A Load Balancing Model for 3D HPC Image
Reconstruction Applications To Reduce
Unnecessary Overheads

J. A. Alvarez-Bermejo and J. Roca-Piera *
Dept of Computer Architecture and Electronics
Universidad de Almeria
Ctra. Sacramento S/N. 04120
Spain

Abstract. Scientific applications are high-resource demanding software.
HPC constitute a suitable framework to deploy such applications. Port-
ing them to parallel platforms is a tedious task that implies adding a
complexity layer to the software. There is still a gap between parallel
architectures and want-to-be-parallel software. Abstractions are an use-
ful tool to bridge the gap. This paradigm shift can be used to exploit
parallelism and add adaptivity layers easily by means of load balancing
strategies. In this paper we present results in porting scientific software
to parallel platforms.

1 Introduction

A high percentage of the scientific code related to image processing is CPU in-
tensive and iterative. HPC and parallelism are almost the unique path for an
acceptable solution-to-time ratio. Considerable effort and programming abilities
are needed to efficiently parallelize such codes[1]. The application’s irregular ex-
ecution patterns make it difficult to assure optimal runs on a parallel machine,
therefore adaptivity to the computational environment is a desired issue. Using
load balancers to adapt the application to the environment is a trend but bal-
ancers interfere with the code. Our main aim was trying to program efficiently,
shifting the programming paradigm and minimizing the gap from algorithm to
implementation using more expressive paradigms [2]. We shifted to a particu-
lar object oriented paradigm [3] and used the charm framework [4]. This paper
gathers the idea of exploiting concurrence and parallelism efficiently using the
object orientation pattern. And shows the load balancing techniques we used
to achieve adaptivity using our method to avoid interferences from the load
balancer at fixed intervals, which may diminish the performance. The paper is
structured in Section 2 which introduces the problem of the iterative reconstruc-
tion. Section 3 shows improvements achieved when porting our code to the new
paradigm. Section 4 exposes how we reached adaptivity, and finally in Section 5
we summarize the conclusions.

* This work has been funded by grant TIN 2008-01117 from the Spanish Ministry of
Science and Innovation



2 The Iterative Reconstruction Problem

Series expansion reconstruction methods assume that a 3D object, or function
f, can be approximated by a linear combination of a finite set of known and
fixed basis functions, with density x;. The aim is to estimate the unknowns, ;.
These methods are based on an image formation model where the measurements
depend linearly on the object in such a way that y; = ijl l; j - ©j, where y;
denotes the i*" measurement of f and l; ; the value of the it" projection of the
4t basis function. Under those assumptions, the image reconstruction problem
can be modeled as the inverse problem of estimating the z;’s from the y;’s by
solving the system of linear equations aforementioned. Assuming that the whole
set of equations in the linear system may be subdivided into B blocks, a gen-
eralized version of component averaging methods, BICAV[1] can be described.
The processing of all the equations in one of the blocks produces a new estimate,
see Figure 1(a). All blocks are processed in one iteration of the algorithm. These
techniques produce iterations which converge to a weighted least squares solu-
tion of the system. A volume can be considered made up of 2D slices. The use
of the spherically symmetric volume elements (blobs) [1], makes slices interde-
pendent because of blob’s overlapping nature. The amount of communications is
proportional to the number of blocks and iterations (as sketched in Figure 1(a)).
Reconstruction yields better results as the number of blocks is increased. The
main drawback of iterative methods is their high computational requirements.
These demands can be faced by means of parallel computing and efficient re-
construction methods with fast convergence. The parallel iterative reconstruc-
tion method has been implemented following the Single Program Multiple Data
(SPMD) approach. The iterative pattern is certainly appropriated for this prob-

PROCESSOR

THREAD (Virt. Processor) m Volume to reconstruct  (siab)

MPI data distribution
strongly depends on
j«wm (threaded) data

#pf processors.
Avalable physicalprocessors (o cores)

distribution is further
flexible. It depends on
the # of vintual processors
o rthreads.

When a thread blocks in a communication phase, an Scheduler

ﬁ\cks another thread from the tasks list and starts it. Latency Virtual Processors (or threads). We can create any numb
iding is easy to achieve. Give them data. And then map them to physical processors.

(a) Abstracting MPI processes (b) Volume decomposed into slabs
into user level threads of slices, distributed across the
nodes

Fig. 1. Using User Level Threads to Embed MPI Processes
lem but imbalanced scenarios may occur if convergence criteria are applied or
if the parallel computer is being shared between several users. In this paper we
studied how a load balancer could be integrated without interfering excessively
with our scientific code. To achive this, concurrence might be of great help so a
programming turn was required.



3 The need of a programming shift

Clusters are parallel processing platforms where BIC AV can be efficiently solved
[1] but load balancing still harms performance due to network communications
for exchanging performance profiles. In [5] it is shown how latency can be hidden
based upon the programmer abilities. Abstractions provide means to achieve
this regardless of the programmer. Multicores are an interesting alternative to
clusters, that invite to think in a threaded programming model but adapting
parallel HPC applications is still an issue. An interesting abstraction to exploit
this new kind of parallelism needed (for cluster and multicores) is by virtualizing
processes, see Figure 1(a).

Load balancing

Developing a parallelizable application means adding an extra layer of com-
plexity to the software development process. This complexity refers not only
to determine when a certain operation will be processed but where. Making an
application adaptive is a two steps procedure, the first one is the heuristic, the
second step has to do with how to migrate the computation. Load migration
is a scheme reached by consensus for facing imbalance. Conventional strategies
indicate the amount of computation units to be moved but say nothing about
which of them should be moved to preserve locality and performance. We need
to consider locality. Also we needed to optimize the communication between the
user code and the load balancer strategies. We used a Runtime System where
the LB strategies can be callable from the user code. In order to implement
an efficient communication between code an load balancer we used abstractions
like objects. Iterative applications must statically specify points in its time-line
where the balancer must act, otherwise there is no way to let the runtime collect
performance data, evaluate it and propose migrations. So what about creating
an object that acts like a coach? An object that is able to detect performance
decrements and then invoke the load balancer? This method works as a swim-
ming team, the proposed object controls the expected time lapse, as a coach
does. If a slow swimmer enters your lane you will experience worst time lapses.
In our case the solution is already implemented in the load balancing strategy,
so the coach just need to invoke it. Probably the slower swimmer will not be
removed away because it does not belong to our team (computing set) but my
objects can be moved to better lanes. See Figure 2 in it several cases are shown.
Each lane can be considered as a node (cluster) or a core (multicore), and even
the three pools may be the case of a cluster of multicore nodes. We need to reim-
plement our code to use abstractions to exploit concurrence and to optimize the
calls to load balancers.

Our First Approach

We reimplemented BIC AV [6] using AMPI [4], which is a framework that allows
the virtualization of MPI processes. Concurrence is then a consequence of having



T _start T _start T _start
T_end @T_end @T_end

(b)

End of each iteration

O |O
0|80 0
el OO
J
U
ol O 0| Blg
0.8 0
Start of each iteration

(1) Fast swimmer T_start to T_end is the period to collect signaling
() Slow swimmer from objects.

mmPoint to save as a heart-beat.

Fig. 2. Swimmers based model

more virtual processors than physical processors. In our application the data
is distributed as depicted in Figure 1(b). Communications between neighbor
nodes to compute the forward-projection or the error back-projection for a given
slab and to keep redundant slices updated are mandatory. The communication
rate arises with the number of blocks and iterations. There will be almost no
penalty for those virtual processors containing non boundaries slices because
the communication will be carried out within the node. Table 1 underlines the
gains in the coarsegrain implementation versus MPI. The test reconstructed two
volumes, a 256x256x256 volume and a 512x512x512 volume, the number of blocks
(K) was set to the maximum (K=256 and K=512, respectively). The efficiency
was defined, for these tests, in terms of the idle time computed per processor.
Table 1 presents the relative difference (columns Idle%) among cputime and
walltime for both problem sizes. For the new version, the computed walltime and
cputime are almost the same, so cpu was not idling. MPI version behaved worst
as the number of processors grew up. Our version (used 128 virtual processors)
seized concurrence at maximum. Experiences were performed on a cluster with
(32 computing nodes with two Pentium IV xeon 3.06 Ghz with 512KB L2 Cache
and a 2GB sdram).

Table 1. % Relative differences between CPU and WALL times

K 256 (volume 256) K 512 (volume 512)
MPI AMPI MPI AMPI

Procs 1dle% Id1e% Idle% Id1e%

2 2.9 0.1 2.8 0.0
4 3.5 0 3.2 0.0
8 5.6 0 4.7 0.3
16 17.1 0.8 9.7 0.7

32 62.4 1.5 32.3 0.2




Implementation from scratch

Objects are good for multicores: they protect their internal data and protect their
internal state and do not share it. Objects properties define a scenario based in
local and separated environments so objects can be executed in parallel. Objects
are structural units and concurrent units. Parallel Objects (PO)[7] is an object
model where parallelism as well as non determinism can be expressed easily.
With this finer-grain implementation, intra-object and inter-object parallelism
were exploited. The former with concurrent methods provided by the language,
the latter was difficult to achieve in the AMPI version, we implemented a High
Level Parallel Composition (HLPC, compositions where internal schedulers are
provided together with concurrence control mechanisms) Farm Pattern [8], where
there exists a group of concurrent objects that work in parallel under the guid-
ance of a master object (figure 3). To control the concurrence we used MAXPAR
[3]. The implementation used a concurrent object framework [4], which is on top
of a runtime that abstracts the beneath architecture. This runtime offers, sepa-
rately, the scheduling capabilities to whatever application is run above, avoiding
local non determinism because the scheduler is part of the runtime itself. The

SLAVE OBJECTS

i | couecror |3 NODE OBJECT

——

! FomECT @lwg omaecTs
H GBsEcT

+ | controvcen | ¥ @

ronrve | I @]

MANAGER | H NOpE oBJECT SLAVE OBJECTS

‘SLAVE OBJECTS

1 | stace

MAIN OBJECT

Fig. 3. Object Oriented 3D Reconstruction
Figure 3 shows a main object that controls how the program advances. The node

objects are placed one per processor, they serve as middleman between slaves
and master. Slaves simply do their task concurrently, independently from the
processor they are located in. A mechanism for providing automatic adaptativity
was designed using a special automated object that drive the load balancing
(see Section 4). The table 2 shows the behaviour of the reconstruction in MPI
and in Charm++ on a cluster and multicore system. The column titled Objects
/ Procs refers to the number of processes started in the multicore for the MPI
version; and objects created in the Object Oriented version. When running on
the cluster, the column Procs means physical processors. Charm+-+ tests were
always launched with four worker objects per processor in the cluster platform.
The reconstruction in this version is message-driven, where a message activates
an object’s service. As Table 2 shows, the object-oriented version behaves better
than its MPI counterpart. Using a cluster, the main harm that this scenario suf-
fers from is the network latencies. Communicating two MPI processes is costly.



Table 2. Walltime computed in a cluster and in a multicore processor.

Cluster Multicore
Objects/ MPI Objects MPI Objects

Procs WallTime WallTime WallTime WallTime

2 366 42 111,449 4.1
4 86 26 75,651 2,891
8 46 16 45,496 2,697
16 26 14 34,136 2.4
32 n/p n/p 33,25 2,121

Our new version has better granularity and concurrence, this helps for hiding
latencies. Nevertheless when running the application in the multicore (Intel Core
2 Quad Q6600), the MPT version reaches a point (8 processes) where the cache
contention affects dramatically the performance. Also one may note that MPI is
based on passing messages and although the network remains untouched, when
sharing memory this message passing is translated into a copy from private to
shared memory where conflicts also exist.

4 Load balancing a mean for adaptive applications

Once the applications are suitable for being splitted into objects we tested them
with our strategies to preserve locality [6]. Its behaviour was compared with
standard centralized strategies like Refine and Greedy [9] where Greedy strat-
egy does not consider any previous thread-processor assignment, simply builds
two queues, processors and threads, and reassigns load to reach average. Refine,
in contrast, only migrates objects from overloaded processors until the processor
load is pushed under average. Preserving data locality and minimizing laten-
cies (see Section 3) are two issues exploited by RakeL.B. We tested BIC AV
to evaluate the dynamic load balancing algorithms. After migration, Rakel.B

Threads placement after RefineLB strategy - Threads placement after RakeLB strategy
16 1 :
15 !
14 14
13 13
12 12
L1 Lu
31 3N
k4 3
A~ g A~ ‘:
4 4
3 3
2 2
1 1
0 0+
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Thread's Rank Thread's Rank
(a) Disorder after RefineL.B (b) Locality  preservation  after
RakeLB

Fig. 4. Background load and resulting data redistribution after load balancing.
and RefinelLB reacted alike, with a fine load distribution as shown by the o



value. The initial imbalance value (workload placed statically in each node) re-
flected by o (standard deviation of the whole system load, normalized to the
average load) was over 0.5. After applying the load balancer a similar o value
was achieved (0.051 for GreedyLB and 0.045 for both RakeLB and RefineLB).
GreedyLB reached a good load balancing but the distribution of the objects was
remarkably messy (see Figure 4) and negative for performance. Figure 4, shows
an ordered distribution for RakeLB, aspect that turns out to be an issue for
BICAV’s performance, as can be seen in Table 3 first row. Locality seemed to
be favouring our code. Following we show how we boosted performance replacing
fixed calls to the load balancer with asynchronous calls. In Figure 2, (a) repre-
sents a computation performing normally, no need for load balancing. Each time
that an object passes through the stripped line, a beat is sent to the coach. (b)
shows a case where an object is running on a slower node or core, or may be
processing a dense data-set so it progresses slower, the coach should invoke the
balancer. (c) identifies a case where our the computation is harmed by a third
party, it might be useful to invoke the LB. If we were not using this method, in
(a) the load balancer would have been invoked once per a number of iterations,
unnecessarily. In (b) and (c) the situation might appear at some point in time,
so there is no need to implement periodic checks. This method is more flexible
in contrast to stopping at load balancing barriers. Results from section 4 were
obtained with just one load balancer call, we will compare against that. Table 3

Table 3. Walltime ratio for BIC AV, pool method

Greedy Refine Rake

Master’s Walltime 1 call (% Greedy) 100  66.59 50.29
Master’s Walltime 1 per 50(% Greedy 1 call) 101.5 67.4 50.36
Master’s Walltime 1 per 20(% Greedy 1 call) 101.62 67.59 50.41
Master’s Walltime auto obj(% Greedy 1 call) 100.8 66.63 50.3

shows the application walltimes taking as a reference the walltime of the appli-
cation using the Greedy strategy when the load balancer is invoked just once
in the traditional way (Greedy 1 call). In a LB call, the whole computation is
stopped into a barrier, the control is passed to the runtime that loads the heuris-
tic, retrieves the object’s traces and decide if the mapping should stay as it is
or it should migrate. It is a good idea not to abuse from LB calls, our method

Data: trigger «— NumberO f BeatsToCollect
Result: Invoke load balancer if the beat slows down
if (——trigger==0) then
lapse < gettime();
if (CollectFirstTime) then
| auto.getFasterTime(lapse);
if lapse—idealLapse > € then
| objects[].signalObjectsLBCallRecommended();
trigger < NumberO f BeatsToCollect ;

Algorithm 1: Algorithm for the method beat(), auto object



places an object (auto object) per core / node. Computing objects send a simple
lowpriority message each time that the object passes through the check points
in the code. The auto object collects a predefined number of beats, computes the
time to collect them and it the time intervals are worst each time, then the LB
is invoked. Algorithm 1 describes the basic workings of the auto-object.

5 Conclusions

Object oriented abstractions can efficiently exploit parallelism. As a consequence
latency hiding and adaptivity issues are easier to achieve. Load balancing strate-
gies must be carefully devised to be locality aware, we have shown that this ben-
efits the walltime of the application. Load balacers must at some point in time,
interfere the application to collect data and re-balance the problem, this means
loosing flexibility by having to specify statically the points in time when the load
balancer should enter in action. A flexible method to invoke load balancers was
presented and shown to be effective.

References

1. S. Matej and RM Lewitt. Practical considerations for 3-D image reconstruction us-
ing spherically symmetric volume elements. IEEE Transactions on Medical Imaging,
15(1):68-78, 1996.

2. José A. Alvarez, Javier Roca-Piera, and José J. Ferndndez. From structured to
object oriented programming in parallel algorithms for 3d image reconstruction. In
POOSC 09: Proceedings of the 8th workshop on Parallel/High-Performance Object-
Oriented Scientific Computing, pages 1-8, New York, NY, USA, 2009. ACM.

3. A. Corradi and L. Leonardi. Concurrency within objects: layered approach. Inf.
Softw. Technol., 33(6):403-412, 1991.

4. Laxmikant V. Kalé and Sanjeev Krishnan. Charm++: A portable concurrent object
oriented system based on c++. In OOPSLA, pages 91-108, 1993.

5. J.J. Fernandez, A.F. Lawrence, J. Roca, I. Garcia, M.H. Ellisman, and J.M. Carazo.
High performance electron tomography of complex biological specimens. Journal of
Structural Biology., 138:6—20, 2002.

6. J.A. Alvarez, J. Roca, and J.J. Ferndndez. A load balancing framework in multi-
threaded tomographic reconstruction. In Proceedings of the International Confer-
ence ParCo 2007, page in press, Aachen-Julich, September 2007.

7. Antonio Corradi and Letizia Leonardi. Po: an object model to express parallelism.
SIGPLAN Notices, 24(4):152-155, 1989.

8. Mario Rossainz Lépez and Manuel I. Capel Tunén. An approach to structured
parallel programming based on a composition. In CONIELECOMP, page 42. IEEE
Computer Society, 2006.

9. Gagan Aggarwal, Rajeev Motwani, and An Zhu. The load rebalancing problem. J.
Algorithms, 60(1):42-59, 2006.



