
Numerical Simulation of Two-phase Flows on a GPU

F. Pereira and A. Rahunanthan

Department of Mathematics and School of Energy Resources, University of Wyoming, Laramie,
WY 82071

Abstract. We consider a model for two-phase (water and oil), immiscible and
incompressible displacement in heterogeneous porous media. In such a model,
high-resolution, non-oscillatory schemes are efficient numerical schemes for solv-
ing hyperbolic conservation laws. In this paper we describe a GPU parallelization
of such central schemes for solving hyperbolic conservation laws arising in the
simulation of two-phase flows in three space dimensions.

1 Introduction

In this paper we discuss an implementation of central schemes for the approximation
of the hyperbolic conservation law arising in two-phase, three-dimensional flows in
heterogeneous porous media on a relatively inexpensive GPU which supports double
precision calculations.

A Graphics Processor Unit (GPU) that is traditionally designed for graphics render-
ing evolved into highly parallel, multi-threaded, many core processor with tremendous
computational horsepower and very high memory bandwidth. This influenced comput-
ing to evolve from “central processing” on the CPU to “co-processing” on the CPU and
GPU. In November 2006, to enable this new computing paradigm, NVIDIA introduced
the Compute Unified Device Architecture (CUDA). Since then, high performance paral-
lel computing with CUDA has been attracting various researchers in several disciplines,
such as computational fluid dynamics [6, 25, 17, 24], molecular dynamics [3, 15, 26],
computational biology [21], linear algebra[4, 7], weather forecasting [16] and artificial
intelligence [5], where most of them used GPUs which support only single precision
calculations.

Traditional simulations of multiphase flows rely on ad-hoc upscaling techniques
along with coarse grid simulations of the up-scaled models. The models for multi-
phase flows are defined at the lab scale (a few centimeters) while simulations of in-
terest to important problems, such as the migration, trapping and possible leakage of
CO2 plumes in the subsurface, enhanced oil recovery, production of gas from uncon-
ventional resources, have to be performed in the field scale (a few kilometers). Such
ad-hoc techniques, frequently developed and tested for some flow regimes for single or
two-phase problems, may produce serious errors when applied to more complex com-
positional flows. Although upscaled solutions may be important in some areas, such
as in identifying trends of flow patterns in oil reservoir simulation, there are important
practical problems where the fine scale details of the numerical simulations should be
numerically captured. We mention, for example, the simulation of leakage of injected
CO2 from brine aquifers: the fine scale preferential paths for flow that may lead to



leakage cannot be captured by coarse grid, upscaled simulations. The new CPU/GPU
system can be effectively used for these problems.

Although implicit schemes for transport have been investigated for many years for
application in porous media flows, where predictions are needed for long periods of
time, the new CPU/GPU system makes explicit schemes a very competitive option for
the numerical solution of these problems. The explicit schemes are naturally paralleliz-
able in these systems: a geometrical domain decomposition divides the original domain
into subdomains such that the hyperbolic problems can be solved in parallel using the
GPUs.

Here, we consider a model for two-phase, incompressible, immiscible displacement
in heterogeneous porous media. In such a model, the highly nonlinear equations are of
very practical importance [8]. The conventional theoretical description of two-phase
flows in a porous medium, in the limit of vanishing capillary pressure, is via Darcy’s
law coupled to the Buckley-Leverett equation. We refer the two phases, water and oil,
by the subscriptsw and o, respectively. We also assume that the two fluid phases saturate
the pores. With no sources or sinks, and neglecting the effects of gravity, these equations
become

∇ · vs = 0, where vs = −λ(s)K(x)∇p, (1)

and
∂s

∂t
+∇ · (f(s)v) = 0. (2)

Here, vs is the total seepage velocity, and v = vs/φ, where φ is the porosity which is
assumed to be a constant. Furthermore, s is the water saturation, K(x) is the absolute
permeability which we assume to be a scalar, and p is the pressure. The functions,
λ(s) and f(s) represent the total mobility and the fractional volumetric flow of water,
respectively.

The equations, (1) and (2), which are coupled together by the seepage velocity v
are solved by using an operator splitting technique. For efficiency, the time steps for
solving the velocity-pressure equation (1), can be much longer than the time steps for
solving the saturation equation (2). Here we focus on the efficient solution of the scalar
hyperbolic conservation law (2) using a GPU.

In [24, 17, 23], the three-dimensional domain is represented by several two-dimensional
slices. This two-dimensional mapping translates to efficient data transfer between the
host (CPU) and the device (GPU). In this paper, the three-dimensional domain is repre-
sented by a one-dimensional array. Although, we solve a coupled hyperbolic equation
using central schemes which are extensions of Kurganov-Tadmor [14] central scheme,
the operator splitting that we employ enables us to solve the hyperbolic equation contin-
uously for several time steps. We thus reduce the data transfer between CPU and GPU
drastically.

This paper is structured as follows. In section 2, we discuss numerical approxima-
tion of two-phase flows using an operator splitting technique and discuss the central
schemes for two-phase flows in heterogeneous porous media. In section 3, we discuss
the implementation of central schemes on a GPU. In section 4, we apply the central
schemes for a rectangular parallelepiped, heterogeneous reservoir and present the nu-
merical results. Section 5 contains the conclusion.



2 Numerical approximation of two-phase flows

2.1 Operator splitting for two-phase flow

We employ an operator splitting technique to compute the solutions of the saturation
and velocity-pressure equations, (1) and (2), which are coupled together by the seepage
velocity v. This technique is computationally efficient in producing accurate numerical
solutions for two-phase flows [10].

Typically, for computational efficiency, larger time steps are used to solve the pres-
sure equation (1). The splitting technique allows time steps used in the velocity-pressure
computation that are longer than the steps allowed under an appropriate CFL condition
in the saturation computation. We thus introduce a variable time step, ∆ts, for the satu-
ration computation and a longer time step, ∆tp, for the velocity-pressure computation.
The pressure and thus the seepage velocity are approximated at times tm = m∆tp,
where m = 0, 1, ...; the saturation is approximated at times tkm = tm + k∆ts for
tm ≤ tkm ≤ tm+1. We remark that we must specify the water saturation at t = 0. For
further details, we refer the reader to [10, 1, 2].

For the velocity-pressure computation, we use a hybridized mixed finite element
discretization equivalent to cell-centered finite differences [10], which effectively treats
the rapidly changing permeabilities that arise from stochastic geology and produces ac-
curate velocity fields. The resulting algebraic system can be solved by a preconditioned
conjugate gradient procedure or by a multi-grid technique.

2.2 Second-order semi-discrete central schemes for the saturation equation

In this section we discuss high-resolution central schemes which are extensions of the
Kurganov-Tadmor central scheme [14], for solving the scalar hyperbolic conservation
law (2).

The scalar hyperbolic conservation law (2) can be written as

∂s

∂t
+

∂

∂x
(xvf(s)) +

∂

∂y
(yvf(s)) +

∂

∂z
(zvf(s)) = 0, (3)

where xv = xv(x, y, z), yv = yv(x, y, z), and zv = zv(x, y, z) denote the x, y and z
components of the seepage velocity v, respectively.

Define xi := i∆x, yj := j∆y, zk := k∆z, xi± 1
2

:= xi ± ∆x
2 , yj± 1

2
:= yj ± ∆y

2 ,
and xk± 1

2
:= zk ± ∆z

2 . Assume that we have already computed an approximation to
the solution at time level t = tn of the form,

s̃(x, tn) :=
∑
i,j,k

pni,j,k(x, y, z)χi,j,k(x, y, z), (4)

where

pi,j,k(x, y, z) = s̄i,j,k + (sx)i,j,k(x− xi) + (sy)i,j,k(y− yj) + (sz)i,j,k(z− zk), (5)



with slopes approximated by MinMod limiter, χi,j,k is the characteristic function of the
corresponding region, and s̄i,j,k is the cell average defined by

s̄i,j,k :=
1

∆x∆y∆z

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

pni,j,k(x, y, z) dx dy dz. (6)

xi+1

xi

xi-1

zk-1

zk

zk+1

yj+1
yj

yj-1

X Y

Z

FC RC
LC BaC

TC

BoC
FRBoFLBo

FLT FRT
BaRT

BaRBo

BaLT

BaLBo

Fig. 1. Left: The non-staggered cell [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] × [zk− 1

2
, zk+ 1

2
], for central

differencing in three-space dimensions. Right: The reconstructing points in a magnified view of
the shaded cell that is on the left.

We denote the cell interface value at the faces

sFCi,j,k := pni,j,k(xi+ 1
2
, yj , zk), sBaCi,j,k := pni,j,k(xi− 1

2
, yj , zk),

sRCi,j,k := pni,j,k(xi, yj+ 1
2
, zk), sLCi,j,k := pni,j,k(xi, yj− 1

2
, zk),

sTCi,j,k := pni,j,k(xi, yj , zk+ 1
2
), sBoCi,j,k := pni,j,k(xi, yj , zk− 1

2
),

(7)

where FC,BaC,RC,LC, TC andBoC denote Front, Back, Right, Left, Top and Bot-
tom Centers respectively, and the cell interface value at the vertices

sFRTi,j,k := pni,j,k(xi+ 1
2
, yj+ 1

2
, zk+ 1

2
), sBaRTi,j,k := pni,j,k(xi− 1

2
, yj+ 1

2
, zk+ 1

2
),

sFRBoi,j,k := pni,j,k(xi+ 1
2
, yj+ 1

2
, zk− 1

2
), sBaRBoi,j,k := pni,j,k(xi− 1

2
, yj+ 1

2
, zk− 1

2
),

sFLTi,j,k := pni,j,k(xi+ 1
2
, yj− 1

2
, zk+ 1

2
), sBaLTi,j,k := pni,j,k(xi− 1

2
, yj− 1

2
, zk+ 1

2
),

sFLBoi,j,k := pni,j,k(xi+ 1
2
, yj− 1

2
, zk− 1

2
), sBaLBoi,j,k := pni,j,k(xi− 1

2
, yj− 1

2
, zk− 1

2
),

(8)

where the letters F,Ba,R,L, T and Bo in the superscripts denote Front, Back, Right,
Left, Top and Bottom, respectively (see Fig. 1). We compute the maximum local speeds



of propagation of the discontinuities by

axi+ 1
2 ,j,k

:= max
{
ρ

(
∂f

∂s
(sBaCi+1,j,k)

)
, ρ

(
∂f

∂s
(sFCi,j,k)

)}
,

ay
i,j+ 1

2 ,k
:= max

{
ρ

(
∂g

∂s
(sLCi,j+1,k)

)
, ρ

(
∂g

∂s
(sRCi,j,k)

)}
,

azi,j,k+ 1
2

:= max
{
ρ

(
∂h

∂s
(sBoCi,j,k+1)

)
, ρ

(
∂h

∂s
(sTCi,j,k)

)}
.

(9)

Dimension-by-dimension approach: As in [13], the one-dimensional numerical flux
is straightforwardly applied in all coordinate directions. Thus, we can now write the
corresponding semi-discrete form as

d

dt
ūi,j,k(t) =−

Hx
i+ 1

2 ,j,k
−Hx

i− 1
2 ,j,k

∆x

−
Hy

i,j+ 1
2 ,k
−Hy

i,j− 1
2 ,k

∆y
−
Hz
i,j,k+ 1

2
−Hz

i,j,k− 1
2

∆z
,

(10)

with the numerical flux

Hx
i+ 1

2 ,j,k
=

1
2

[xvFCi,j,k{f(sBaCi+1,j,k) + f(sFCi,j,k)}]

−
ax
i+ 1

2 ,j,k

2
(sBaCi+1,j,k − sFCi,j,k).

(11)

When solving for the saturation in time, the velocity xvFCi,j,k is given by the solution
of the velocity-pressure equation. Recall that the solution of (1) is approximated by the
lowest order Raviart-Thomas mixed finite element method [10]. Therefore, the velocity
xvFCi,j,k in the semi-discrete scheme is obtained directly from the Raviart-Thomas space
on the cell faces.

Genuinely multi-dimensional approach: A new second-order, semi-discrete central
scheme for the approximation of two-phase flows in three space dimensions is presented
in [20]. The corresponding semi-discrete scheme can be written as

d

dt
ūi,j,k(t) =−

Hx
i+ 1

2 ,j,k
−Hx

i− 1
2 ,j,k

∆x

−
Hy

i,j+ 1
2 ,k
−Hy

i,j− 1
2 ,k

∆y
−
Hz
i,j,k+ 1

2
−Hz

i,j,k− 1
2

∆z
,

(12)

with the numerical flux

Hx
i+ 1

2 ,j,k
=

1
8

[xvFRTi,j,k {f(sBaRTi+1,j,k) + f(sFRTi,j,k )}+ xvFRBoi,j,k {f(sBaRBoi+1,j,k ) + f(sFRBoi,j,k )}

+ xvFLTi,j,k {f(sBaLTi+1,j,k) + f(sFLTi,j,k )}+ xvFLBoi,j,k {f(sBaLBoi+1,j,k ) + f(sFLBoi,j,k )}]

−
ax
i+ 1

2 ,j,k

2
(sBaCi+1,j,k − sFCi,j,k).

(13)



Now, we need to have the seepage velocity at the vertices. However, the seepage
velocity v, which is defined in the lowest order Raviart-Thomas space, has the compo-
nents vFC , vBaC , vRC , vLC , vTC and vBoC on the faces of a rectangular parallelepiped
(the components of v are pointing outward). Therefore, we use a bilinear interpolation,
which preserves the null divergence necessary for the incompressible flows, to com-
pute the seepage velocity at the vertices. For instance, to compute the seepage velocity
xvFRTi,j,k , we have to use the eight cells which share the vertex FRT of the cell, ijk.
Thus, we define,

xvFRTi,j,k =
1
16
[
(vFCi,j,k − vBaCi,j,k ) + (vFCi+1,j,k − vBaCi+1,j,k) + (vFCi,j+1,k − vBaCi,j+1,k)

+ (vFCi,j,k+1 − vBaCi,j,k+1) + (vFCi+1,j+1,k − vBaCi+1,j+1,k) + (vFCi+1,j,k+1 − vBaCi+1,j,k+1)

+ (vFCi,j+1,k+1 − vBaCi,j+1,k+1) + (vFCi+1,j+1,k+1 − vBaCi+1,j+1,k+1)
]
.

(14)

2.3 Time marching for the semi-discrete central schemes

The time integration adopted for solving equations (10) and (12) is the second-order,
SSP Runge-Kutta scheme [22],

s(1) = sn +∆tL(sn),

sn+1 =
1
2
sn +

1
2
s(1) +

1
2
∆tL(s(1)),

(15)

where the superscripts n and n+ 1 denote time level t and t+ 1, respectively and L(s)
denotes the right-hand side of the semi-discrete schemes (10) and (12).

3 GPU implementation of central schemes using CUDA

In this section, we discuss some strategies for GPU implementation of the central
schemes for solving the saturation equation (2), using CUDA.

CUDA supports several types of memory that can be used by a programmer to
achieve high execution speeds in his/her kernels. We here summarize the CUDA device
memories that will be used in the following discussions. In order to execute CUDA ker-
nel on a device, the programmer needs to allocate memory on the device and transfer
pertinent data from the host memory to the allocated device memory. For this purpose,
the programmer can use global memory or constant memory. The global memory is
accessible from either the host or device and has the lifetime of the application. The
constant memory supports short-latency, high-bandwidth, read only access by the de-
vice when all threads simultaneously access the same location. Registers and shared
memory are on-chip memories. Variables that reside in these types of memory can
be accessed at very high speed in a highly parallel manner. Local memory which re-
sides in the global memory is only accessible by the thread and has the lifetime of the
thread [12].

Let nx, ny and nz be the number of computational elements in the x, y and z
directions for a three-dimensional flow domain, respectively. The three-dimensional



domain nx × ny × nz is represented by a one-dimensional array of size nxnynz . The
element (i, j, k) in three-dimensional domain is denoted by nxny · k+ nx · j + i in the
one-dimensional array. For any element in the one-dimensional array, we can always
find the corresponding i, j, k of the element. Identifying i, j, k of an element in the
one-dimensional array requires two integer divisions and a modulo operation. Though,
these operations are costly, they can be replaced with relatively inexpensive bitwise
operations if the denominator is a power of two [19].

Now, we solve the saturation equation (2) using the central schemes, where the seep-
age velocity is obtained by solving the pressure-velocity equation (1). The following
algorithm outlines the steps in solving the saturation equation using the time marching
scheme (15).

Reconstruct cell interface values using sn

Compute L(sn) using computed cell interface values
Launch CUDA kernel to compute s(1)

Reconstruct cell interface values using s(1)

Compute L(s(1)) using computed cell interface values
Launch CUDA kernel to compute sn+1

X Y

Z

.(jl, kl) = (j, k)

ny

nz

Fig. 2. Left: Side 1 and Side 2 in the three-dimensional domain. Right: Side 1 mapping into the
three-dimensional domain

Since we have different boundary conditions to be imposed on sides, we have to
treat each side separately. This helps to reduce the branches (if loops) and thus improve
the CUDA performance. Therefore, we define the following computational domains.

– Side 1: i = 0, j = 0..ny − 1 and k = 0..nz − 1
– Side 2: i = nx − 1, j = 0..ny − 1 and k = 0..nz − 1
– Side 3: i = 1..nx − 2, j = 0 and k = 0..nz − 1
– Side 4: i = 1..nx − 2, j = ny − 1 and k = 0..nz − 1
– Side 5: i = 1..nx − 2, j = 1..ny − 2 and k = 0
– Side 5: i = 1..nx − 2, j = 1..ny − 2 and k = nz − 1
– Interior: i = 1..nx − 2, j = 1..ny − 2 and k = 1..nz − 2



If we consider the dimension-by-dimension approach, each cell has six cell interface
values to be stored. In order to optimize global memory access [18], we use structure
of arrays (SOA) for storing these cell interface values. For the dimension-by-dimension
approach, we define arrays to hold the cell interface values FC,BaC,RC,LC, TC and
BoC, and the pointers to these arrays are kept in a structure. Since CUDA kernels do
not support very long argument lists, references to these arrays are copied to constant
memory. It also helps to save some shared memory [18]. When we launch the kernel
for reconstructing cell interface values, we launch separately for each computational
domain. However, in order to launch separately for each computational domain, we
have to keep track of elements in each computational domain. One approach to do this
is to keep the elements of each computational domain in an array in the global device
memory. However, in this approach we increase unnecessary device memory fetching
and decrease the global device memory available for storing cell interface values and
values of L(u). Another approach is to identify elements of each computational domain
at runtime. Since we work on a structured, three-dimensional domain, we can easily
identify i, j, k of any element. For side 1 (see Fig. 2), we can find the global index
(i, j, k) from the local index as shown below:

local index = nykl + jl,

i = 0, j = jl, k = kl,

global index = nxnyk + nxj,

(16)

In CUDA kernel, local index is equal to blockIdx.x ∗ blockDim.x + threadIdx.x.
Similarly, we can find the global indexes in each computational domain.

The right-hand side (RHS) of the semi-discrete scheme can be written as

L(s) =−
Hx
i+ 1

2 ,j,k

∆x
+
Hx
i− 1

2 ,j,k

∆x

−
Hy

i,j+ 1
2 ,k

∆y
+
Hy

i,j− 1
2 ,k

∆y
−
Hz
i,j,k+ 1

2

∆z
+
Hz
i,j,k− 1

2

∆z
.

(17)

To compute the L(s), we consider each computational domain separately as we dis-
cussed earlier. For each computational domain, we can compute L(s) by considering
Hx
i+ 1

2 ,j,k
, Hx

i− 1
2 ,j,k

, Hy

i,j+ 1
2 ,k

, Hy

i,j− 1
2 ,k

, Hz
i,j,k+ 1

2
and Hz

i,j,k− 1
2

in a single kernel. The
new kernel now uses more registers and shared memory; even some of the variables are
spilled into local memory. Therefore, we are in need to break this kernel into smaller
kernels. To increase the CUDA performance further, we split this computation into six

CUDA kernels [12]. That is, the first CUDA kernel updates L(s) with −
Hx

i+ 1
2 ,j,k

∆x and
so on. This will restrict the use of shared memory. Anyhow, the shared memory is very
limited to store double precision interface values.

3.1 Shared memory implementation

We can use shared memory implementation for reconstructing cell interface values.
However, we cannot use it for computing L(s) as we update L(s) of a computational
domain using separate six kernels.



The shared memory implementation will be effective only for the elements in the
interior region. Since we launch kernels based on computational domain, we can eas-
ily modify the kernel for the elements in the interior region to accommodate shared
memory implementation. We consider a cube nc × nc × nc, where nc is the num-
ber of elements in each side of the cube. Here, to compute cell interface values of
(nc− 2)× (nc− 2)× (nc− 2) elements, the block threads copy the values of s for the
elements in the cube from the global memory to the shared memory. Then, the cell inter-
face values are computed using data from the shared memory. Finally the cell interface
values are written back to the global memory.

sp
ee

du
p

0.6

0.8

1

1.2

1.4

1.6

1.8

6x6x65x5x5 7x7x7 8x8x8
cube size

Fig. 3. Kernel speedup when using shared memory over global memory for the computational
domain 62x62x62

Fig. 3 shows the performance of the shared memory implementation against nc. We
do not see any drastic improvement in the performance as we increase the cube size.
Also, the shared memory available is only 16KB for a multiprocessor and it is often a
very limiting factor for double precision computations.

Since we cannot effectively implement shared memory for computing L(s) and
arithmetic intensity for computing L(s) is very much higher than computing cell inter-
face values, the overall performance is not improved by the use of shared memory in
GPU implementation for the central schemes.

4 Numerical experiments

In this section, we present the results of numerical simulation of three-dimensional,
two-phase flows associated with a flooding problem. For the saturation calculation, we
use the second-order, semi-discrete central schemes (10) and (12).

In all simulations, the reservoir contains initially 79% oil and 21% water. Water
is injected uniformly into the reservoir at a constant rate of one pore-volume every
five years. For the heterogeneous reservoir studies, we consider a scalar, heterogeneous
absolute permeability field taken to be the logarithmic of a realization of a Gaussian



random fractal field [11, 9]. The spatially variable permeability field is defined on a
32 × 32 × 4 grid with the coefficient of variation (Cv) 0.5, where the Cv is defined
as (standard deviation/mean). The fractional volumetric flow and the total mobility
are given by

f(s) =
krw(s)/µw

λ(s)
, λ(s) =

krw
µw

+
kro
µo

, (18)

where

kro(s) =
{

1− s

(1− sro)

}2

, krw(s) =
{
s− srw
1− srw

}2

. (19)

Furthermore, we use the following data in all flow simulations.

Viscosity µw = 0.5 cP µo = 10 cP
Porosity φ = 0.2
Residual saturations sro = 0.15 srw = 0.2

We consider a three-dimensional flow in a rectangular parallelepiped, heteroge-
neous reservoir of size 64m×64m×8m. The boundary conditions, and the injection and
production specifications for the two-phase flow equations, (1) and (2), are given below.
The injection is made along the face, {(x, y, z)|x = 0, 0 ≤ y ≤ 64m and 0 ≤ z ≤ 8m}
of the reservoir, and the production is taken along the face, {(x, y, z)|x = 64m, 0 ≤
y ≤ 64m and 0 ≤ z ≤ 8m} of the reservoir; no flow is allowed along the remaining
faces. The time step ∆tp is kept at 10 days and ∆ts is computed using CFL condition.

Fig. 4 and Fig. 5 show the mesh refinement study of the problem. Clearly, as the
mesh is refined, a better resolution of the fingering instabilities is observed.

For comparing speedup of GPU, we used NVIDIA GeForce 295 GPU with Intel
Xeon (E5405) 2.00GHz and Intel Core i7 (965) 3.20GHz processors. GTX 295 graphics
card (compute capability 1.3) has 240 CUDA cores and 0.9GB global device memory
per GPU. CPU version and GPU version of the codes adopt strategies that best suited
for their optimal performance. Fig. 6 shows speedup curves of GTX 295 GPU with Intel
processors.

5 Conclusion and future work

We have presented an implementation of the central schemes on a GPU for solving the
hyperbolic equation arising in two-phase flows. By using a single GPU we get a factor
of 50-65 speedup compared to an Intel Xeon processor. This GPU implementation can
be very effective in solving medium-scale, three-dimensional problems in flow through
porous media applications.

The explicit schemes are naturally parallelizable in multi-GPUs: a geometrical do-
main decomposition may be applied to divide the original domain into subdomains
such that the hyperbolic problems can be solved in parallel using multi-GPUs. The au-
thors are investigating adequate strategies for the communication between sub domains
(needed because of the explicit nature of the numerical schemes), including the possi-
bility of using an overlapping domain decomposition procedure.

The GPU code based on CUDA is currently being adapted to OpenCL. The imple-
mentation in OpenCL and its performance study will appear elsewhere.



0.25 0.35 0.45 0.55 0.65

Fig. 4. Dimension-by-dimension approach: Water saturation plots for two-phase flow in a three-
dimensional heterogeneous reservoir of dimension 64m×64m×8m. Top to bottom: 32×32×4
grid, 64× 64× 8 grid, 128× 128× 16 grid and 256× 256× 32 grid, respectively.



0.25 0.35 0.45 0.55 0.65

Fig. 5. Genuinely multi-dimensional approach: Water saturation plots for two-phase flow in a
three-dimensional heterogeneous reservoir of dimension 64m×64m×8m. Top to bottom: 32×
32× 4 grid, 64× 64× 8 grid, 128× 128× 16 grid and 256× 256× 32 grid, respectively.



sp
ee

du
p

0

20

40

60 Intel Core i7 CPU
Intel Xeon CPU

64x64x832x32x4 128x128x16 256x256x32
domain size

sp
ee

du
p

0

20

40

60 Intel Core i7 CPU
Intel Xeon CPU

64x64x832x32x4 128x128x16 256x256x32
domain size

Fig. 6. Single GPU speedup relative to a single CPU core. Left: Dimension-by-dimension ap-
proach. Right: Genuinely multi-dimensional approach

Acknowledgments: We thank Manfred Liebmann of the Institute for Mathematics and
Scientific Computing, University of Graz for allowing us to use his preconditioned con-
jugate gradient code with algebraic multigrid preconditioner (PCG-AMG) for solving
the elliptic problem.

References

1. Abreu, E., Douglas Jr., J., Furtado, F., Pereira, F.: Operator splitting based on physics for
flow in porous media. Int. J. of Computational Science 2(3), 315–335 (2008)

2. Abreu, E., Douglas Jr., J., Furtado, F., Pereira, F.: Operator splitting for three-phase flow in
heterogeneous porous media. Communications in Computational Physics 6(1), 72–84 (2009)

3. Anderson, J., Lorenz, C., Travesset, A.: General purpose molecular dynamics simulations
fully implemented on Graphics Processing Units. Journal of Computational Physics 227(10),
5342–5359 (2008)

4. Barrachina, S., Castillo, M., .Igual, F., Mayo, R., Quintana-Orti, E.: Solving dense linear
systems on graphics processors. Tech. Rep. ICC 02-02-2008, Universidad Jaume I, Depto.
de Ingenieria y Ciencia de Computadores (2008)

5. Bleiweiss, A.: GPU accelerated pathfinding. In: Proceedings of the 23rd ACM
SIGGRAPH/Eurographics Symposium on Graphics Hardware, pp. 65–74. Aire-la-Ville,
Switzerland (2008)

6. Brandvik, T., Pullan, G.: Acceleration of a 3D Euler solver using commodity graphics hard-
ware. In: 46th AIAA Aerospace Sciences Meeting and Exhibit (2008)

7. Castillo, M., Chan, E., Igual, F., R. Mayo, E.Q.O., Quintana-Orti, G., van de Geijn, R., Zee,
F.V.: Making programming synonymous with programming for linear algebra libraries. Tech.
rep., University of Texas at Austin, Department of Computer Science (2008)

8. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media.
SIAM, Philadelphia, PA (2006)

9. Furtado, F., Pereira, F.: Crossover from nonlinearity controlled to heterogeneity controlled
mixing in two-phase porous media fows. Comput. Geosciences 7(2), 115–135 (2003)

10. Furtado, F., Pereira, F., Douglas Jr., J.: On the numerical simulation of waterflooding of
heterogeneous petroleum reservoirs. Comp. Geosciences 1, 155–190 (1997)



11. Glimm, J., Lindquist, B., Pereira, F., Zhang, Q.: A theory of macrodispersion for the scale
up problem. Transport in Porous Media 13, 97–122 (1993)

12. Kirk, D.B., mei W. Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann Publishers, Burlington, MA (2010)

13. Kurganov, A., Petrova, G.: A third-order semi-discrete genuinely multidimensional central
scheme for hyperbolic conservation laws and related problems. Numeriche Mathematik
88(4), 683–729 (2001)

14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations. J. of Computational Physics 160, 241–282 (2000)

15. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Molecular dynamics simulations on com-
modity GPUs with CUDA (2007)

16. Michalakes, J., Vachharajani, M.: GPU acceleration of numerical weather prediction. In:
Proceedings of the IEEE International Symposium on Parallel and Distributed Processing.
Washington, DC (2008)

17. Micikevicius, P.: 3D fnite difference computation on GPUs using CUDA. In: GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units

18. NVIDIA: CUDA C Programming Best Practices Guide. NVIDIA Corp., Santa Clara, CA
(2009)

19. NVIDIA: CUDA programming guide 2.3. NVIDIA Corp., Santa Clara, CA (2009)
20. Pereira, F., Rahunanthan, A.: A semi-discrete central scheme for the approximation of two-

phase flows in three space dimensions. Submitted
21. Schatz, M., Trapnell, C., Delcher, A., Varshney, A.: High-throughput sequence alignment

using graphics processing units. BMC Bioinformatics 8(474) (2007)
22. Shu, C..W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing

schemes II. Journal of Computational Phys. 83(1), 32–78 (1989)
23. Stone, J., Phillips, J., Freddolino, P., Hardy, D., Trabuco, L., Schulten, K.: Accelerating

molecular modeling applications with graphics processors. J. Comp. Chem. 28, 2618–2640
(2007)

24. Thibault, J.C., Senocak, I.: CUDA implementation of a Navier-Stokes solver on multi-GPU
desktop platforms for incompressible flows. In: 47th AIAA Aerospace Sciences Meeting.
Orlanda, FL (2009). Paper No:AIAA-2009-758

25. Tolke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D CFD.
International Journal of Computational Fluid Dynamics 22(7), 443–456 (2008)

26. Ufimtsev, I., Martinez, T.: Quantum chemistry on graphical processing units. 1. strategies
for two-electron integral evaluation. Journal of Chemical Theory and Computation 4(2),
222–231 (2008)


