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Abstract. As computational science applications grow more parallel
with multi-core supercomputers having hundreds of thousands of com-
putational cores, it will become increasingly difficult for solvers to scale.
Our approach is to use hybrid MPI/threaded numerical algorithms to
solve these systems in order to reduce the number of MPI tasks and
increase the parallel efficiency of the algorithm. However, we need effi-
cient threaded numerical kernels to run on the multi-core nodes in order
to achieve good parallel efficiency. In this paper, we focus on improving
the performance of a multithreaded triangular solver, an important ker-
nel for preconditioning. We analyze three factors that affect the parallel
performance of this threaded kernel and obtain good scalability on the
multi-core nodes for a range of matrix sizes.

1 Introduction

1.1 Motivation

With the emergence of multi-core processors, most supercomputers are now hy-
brid systems in that they have shared memory multi-core nodes that are con-
nected together into a larger distributed memory system. Although for many
numerical algorithms the traditional message programming model is sufficient
to obtain good scalability, some numerical methods can benefit from an hybrid
programming model that uses message passing between the nodes with a shared
memory approach (e.g., threads) within the node. Scalable threaded algorithms
that run efficiently on the node are essential to such a hybrid programming
model and are the emphasis of our work in this paper.

Solvers are a good example of numerical algorithms that we believe can ben-
efit from a hybrid approach. Solver implementations based on a flat MPI pro-
gramming model (where subcommunicators are not utilized) often suffer from
poor scalability for large numbers of tasks. One difficulty with these approaches
is that with domain decomposition based preconditioners, the number of iter-
ations per linear solve step increase significantly as the number of MPI tasks
(and thus the number of subdomains) becomes particularly large. We also see
this behavior with scalable preconditioners such as an algebraic multilevel pre-
conditioner. Figure 1 shows an example of this difficulty for Charon, a semicon-
ductor device simulation code [1–3], with a three level multigrid preconditioner.



(a) Charon timing breakdown (b) Increase in iterations

Fig. 1. Strong scaling analysis of Charon on Sandia Tri-Lab Linux Capacity Cluster
for 28 million unknowns.

As the number of MPI tasks increases, the number of linear solver iterations
increases (Figure 1(b)). Figure 1(a) shows that these extra iterations require an
increasingly higher percentage of the total runtime as the number of MPI tasks
increase, resulting in a degradation in the parallel performance.

By having fewer (but larger) subdomains, better convergence can be ob-
tained for the linear solver. With fewer subdomains, the solvers for these larger
subdomains must be parallel in order to maintain the overall scalability of the
algorithm. This leads to a two-level model of parallelism, where MPI is used
to communicate between subdomains and a second level of parallelism is used
within each subdomain. One approach is to also use MPI to obtain parallelism
at the subdomain level (e.g., [4]). Another approach, which we explore in this
paper, utilizes multithreading to obtain parallelism at the subdomain level. This
approach is limited in that each subdomain does not extend beyond the pro-
cessor boundaries. However, we feel that as the number of cores per processor
continues to increase, this will become less important and threads may be a
better approach for exploiting the shared memory architecture on the node.

Keeping the iteration count low is not sufficient, however, to obtain per-
formance gains over MPI-only implementations. The shared memory numerical
kernels that run on each multi-core node also need to be scalable. It is particu-
larly important to have a scalable shared memory implementation of a triangular
solver to run on each node since this kernel will be executed for each iteration
of the linear solver. The focus of this paper is to study the various factors that
affect the performance of this shared memory triangular solver kernel in the
pursuit of a sufficiently scalable algorithm.

1.2 Level-set triangular solver

We focus our attention on improving the performance of a level-set triangular
solver for sparse matrices as described in [5]. Below we describe the process for
lower triangular matrices, but the upper triangular case is analogous. First, we
express the data dependencies of the triangular solve for the lower triangular



matrix L as a directed acyclic graph (DAG). A vertex vi of this DAG corre-
spond to the vector entry xi that will be calculated in the triangular solve. The
directed edges in the DAG represent data dependencies between the x vector
entries, with a directed edge connecting vi to vj if and only if xi is needed to
compute xj . The level-sets of this DAG represent sets of row operations in the
triangular solve operation that can be performed independently. Specifically, the
ith level-set is a set of vertices that have incoming edges only from vertices of the
previous i−1 levels (the corresponding xi entries are only dependent on x vector
entries in previous levels). We calculate these level-sets from the DAG using a
variant of breadth-first search. Permuting the system symmetrically so that the
rows/columns are in order of the level-sets, we obtain the following permuted
matrix,

L̃ = PLPT =


D1

A2,1 D2

A3,1 A3,2 D3

...
...

...
. . .

Al,1 Al,2 Al,3 . . . Dl

 ,

where l is the number of level-sets. This symmetrically permuted matrix is still
triangular since x̃i can only depend on those x̃j calculated in a previous level with
this dependency corresponding to a lower triangular nonzero in the permuted
matrix. Since there are no data dependencies within a level in the permuted
matrix (i.e., no edges connecting vertices within a level-set), the Di must be
diagonal matrices.

With this basic level-set permuted matrix structure, we can use either a
forward-looking or backward-looking algorithm. After a diagonal solve deter-
mines a set of vector entries x̃i, the forward-looking algorithm uses x̃i to im-
mediately update x̃j , j > i with the matrix-vector product operations in the
ith column block. A backward-looking algorithm uses all previously computed
x̃i, i = 1, . . . , l − 1, in a series of matrix-vector products updates immediately
before computing x̃l. Both algorithms have the same operation counts but have
different memory access patterns for the matrices and vectors. In particular, the
forward-looking algorithm exploits the temporal locality of the previously calcu-
lated x̃i that are used in the matrix-vector products while the backward-looking
algorithm exploits the temporal locality of x̃i that are being determined/stored.
While both algorithms have different advantages, we chose to implement the
backward-looking algorithm, since we were able to use our compressed row stor-
age matrices in a more natural manner. The operations needed to solve the
permuted system for x̃ in this backward-looking algorithm are as follows



x̃1 = D−1
1 ỹ1

x̃2 = D−1
2 (ỹ2 −A2,1x̃1)

...
...

...
x̃l = D−1

l (ỹl −Al,1x̃1 − . . .−Al,l−1x̃l−1) .

(Note that the above operations were written to elucidate this algorithm but in
practice the sparse matrix-vector product (SpMV) operations for each level can
be combined into one SpMV.) x can be subsequently recovered by the operation
PT x̃.

The vector entries at each level (those in x̃i above) can be calculated inde-
pendently. Thus, in our threaded solver kernel, the computation in each level
can be distributed across threads (e.g., with an OpenMP/TBB like parallel
for operation) without the need for synchronization. However, synchronization
is needed between the levels of the algorithm to ensure that the vector entries
x̃j needed for matrix-vector product portion of each level of computation (i.e.,
Ai,jx̃j) have been previously determined. In this context, we examine how spe-
cific factors affect the performance of this multithreaded triangular solve kernel.

This approach is most beneficial for solving triangular systems resulting
from incomplete factorizations, where the resulting matrix factors are sufficiently
sparse to yield sufficiently large levels. For matrices that do not result in suffi-
ciently large levels, this approach to parallelism will not be particularly effective
(as we will see in the subsequent section). However, for matrices where the result-
ing levels are sufficiently large, the synchronization costs in our multithreaded
algorithm should be small enough to allow for good parallel performance.

1.3 Related work

Saltz described the usage of directed acyclic graphs and wavefront (level-set)
methods for obtaining parallelism for the sparse triangular solve operation in [5].
In this paper, his work focused on sparse triangular systems generated by incom-
plete factorizations arising from discretization of partial differential equations.
This approach was applicable to both shared memory and message passing sys-
tems. Rothberg and Gupta addressed the sparse triangular solve bottleneck in
the context of the incomplete Cholesky conjugate gradient algorithm ([6]). They
argued that the two most promising algorithms at that time (one of which was
the level-set method) performed poorly on the more modern shared memory ma-
chines that utilized deep memory hierarchies. One of the problems they found
was that the level-set algorithm’s performance was negatively impacted by the
poor spatial locality of the data. This is not a major difficulty for our imple-
mentation since we explicitly permute the triangular matrix unlike the original
implementation that simply accessed the rows in a permuted order. In more
recent work ([7]), Mayer has developed two new algorithms for solving triangu-
lar systems on shared memory architectures. The first algorithm uses a block



partitioning to split the triangular matrix across both rows and columns in a
2D Cartesian manner. Given this partitioning, the operations using blocks on
the same anti-diagonal can be computed in parallel on different threads. The
difficulty with this method is finding a good partitioning of blocks that balances
the work. The second method is a hybrid method combining the first method
with a method of solving by column blocks (after a diagonal block has been
solved, the updates in the column block below may be done in parallel). The
hybrid method is easier to partition than the first method. Mayer’s results were
somewhat modest in the speedups that were obtained. However, the methods
are more general than the level-set method and may be effective over a larger
range of matrices.

2 Factors Affecting Performance

One factor we examine is data locality for the matrices. First, we experiment on
two special types of matrices (Figure 2), where the number of rows is the same
for each level and the matrices are already ordered by level-sets. One of these
special matrices results in good data locality (Figure 2(a)) in that threads will
not use vector entries that another thread has it computed in its computation.
This can be seen in the precisely placed off-diagonal bands in these matrices
that ensure that if a vector entry xi is calculated by a thread, any subsequent
computation involving xi (i.e., computation corresponding to nonzeros in column
i) will assigned to that same thread. We can enforce this good data locality since
these matrices have the same number of rows per level-set and we assign row
operations to threads in a contiguous block manner. The other matrix results
in bad data locality (Figure 2(b)) in that threads will often use vector entries
calculated by another thread. Again, this can be seen in the precisely placed
off-diagonal nonzero blocks in these matrices that ensure that if a vector entry
xi is calculated by a thread, subsequent computation involving xi in the next
level will not be assigned to that same thread.

(a) Good Locality (b) Bad Locality

Fig. 2. Nonzero patterns for matrix types.



We also look at variants of the triangular solve algorithm with different bar-
riers and thread affinity settings. The barrier is an important part of this level
set method, providing synchronization between the levels of our triangular solve.
The first type of barrier is somewhat passive and uses mutexes and conditional
wait statements. All the threads wait (pthread cond wait) until every thread
has entered the barrier. Then a signal is broadcast (pthread cond broadcast)
that allows the threads to exit the barrier. The disadvantage with this more
passive barrier is a thread calling this barrier might be switched to a different
computational core while waiting for a signal in the conditional wait statement.
The second type of barrier is more active and uses spin locks and active polling.
A thread entering this barrier will actively poll until all threads have reached
the barrier. This makes it less likely for the threads to be switched, which is a
good thing assuming there is nothing else being computed simultaneously with
the triangular solve. Thread affinity describes how likely a thread is to run on a
particular core. By setting the thread affinity, we can bind a thread to a partic-
ular core, which can be beneficial to the performance of numerical kernels. This
also allows us to ensure our threads are running on the same socket on machines
with multiple sockets. This may be desirable for numerical algorithm, especially
if there is effective utilization of a cache shared between the cores on a socket
(e.g., L3 cache on Nehalem). When setting the thread affinity, we set the affinity
for each thread to a different core on the same socket.

3 Numerical Experiments

We implemented a level set triangular solve prototype that solves triangular
systems of ten levels, with the same number of rows for each level. For this
prototype, the rows in a level are distributed in a block fashion to different
threads that will perform the computation on those rows. This simple set up
allows us to easily control the factor of data locality. We experiment on a range
of different size matrices and run our experiments on one, two, and four threads
to study the scalability of the algorithm variants.

We have performed these experiments on two different multi-core systems.
The first system is an Intel Nehalem system running Linux with a two socket
motherboard with 2.93 GHz quad-core Intel Xeon processors for a total of 8
cores. Intel’s Turbo Boost Technology is turned off on this system, so two threads
should run at the same clock speed as one thread. The second system is an AMD
Istanbul system running Linux with a two socket motherboard with 2.6 GHz six-
core AMD Opteron processors for a total of 12 cores.

3.1 Barriers

First, we compare the results for the different types of barriers. Figures 3 and
4 show results for the triangular solves on the good data locality matrices of
various sizes when the thread affinity is set. For the Nehalem system, we show
results for 2, 4, and 8 threads. For the Istanbul system, we show results for 2, 6,



and 12 threads. Parallel speedups are presented for both the active and passive
barrier variants.

For both the Nehalem and the Istanbul systems, it is clear that the active
barrier is necessary to obtain good scalability, especially for the smaller sized
matrices and runs with many threads. Figure 5 shows a runtime comparison of
the two implementations using different barriers for two of the matrices (bad
data locality and thread affinity on) for 1, 2, and 4 threads. It is clear from both
the Nehalem and Istanbul plots that having an active barrier is important for
scalability.

Fig. 3. Effects of different barriers on Nehalem system: thread affinity on, good data
locality. Speedups for passive barrier (PB) and active barrier (AB) for 2, 4, and 8
threads.

Fig. 4. Effects of different barriers on Istanbul system: thread affinity on, good data
locality. Speedups for passive barrier (PB) and active barrier (AB) for 2, 6, and 12
threads.

3.2 Thread affinity

Next, we examine the effects of thread affinity on the scalability of our triangular
solve algorithm. Figures 6 and 7 show results for the triangular solves on the



(a) Nehalem (b) Istanbul

Fig. 5. Effects of different barriers: sizes 5000 and 10000, thread affinity on, bad data
locality. Runtimes for passive barrier (PB) and active barrier (AB).

good data locality matrices of various sizes with the active barrier. For both
the Nehalem and the Istanbul systems, it is clear that the thread affinity is not
as important of a factor in scalability as the barrier type. However, for some
of the smaller data sizes, setting the thread affinity does seem to improve the
scalability. Figure 8 shows the runtimes for two matrices (bad data locality and
active barrier) with thread affinity on or off for 1, 2, and 4 threads. It seems that
thread affinity is somewhat important for these problem sizes, especially on the
Nehalem system.

Fig. 6. Effects of binding threads to cores by setting thread affinity on Nehalem system:
active barrier, good data locality. Speedups for algorithm when setting thread affinity
(TA) and not setting thread affinity (NTA) for 2, 4, and 8 threads.

3.3 Data locality

Finally, we examine the impact of data locality on the scalability of the triangular
solves. Figure 9 shows a comparison between the results of the two different types
of matrices (one with good locality and the other with bad data locality) of size



Fig. 7. Effects of binding threads to cores by setting thread affinity on Istanbul system:
active barrier, good data locality. Speedups for algorithm when setting thread affinity
(TA) and not setting thread affinity (NTA) for 2, 6, and 12 threads.

(a) Nehalem (b) Istanbul

Fig. 8. Effects of setting thread affinity: sizes 5000 and 10000, active barrier, bad data
locality. Runtimes for setting thread afinity (TA) and not setting thread affinity.

50000 and 100000 rows. We see basically no difference for these types of matrices
for Nehalem and only a very slight difference for Istanbul. The results for these
two sizes was typically of what we observed overall.

3.4 More realistic problems

In the previous subsections, we solved triangular systems for a very specific set
of matrices. These matrices were designed to have a specific structure that al-
lowed us to study the importance of data locality in a very simple environment.
These matrices were sufficient to get a good handle of the factors affecting per-
formance in an ideal scenario. In this subsection, we study the impact of barrier
type and thread affinity in more realistic situation, solving triangular systems
resulting from four symmetric matrices obtained from the University of Florida
Sparse Matrix Collection [8]. These four matrices are shown in Table 1 with
their respective number of rows, number of nonzeros, and application areas. We
generalized the prototype solver used in the previous subsections to calculate



(a) Nehalem (b) Istanbul

Fig. 9. Effects of data locality: active barrier, thread affinity on. Runtimes for good
and bad data locality matrices (sizes 50000 and 100000).

level sets, permute the matrices, and solve the triangular system for any lower
triangular system.

Table 1. Symmetric Matrix Info

Name N nnz N/nlevels application area

asic680ks 682,712 2,329,176 13932.9 circuit simulation
cage12 130,228 2,032,536 1973.2 DNA electrophoresis

pkustk04 55,590 4,218,660 149.4 structural engineering
bcsstk32 44,609 2,014,701 15.1 structural engineering

We take the lower triangular part of the matrices shown in Table 1 to be our
lower triangular matrices (i.e., zero fill incomplete factorizations). The fourth
column of Table 1 gives the average number of rows per level for the level-sets
determined from the lower triangular part of these matrices. We picked these
four matrices deliberately to cover a range for this statistic. As we did with the
simple matrices of the previous subsections, we compare the results for the active
and passive barrier variants. Figures 10 and 11 show results for the triangular
solves when the thread affinity is set, comparing the two barrier types.

Again we see for both the Nehalem and the Istanbul systems that the active
barrier is necessary to obtain good scalability. The difference is particularly strik-
ing for the larger numbers of threads. As expected, the solves scaled better when
the matrices had large numbers of rows per level. In particular, the asic680ks
and cage12 matrices, which had the largest numbers of rows per level, scaled
very well (especially on the Istanbul architecture). However, the bcsstk32 ma-
trix, which had approximately 15.1 rows per level, actually required more run-
time as the number of threads increased. This is not too surprising since with an



Fig. 10. Application matrices. Effects of different barriers on Nehalem system: thread
affinity on. Speedups for passive barrier (PB) and active barrier (AB) for 2, 4, and 8
threads.

Fig. 11. Application matrices. Effects of different barriers on Istanbul system: thread
affinity on. Speedups for passive barrier (PB) and active barrier (AB) for 2, 6, and 12
threads.

average of 15.1 rows per level, many levels would not have one row per thread,
let alone provide enough work to amortize the cost of the synchronization step.

Again, we examine the effects of thread affinity on the scalability of our
triangular solve algorithm. Figures 12 and 13 show results for the triangular
solves for these more realistic matrices with the active barrier. For both the
Nehalem and the Istanbul systems, it is clear that the thread affinity is not as
important of a factor in scalability as the barrier type. For several problems, we
see a slight increase in speedup when thread affinity is on. However, there are
several counter examples where the speedup slightly decreases.

4 Summary and Conclusions

In pursuit of more scalable solvers that scale to hundreds of thousands of compu-
tational cores on multi-core architectures, we are researching hybrid MPI/threaded
algorithms that should lower iterations counts by reducing the number of MPI
tasks (and subdomains). An essential part of these algorithms are scalable threaded
numerical kernels such as the triangular solver on which we focused. We exam-
ined three different factors that affect the performance of the threaded level-set
triangular solver. Of these three factors, the barrier type was shown to have the
most impact, with an active barrier greatly increasing the parallel performance



Fig. 12. Application matrices. Effects of binding threads to cores by setting thread
affinity on Nehalem system: active barrier. Speedups for algorithm when setting thread
affinity (TA) and not setting thread affinity (NTA) for 2, 4, and 8 threads.

Fig. 13. Application matrices. Effects of binding threads to cores by setting thread
affinity on Istanbul system: active barrier. Speedups for algorithm when setting thread
affinity (TA) and not setting thread affinity (NTA) for 2, 6, and 12 threads.

when compared to a more passive barrier. Although it is not always be possible
(e.g., if additional computation takes place on the same cores concurrently), we
advocate using as aggressive of a barrier as possible in this type of algorithm.
Our results showed that binding the threads to processor cores had less impact
than the barrier type. However, it did improve the performance for some cases
and may be a reasonable approach to take for multithreaded numerical kernels
where the number of active threads is not more than the number of computa-
tional cores. With an active barrier and thread binding to cores, we were able
to achieve excellent parallel performance for a range of matrix sizes for the ideal
matrices as well as three of the four more realistic matrices that we studied.

We also examined the impact of data locality on the scalability of the trian-
gular solves, comparing a matrices with good and bad data locality. It is unclear
from our results whether data locality is an important factor in the parallel per-
formance. It is possible that our bad data locality matrices do not have poor
enough data locality to see a very large effect. It is also possible that our matri-
ces are too sparse and that we would see more of an effect for denser matrices.
But perhaps the memory systems are too fast for the locality of the data in these
sparse matrix triangular solves to greatly impact the scalability of the algorithm.



If the data locality becomes an issue more general classes of triangular matrices,
we would need to explore ordering techniques to mitigate this problem.

Of more importance was the sparsity structure of the matrices and how this
sparsity translated into level-sets. This was apparent in our study that utilized
symmetric matrices obtained from various application areas. We saw a strong
correlation between parallel performance of our multithreaded triangular solver
and the average number of rows per level in the level-set permuted matrices.
The matrix obtained from the bcsstk32 matrix resulted in only 15.1 rows per
level. The solution of these system actually slowed down as threads were added.
The lower triangular part of a tridiagonal matrix would be the worse case with
a linear DAG and only 1 row per level. Clearly for these types of matrices, the
level-set method is not scalable. Perhaps a feasible approach is to calculate this
statistic in the DAG analysis phase to determine whether or not to use the
level-set algorithm.
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