicit alternative an approximation
of S is computed. In section 3, we address some explicit alternatives we have tested.

The coupled method disregards the saddle point structure and (4) can be solved, for
instance, by GMRes or BiCGStab. Nevertheless, this statement can be relaxed with the
use of preconditioners that take into account the saddle point structure. The coupled
approach spends much more computational resources than the segregated alternative
but, in general, with a better numerical behavior, see section 6. Also, in order to obtain
convergence it is necessary to use preconditioners, and reorderings.

3 Explicit Schur Complement Matrix

We have implemented three alternatives in order to assemble S = −DÃ−1G: diagonal,
probe, and complete approximation matrix.

3.1 Diagonal

Ã is a diagonal matrix with two possibilities: diagonal and lumped. In the former, Ã =
diag(A), the diagonal of A, in the latter

Ãii =
j=1∑
n

Aij ,



where Ãii is the diagonal element of Ã in position (i, i). In both cases S is still sparse,
as the product Ã−1G does not change the sparsity pattern of G, and the product of D
by Ã−1G, as long as the sparsity is considered, only puts in relation vertices that are
“neighbors of neighbors”, which is still quite sparse in the problem’s three-dimensional
mesh.

3.2 Probe

In [17], Chan and Mathew presented a quite simple idea for retrieving elements of
an unassembled matrix E originated from a structured mesh. A set of probe vectors
composed by zeros and ones forms a rectangular matrix W , for instance, when using
three probe vectors

W =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
...

...
...


.

If E is a tridiagonal matrix the product EW retrieves exactly the three diagonals of
E. If the diagonals of E far from the main diagonal have an important decreasing, this
approach can provide a good approximation for E. Although the simulator mesh is not
structured, we have noted, during the experiments, that S has tiny elements far from the
main diagonal. So we have tested a probed approximation for S. As an approximation
of the Cholesky factors of A are available, for instance, from a previous solution of
the (1, 1)-block using an incomplete Cholesky factorization of A, we have tested the
following algorithm for mounting an approximation of S:

Algorithm 2 (Probing S)
Let C and CT be approximated Cholesky factors of A.

1. F = GW ;
2. H = C−1(C−T F ), forward and backward substitutions;
3. S̃ = DH;
4. S = f(S̃), where f retrieves the desired entries.

This alternative gave poor numerical results, we are not even presenting numerical
results. Although we were aware of approaches tailored to saddle point problems with
unstructured meshes [18], their implementation is a matter of future tests.

3.3 Complete approximated matrix

Another alternative is to use the following algorithm:

Algorithm 3 (Approximating S)
Let F has the same size as G.



1. AF = G, multiple right-hand side problem;
2. S̃ = −DF ;
3. S = g(S̃) where g modifies the sparse pattern of the operated matrix by applying a

threshold.

The first step is the most expensive one. Although it can be done in various ways,
for instance as a multiple right-hand side problem, we have implemented it using the
approximated Cholesky factors of A. In Matalb, this alternative can be quite time costly
as one need to exclude tiny elements in first and third steps out of the internal Matlab
loops, but deserves further developments, mainly in C++, as the numerical results are
comparable to other alternatives.

4 Segregated Solvers

After assembling the Schur complement matrix or an approximation of it (in the fol-
lowing we call both S), one has to solve the block system(

A 0
D S

) (
I Ã−1G
0 I

) (
u
p

)
=

(
b1
b2

)
(7)

using Algorithm 1. As A is SPD, the PCG is the chosen algorithm for the first step of
Algorithm 1; for solving the second step, for S, we have implemented GMRes.

As the actual solution for (4) was available, we could measure the error, instead
of simply the residual, and we observed that, although cheaper than the coupled al-
ternatives, the segregated solvers gave worse solutions. So we also tested an iterative
refinement algorithm [19,20] for the projection method by applying it to the residual of
the computed solution. In our experiments three to five iterative steps were enough to
improve the solution quality, see section 6.

5 Preconditioners

We describe preconditioners for both segregated and coupled methods. Based on [21],
we also address preconditioners for the coupled approach by applying the segregated
method to the residual. As the reorderings have an important impact on the global per-
formance, for the sake of completeness, we also describe the used alternatives.

5.1 Preconditioners for Coupled Methods

We have tested seven preconditioners for the solution of Ax = b by a coupled method
using iterative Krylov subspace projection methods: GMRes and BiCGStab. For all
tested cases, we approximate A by Ã.

Diagonal

1. Traditional, where Ã is the diagonal of A.
2. Lumped, where Ã is such that Ãii =

∑j=1
n Aij .



ILU(0) Ã is such that its incomplete LU decomposition preserves the same sparse
structure as A.

ILUT(τ ) The ILUT(τ ) is the Incomplete LU with a threshold τ ; this preconditioner
is dynamically formed, as the elements smaller than τ are discarded, so one does not
know beforehand its sparsity pattern.

Segregated Preconditioner Based on [21], we have used the segregated method, pre-
sented in section 4, as a preconditioner for the coupled method. The segregated methods
are inexpensive, although, sometimes, have a poor numerical result, they can perform
very well in practice as preconditioners .

Block Preconditioners In [22] some preconditioners were proposed, we have imple-
mented two of them: a block diagonal and a block triangular. The applications of these
preconditioners generate inner-outer iterations schemes [23–25], and generate two lin-
ear system that ought to be solved for the right-hand side residual.

Block Diagonal: This preconditioner uncouples the variables and writes

P1 =
(

A 0
0 DA−1G

)
. (8)

In exact arithmetic, the preconditioned matrix P−1
1 A, asA is nonsingular, has three

distinct eigenvalues 1, and 1±
√

5
2 . So the minimum polynomial has degree three, which

guarantees the convergence of a Krylov subspace projection method in three iterations.

Algorithm 4 (Block Diagonal)
1. Az1 = r1

2. DA−1Gz2 = r2

In the first step of algorithm 4, we apply the PCG method with an incomplete Cholesky
with threshold (ICCT) preconditioner. In the second step, we choose one of the available
approximations to S, and we apply the GMRes method with an ILUT(τ ) preconditioner.

Block Triangular: Another preconditioner based on the saddle point structure writes

P2 =
(

A G
0 DA−1G

)
. (9)

The preconditioned matrix P−1
2 A, as A is nonsingular, has two distinct eigenval-

ues: ±1. In this case, the minimum polynomial has degree two, and a Krylov subspace
projection method converges in two iterations, in exact arithmetic.

Algorithm 5 (Block Triangular)
1. DA−1Gz2 = r2

2. Az1 = r1 −Gz2

In this case, we apply the PCG with ICCT preconditioner in the first step. In the second
step, after choosing an approximation for S, we apply the GMRes method with ILUT(τ )
as the preconditioner.



5.2 Segregated Preconditioners

We need two preconditioners in Algorithm 1: one for the first and third (depending on
the construction of S) steps and other for the second step. We observe that the incom-
plete factorizations of A used as preconditioners in the first and third steps can be used
for approximating S. Although the preconditioners are applied independently, we can
interpret as we have implemented the block diagonal version of [22], as addressed just
above.

5.3 Reorderings

In addition, we consider the previous preconditioners combined with two block reorder-
ings applied to (4). Namely, we investigate the column approximate minimum degree
permutation (AMD) [26] and the symmetric reverse Cuthill-McKee (SRCM) [27, 28].
In order to preserve the saddle point structure, we reordered firstly the symmetric matrix
A.

Â = PAAPT
A

where PA is a column-permutation matrix for A. As the Schur complement matrix, S,
was almost symmetric by structure, we also applied a symmetric reordering besides
AMD.

Ŝ = PSSPT
S

where PS is a column-permutation matrix for S.
Then, we reordered matrices D and G accordingly:

Ĝ = PSGPT
A , and D̂ = PADPT

S

are the reordered matrices. In Figure 3, we present the structure of a simulator typical
saddle point matrix before and after reordering.

6 Numerical Tests

We have used Matlab 7, on a AMD X2 4200+ (dual core - 1024MB of cache), with 4Gb
of RAM. The tested matrices are issued by the following three-dimensional problems:

1. a channel with a matrix of size 42,630 with 0.072% nonzeros,
2. a channel with step, the matrix size is 42,630 with 0.072% nonzeros,
3. a compartment of an actual reservoir, the matrix size is 34,578 with 0.085% nonze-

ros.

The problems were tested with CFL=1 and CFL=5, and Reynolds number of 10,000.
The convergence criterion is Matlab’s default: relative residual less than 10−6. All the
measures were done for one time step of a simulation when solving one linear system
of the problems. The Krylov methods have 200 as the maximum number of iterations
and GMRes was implement without restart.

As long as reorderings are concerned, some remarks are necessary. Firstly, without
any reordering the time for solving a typical problem is 80 times slower than with AMD



(a) Saddle point matrix without reordering. (b) Saddle point matrix with AMD reordering.

Fig. 3: Examples of saddle point matrix before and after reordering.

or SRCM reorderings. As matter of fact, from a performance viewpoint, the reordering
is the most important step in the reservoir problem simulation as soon as, as depicted
in Figure 3a, the arrowed structure of the matrix implies in a tremendous fill in process
when computing a complete or an incomplete factorization. Secondly, the two ordering
schemes are equivalent with a very light bias towards SRCM, so we are addressing
figures only for this alternative.

The fill-in zero preconditioners, ILU(0) and ICC(0), did not converged or become
singular for every test, for the three problems, so we are not presenting figures for this
preconditioners. Also the probing construction for the Schur complement matrix, as we
should have expected, presented a very bad behavior.

We present three types of tables: tables with complete preconditioners comparisons
for the reservoir problem - Tables 1, 2, and 3-, tables comparing the performance of
the methods and preconditioners for the three problems with CFL =1 and =5 - Tables 4
and 5-, and tables comparing the segregated and coupled methods for the reservoir
simulation - Tables 6 and 7.

For every table, the labels mean: Preconditioner, the preconditioner - None (with-
out a preconditioner), Diagonal (classical diagonal), Lumped (lumped diagonal),
ILUT(10−3) (ILUT with an absolute threshold of 10−3), Projection (the projection
method used as a preconditioner), MGW1 (block diagonal described in section 5.1),
and MGW2 (block triangular described in section 5.1)-, Approx. stands for the kind of
Schur complement matrix approximation (cam is the complete approximated matrix),
as described in section 3, T.Prec is related to the time, in seconds, of the preconditioner
construction, T.Sol is the time, in seconds, of the complete iterations of the precon-
ditioned iterative Krylov methods, Error is the relative Euclidian norm of the actual
error, i.e., the norm of the difference between the correct and the approximated solution
divided by. the correct solution norm. For computing the actual solution, we have used
the backslash Matlab operator with iterative refinement in order to reach an accuracy of
10−15.



In Tables 1 to 3, the column Iter. shows the number of iterations of the Krylov
method. In Tables 4 and 5, Problem is the problem kind - a channel, a channel with a
step, or a reservoir branch. In Tables 4 to 7, Method is the segregated or the coupled
methods, Solver means the type of segregated or coupled method. IR means the itera-
tive refinement for the projection method. In Tables 6 and 7, T.Tot is the total time for
both the construction of the preconditioner and the iterative method.

There are still some conventions. When the iterative method fails, we use nc. In the
Approx. column, · · · means that there is no approximation for the Schur matrix, as we
are treating, in this case, the coupled approach with a preconditioner that does not take
into account the saddle point structure.

In Tables 1 to 3, we show figures for the reservoir problem, comparing differ-
ent methods, Schur complement matrix approximations, and preconditioners using the
same reordering scheme (SRCM) and CFL=5. We can observe that in Table 1 using
the coupled method with left-preconditioned GMRes, Projection and MGW2 present
almost the same behavior, and ILUT(10−3) although has a better numerical perfor-
mance spends too much time for its construction. As we have mentioned before the
Schur complement “cam” approximation is still too expensive in the construction step
although with a good numerical result. In Table 2 using the coupled method with right-
preconditioned GMRes, we can observe that almost the same behavior is found, with
MGW2 and Projection alternatives performing similarly. Table 3, using BiCGStab for
the same problem, shows that this iterative method does not performs well for this prob-
lem. Another remark is that the preconditioners that do not take into account the saddle
point structure do not perform well; in this class, ILUT(10−3) although having a good
numerical performance, has an expensive construction step.

In Tables 4 and 5, all three problems are compared for the times of construction
and iterative method convergence, with CFL=1 and CFL=5, respectively. The saddle
point based preconditioners with quite simple approximations for the Schur comple-
ment matrix performs quite well. For the easier problems BiCGStab converges with no
problems, outperforming GMRes.

Finally, in Tables 6 and 7, we address comparisons between the segregated and the
coupled methods. For the segregated problem, we have implemented the preconditioner
ICC(10−3) for the (1,1)-block and ILUT(10−3)for the Schur complement block. We can
see that, depending on the accuracy of the solution, the segregated method with iterative
refinement is quite competitive with the more expensive coupled approaches.
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