
The Impact of Two-dimensional Block Cyclic
Distribution in Accuracy and Performance of

Parallel Linear Algebra Subroutines

Mariana Kolberg1,2, Björn Rocker3 and Vincent Heuveline3

1 Universidade Luterana do Brasil
Av. Farroupilha 8001 Prédio 14, sala 122

Canoas/RS, 92425-900 - Brasil
mariana.kolberg@ulbra.br

2 Pontificia Universidade Católica do Rio Grande do Sul
Av. Ipiranga, 6681 - Prédio 32

Porto Alegre/RS, 90619-900, Brazil
mariana.kolberg@pucrs.br

3 Karlsruhe Institute of Technology (KIT)
Institute for Applied and Numerical Mathematics 4

Fritz-Erler-Str. 23
71633 Karlsruhe, Germany

{bjoern.rocker, vincent.heuveline}@kit.edu

Abstract. In parallel computing the data distribution may have a sig-
nificant impact in the application performance and accuracy. These ef-
fects can be observed using the parallel matrix-vector multiplication rou-
tine from PBLAS with different grid configuration for the data distribu-
tions. Matrix-vector multiplication is an especially important operation
once it is widely used in numerical simulation (e.g., iterative solvers for
linear systems of equations).
This paper presents a mathematical background of error propagation in
elementary operations and proposes benchmarks to show how different
grids configuration on two dimensional cyclic block distribution impacts
on accuracy and performance using parallel matrix-vector operations.
The experimental results validate the theoretical findings.

1 Introduction

In many numerical algorithms, problems are reduced to a linear system of equa-
tions. Therefore, solving systems like Ax = b with a matrix A ∈ Rn×n and a
right hand side b ∈ Rn is essential in numerical analysis. There are two major
ways of solving those systems: by direct solvers, which are mainly based on the
Gaussian algorithm, or by iterative solvers which are often based on projections.
The second type usually contains one multiplication of a matrix with a vector in
each iteration step. Therefore the precision of such matrix-vector multiplication
has a significant impact on the convergence of the iterative solver [3].

In a computer, each mathematical operation is computed using floating point
arithmetics. However, the finite floating-point arithmetic can only deliver an

approximation of the exact result due to rounding errors. Since the exact result
is usually unknown, it is sometimes difficult to measure the quality of these
approximations. Besides, as a result of several operations, the accumulation of
those errors may have an impact in the accuracy of the results.

There are many papers proposing different solutions to find more accurate
results. Some authors concern is to improve the numerical accuracy of the com-
puted results in computers through the use of extra precise iterative refine-
ment [4, 5]. Others try to use mixed-precision algorithms [8, 12] to obtain a good
accuracy and improve the performance. Another possible way to deal with this
unreliability is to use verified computing [9]. Such techniques provide an interval
result that surely contains the correct result [10, 11]. However, the use of such
methods may increase the execution time significantly. This effect is even worse
for large linear systems, that may need several days or even more to be solved.
Based on these researches, it is possible to notice that there is a tradeoff perfor-
mance versus accuracy. Usually to be able to obtain more accurate results, it is
possible to notice a loss of performance.

Parallel computing is a well-known choice for simulating large problems. Since
many numerical problems are solved via a large linear system of equations, a par-
allel algorithm would be a good approach. In this context, the libraries BLAS [2]
and LAPACK [13] seem a good choice, since they have a parallel version (PBLAS
and SCALAPACK [1]) that could be used in the case of very large systems. How-
ever, it is important to remember that these libraries provide an approximation
of the correct result and not a verified result.

It is well known that the data distribution has a major impact in the per-
formance of a parallel application [1]. However, the data distribution can also
present an important influence on the accuracy of the numerical results. Some-
times a fixed problem can lead to distinct solutions depending on the data dis-
tribution or the number of processes used in its solution. This effect can possibly
be explained by the rounding error theory [14].

Based on that, this paper investigates the impact of different grids config-
uration used in the two-dimensional block cyclic distribution on the accuracy
and performance of the parallel matrix-vector multiplication implemented by
PBLAS. This particular distribution was chosen since it was proved to be a
good choice for parallel matrix distribution on parallel environments with dis-
tributed memory [6]. Other interesting data distribution was proposed in [7],
however it is also based on block distribution and was consider equivalent to the
two-dimensional block cyclic distribution [15].

In this paper, the performance of different grids configuration was measured
and compared among them. To evaluate the accuracy of the approximations
generated by PBLAS, a comparison with the verified solution provided by C-
XSC [10] is done. The experimental results indicate how the grids should be
configured to find a compromise between accuracy and performance considering
the application needs.

This text is organized as follows. To better understand this problem, section 2
presents two important backgrounds: the theory of rounding errors and the two-

dimensional block cyclic distribution scheme. Section 3 introduces the platform,
input data and results obtained in the numerical experiments. Finally, section 4
present some final remarks and considerations about future work.

2 Background
This section presents the theoretical background concerning rounding errors,
based on a paper of Linz [14], and the two-dimensional block cyclic distribution
used by PBLAS.

2.1 Theory of rounding errors

Let ε be the machine accuracy and fl(a ◦ b) the floating point result for an
elementary composition of two real numbers a and b. An elementary operation
◦ ∈ {+,−, ∗, /} of a and b can be estimated with fl(a ◦ b) = (a ◦ b) + ε(a, b, ◦)
for the worst case. We assume A ∈ Rn×n, x, y ∈ Rn and get yk = akx as result
for the product Ax = y for every entry yk ∈ y. Let ak denote the k − th row of
A. For all yk, the approximation using the floating point arithmetic is ŷk.

Simple approach The simple strategy for computing each yk ∈ y is to add
the first entry to the next one and then add the following entries one by one to
the previous result. Using floating point arithmetic and the abbreviation fl(ak,i ·
xi) = ak,i · xi + ε(ak,i, xi, ·) =: b̂k,i, this strategy can be written as follows:

ŷk1 := (b̂k,1 + b̂k,2) + ε1

ŷki := ŷki−1 + b̂k,i + εi = yki +
i∑

j=1

εj , i ∈ {2, 3, . . . n− 1}

Let the representation be the normalized floating-point with binary exponent
and q fraction bits and assume the addition to be done by truncating the exact
sum to q bits. Let pi be the exponent of ŷki and ν = 2−q. The error for the ith
step is then |εi| ≤ ν2pi and the global error can be written using the estimates
ak,ixi ≤ b, |ŷki | ≤ ib and 2pi ≤ 2ib in the following way

|yk − ŷk| ≤ ν
n−1∑
i=1

2pi ≤ 2νb
n∑
i=1

i = νbn(n+ 1).

This means the error using this approach grows like O(n2).

Advanced approach The second strategy for the summation is the so called
”Fan-In” algorithm. The values are added to each other in pairs and the algo-
rithm is then executed recursively. Let us define the notation

yk = ak,1x1 + ak,2x2︸ ︷︷ ︸
ŷn1,1

+ ak,3x3 + ak,4x4+︸ ︷︷ ︸
ŷn2,1︸ ︷︷ ︸

ŷn1,2

. . .+ ak,nxn

︸ ︷︷ ︸
ŷn1,m

and

ŷki,j = ŷk2i−1,j−1 + ŷk2i,j−1 + εi,j

where εi,j is the rounding error when computing ŷki,j . For the global error we
have

|yk − ŷk| =
∑
σ1,k

εi,j ≤ ν
∑
σ1,k

2pσ1,k

where p is the exponent of the result and σ1,k is the set of all index pairs needed
to get ŷki,j . Assuming that ak,ixi ≤ b, we have:

ŷki,j ≤ 2jb and 2pi,j ≤ 2j+1b.

Based on that, the error upper bound can be estimated by

|yn − ŷk| ≤ ν
∑
σ1,k

2pσ1,k ≤ 2νb
k∑
j=1

n/2j∑
i=1

2j = 2νbkn ≤ 2νb n log2 n.

For the advanced approach the error grows like O(n log2 n). The proof can be
extended to cases in which more than two entries are added to each other using
the ”Fan-In”-algorithm. In that case, the error propagations is bounded by the
one presented by the strategies above.

The two approaches differ in a factor of n/(2 log2 n). This study suggests
that a finer granularity in the summation leads to lower upper boundaries for
rounding errors. The proofs presented above show the impact of rounding errors
in scalar products, which are commonly part of matrix-vector multiplications.

2.2 Data distribution in numerical algorithms

On distributed memory platforms, the application programmer is responsible
for assigning the data to each processor. How this is done has a major impact
on the load balance and communication characteristics of the algorithm, and
largely determines its performance and scalability [1].

PBLAS routines are implemented supposing the matrices are stored in the
distributed memory according to the two-dimensional block cyclic distribution [6].
In this distribution, an M by N matrix is first decomposed into MB by NB
blocks starting at its upper left corner. The distribution of a vector is done con-
sidering the vector as a column of the matrix. Suppose we have the following
10x10 matrix, a vector of length 10 an MB and NB equal 3. In this case, we
would have the following blocks:

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 A0,8 A0,9

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5 A4,6 A4,7 A4,8 A4,9

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5 A5,6 A5,7 A5,8 A5,9

A6,0 A6,1 A6,2 A6,3 A6,4 A6,5 A6,6 A6,7 A6,8 A6,9

A7,0 A7,1 A7,2 A7,3 A7,4 A7,5 A7,6 A7,7 A7,8 A7,9

A8,0 A8,1 A8,2 A8,3 A8,4 A8,5 A8,6 A8,7 A8,8 A8,9

A9,0 A9,1 A9,2 A9,3 A9,4 A9,5 A9,6 A9,7 A9,8 A9,9

b0
b1
b2
b3
b4
b5
b6
b7
b8
b9

Suppose we have 4 processors. The process grid would be a 2x2 grid as follows:(

P 0 P 1

P 2 P 3

)
These blocks are then uniformly distributed across the process grid. Thus, every
processor owns a collection of blocks [1]. The first row of blocks will be distributed
among the first row of the processor grid, that means among P0 and P1, while
the second row will be distributed among P2 and P3, and so on. For this example,
we would have:

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

P 0

P 2

P 0

P 2

According to this distribution, each processor would have the following data:

P 0 :

A0,0 A0,1 A0,2 A0,6 A0,7 A0,8

A1,0 A1,1 A1,2 A1,6 A1,7 A1,8

A2,0 A2,1 A2,2 A2,6 A2,7 A2,8

A6,0 A6,1 A6,2 A6,6 A6,7 A6,8

A7,0 A7,1 A7,2 A7,6 A7,7 A7,8

A8,0 A8,1 A8,2 A8,6 A8,7 A8,8

b0
b1
b2
b6
b7
b8

P 1 :

A0,3 A0,4 A0,5 A0,9

A1,3 A1,4 A1,5 A1,9

A2,3 A2,4 A2,5 A2,9

A6,3 A6,4 A6,5 A6,9

A7,3 A7,4 A7,5 A7,9

A8,3 A8,4 A8,5 A8,9

P 2 :

A3,0 A3,1 A3,2 A3,6 A3,7 A3,8

A4,0 A4,1 A4,2 A4,6 A4,7 A4,8

A5,0 A5,1 A5,2 A5,6 A5,7 A5,8

A9,0 A9,1 A9,2 A9,6 A9,7 A9,8

b3
b4
b5
b9

 P 3 :

A3,3 A3,4 A3,5 A3,9

A4,3 A4,4 A4,5 A4,9

A5,3 A5,4 A5,5 A5,9

A9,3 A9,4 A9,5 A9,9

The two dimensional block cyclic distribution is usually not used when the matrix
has a sparse data structure. Common storage formats, like CRS (compressed row
storage), CCS (compressed column storage) etc., usually lead to distributions
where a certain number of rows or columns are given to each process. The CRS
presents a row-wise data distribution, that could be seen as a np × 1 grid of
processes in the two dimensional block cyclic distribution. In the same way, a
1× np grid could be interpreted as a column wise distribution, e.g. similar to a
strategy taken when the CCS is used.

From the mathematical theory it is clear that the upper bound for the round-
ing errors occurring in a sparse matrix vector multiplication increases with the
number of nonzero elements (nnz) per row. In the proof presented in the last
subsection, the variable n should be replaced with nnz, assuming that the matrix
data is sparse and the vector data has O(n) entries.

It is important to mention that, for a matrix vector multiplication, no benefit
in accuracy can be expected due to parallelization when this is done based on a
row-wise data distribution and assuming that the sequential part on each process
does not use techniques like “fan-in”.

3 Numerical experiments

This section presents experimental results for different grid compositions. The
accuracy and performance are the focus of these tests.

For our experiments we compute the results of the considered matrix-vector
multiplication using first the sequential BLAS-routines to obtain the sequential
time. After this sequential test, we use the PBLAS-routines from the MKL pack-
age for different grid compositions. All results have been computed three times
to avoid effects caused by hard- and software problems.

Aiming to be able to analyze the accuracy obtained by the parallel implemen-
tation, a comparison with a verified result is done to evaluate which grid presents
the best accuracy among the tested grids. The library used to obtain the verified
result was C-XSC, which stands for “extension for scientific computing”, and
is a free programming tool for the development of numerical algorithms which
provides highly accurate and automatically verified results. C-XSC does compu-
tations based on interval arithmetics and direct rounding, providing an enclosure
of the exact solution, which is represented by an interval. This means that for
a matrix-vector multiplication, C-XSC will deliver a vector of intervals, each
entry of the vector containing an interval enclosure of the correct solution. The
diameter of the intervals is usually very small, since C-XSC implementation uses
techniques to iteratively reduce the interval diameter proofing that the interval
includes the exact result [10].

The average error from the pblas result to the C-XSC result is computed as
follows. First, for each component of the result vector it is checked if it is in
the interior of the interval given from C-XSC. If it is inside the interval, it is
considered correct. If it is not inside, the distance to the interval is stored. Then
the arithmetic mean over all distances is computed, which we denote as average
error.

Next section introduces the platform used for the experiments. Section 3.2
illustrates the input data of four different matrices used in the tests. Finally
section 3.3 presents the accuracy and performance results with some considera-
tions.

3.1 Platform

The software platform adopted for our numerical experiments is composed of
optimized versions of the library PBLAS (Intel CMKL in version 10.0.2.018
for test case M1 and version 10.1.2.024 for the test cases M2, M3 and M4),
C-XSC version 2.2.3 and the standard Message Passing Interface (MPI), more
specifically the OpenMPI implementation in version 1.2.8. The compiler was the
Intel compiler in version 10.1.021.

The hardware platform is the Institutscluster located at the SCC at the
Karlsruhe Institut for Technology (KIT). The cluster consists of 200 computing
nodes each equipped with two Intel quadcore EM64T Xeon 5355 processors
running at 2,667 GHZ, 16 GB of main memory and an Infiniband 4x DDR
interconnect. The overall peak performance of the whole system is about 17,57
TFlops and 15,2 TFlops in the Linpack benchmark.

3.2 Input data

The results shown in Section 3.3 refer to four different input matrices and vectors.
The first test matrix, called M1, is of dimension 16000 and filled with pseudo
random numbers from the interval [−0, 5; 0.5] and its properties can be seen in
table 1. This matrix data needs 2048 MB to be stored.

M1 (Random) M2 (GEMAT11)

problem: Artificial
problem size: n = 16000
sparsity: nnz = 256000000
cond. number: n.a.
Frobenius norm: n.a.

problem: Power flow.
problem size: n = 4929
sparsity: nnz = 33185
cond. number: 3.74e+08
Frobenius norm: 8.2e+02

Table 1. Sparsity plots and properties of the test-matrices M1 and M2

The test cases M2 to M4, and more detailed information about their creation
and properties, can be found on the Matrix Market4.

M2 is a square matrix with dimension 4929, that is used as the initial basis for
constrained nonlinear optimization problem represented by GEMAT1 which is
the Jacobian matrix for an approximately 2400 bus system in the Western United
States. M2 is a sparse matrix with a medium condition number, as presented
in Table 1. It is important to mention that no special data storage is used for
sparse matrices. They are always stored as dense matrices.

The third matrix tested was M3. As shows Table 2, it is a dense matrix with
dimension 66. This matrix is used in the generalized eigenvalue problem Kx =
λMx, where M3 is matrix K and matrix M is BCSSTM02 4, from BCSSTRUC14

set. This matrix is used in dynamic analysis in structural engineering.

M3 (BCSSTK02)) M4 (MCFE))

problem: Structural eng.
problem size: n = 66
sparsity: nnz = 2211
cond. number: 1.3e+04
Frobenius norm: 5.3e+04

problem: Astrophysics
problem size: n = 765
sparsity: nnz = 24382
cond. number: 1.7e+14
Frobenius norm: 2e+17

Table 2. Sparsity plots and properties of the test-matrices M3 and M4

Table 2 also presents the properties of matrix M4. It is a sparse matrix with
dimension 765, and presents a very high condition number. This matrix is used
in the real application of nonlinear radiative transfer and statistical equilibrium
in astrophysics.

3.3 Numerical results

This section discusses the results of a set of experiments using the four different
matrices presented in the previous section. The first analysis is based on the ac-
curacy obtained using different grid sizes. After that, the results of performance
are shown.

4 http://math.nist.gov/MatrixMarket

Accuracy The accuracy for nine processes and different grids for test case M1
and M2 is presented in Figure 1. The comparison between our PBLAS algorithm
and the verified results of the C-XSC-algorithm show that there are constella-
tions of grid processors, namely when the grid is np× 1, where the accuracy of
the parallel computation is as precise as the sequential one. In all other cases,
that is when the grid of processors is not np × 1, the results present a better
accuracy, suggesting that the accuracy depends on the grid. The optimal accu-
racy for a fixed number of processes can be found by a 1 × np grid. In general
we observed that the more columns the processes grid have, the better is the
accuracy.

Fig. 1. Average error to the verified result for three different grids of processes and a
fixed number of nine processes for the test cases M1 (left plot) and M2 (right plot).

Let us investigate our example in the light of Section 2.1 using, for simplicity,
a number of four processes. Let the dimension of the matrix be n, the number of
processes np = 4, the grid of the processes nr × nc and the block size nb := n

np .
Then for the case of an 2×2 grid of processes, the distribution follows the scheme
in the example in section 2.2. For a 1× 4 and 4× 1 grid, let us use the notation
P aBc, where a (from 1 to np) represents the number of the processes containing
the data, B denotes if it is a matrix(M) or a vector(v) and c is the number of
the data block related to one processor. The data distribution is as presented in
tables 3 and 4.

Analyzing table 3 and 4, it is possible to notice that in the computation based
on a np×1 grid, each entry of the result vector is computed in just one different
process, which means that the summation is done like in the simple approach
from Section 2.1.

P 0
M0 P 1

M0 P 2
M0 P 3

M0

P 0
M1 P 1

M1 P 2
M1 P 3

M1

P 0
M2 P 1

M2 P 2
M2 P 3

M2

P 0
M3 P 1

M3 P 2
M3 P 3

M3

P 0
v0

P 0
v1

P 0
v2

P 0
v3

P 0
M0 P 0

M1 P 0
M2 P 0

M3

P 1
M0 P 1

M1 P 1
M2 P 1

M3

P 2
M0 P 2

M1 P 2
M2 P 2

M3

P 3
M0 P 3

M1 P 3
M2 P 3

M3

P 0
v0

P 1
v0

P 2
v0

P 3
v0

(a) Grid (1× 4) (b) Grid (4× 1)

Table 3. Data distribution for two different grids of four processes

The structure of the result distribution is shown bellow. The leading entry is
the position of the resulting vector, followed by the explanation of which parts
were combined to compute the result:

P 0(P 0
M0P

0
v0 + P 1

M0P
0
v1 + P 2

M0P
0
v2 + P 3

M0P
0
v3)

P 0(P 0
M1P

0
v0 + P 1

M1P
0
v1 + P 2

M1P
0
v2 + P 3

M1P
0
v3)

P 0(P 0
M2P

0
v0 + P 1

M2P
0
v1 + P 2

M2P
0
v2 + P 3

M2P
0
v3)

P 0(P 0
M3P

0
v0 + P 1

M3P
0
v1 + P 2

M3P
0
v2 + P 3

M3P
0
v3)

P 0(P 0
M0P

0
v0 + P 0

M1P
1
v0 + P 0

M2P
2
v0 + P 0

M3P
3
v0)

P 1(P 1
M1P

0
v0 + P 1

M1P
1
v0 + P 1

M1P
2
v0 + P 1

M1P
3
v0)

P 2(P 2
M2P

0
v0 + P 2

M2P
1
v0 + P 2

M2P
2
v0 + P 2

M2P
3
v0)

P 3(P 3
M0P

0
v0 + P 3

M1P
1
v0 + P 3

M2P
2
v0 + P 3

M3P
3
v0)

(a) Grid (1× 4) (b) Grid (4× 1)

Table 4. Processes which contain the final result and parts from which it is computed

The advanced approach can be seen by looking on the 1×np grid where the
final result will be placed on process one, but there are intermediate results on
every process leading to a higher quality in the computed result. This suggests
that the number of columns of the processor grid is responsible for the granularity
of the computation - a higher numbers of columns can lead to better accuracy. So
it is not astonishing that a symmetric grid produces results with an intermediate
precision (bounded by the other grids).

It is also possible to notice that the results for the application based problem
M2 show that for all grid sizes the average error is less than 2.58e− 16 which is
excellent considering the double precision format.

Figure 2 presents the average error for matrix M3 and M4. Based on the
M3 graphic, we can see that, even for small problems, the data distribution and
the inducted computations can have an impact on the result. The average error
to the verified result, depending on the grid configuration, differs in about one
magnitude.

Fig. 2. Average error to the verified result for three different grids of processes and a
fixed number of nine processes for the test cases M3 (left plot) and M4 (right plot).

For the test case M4 we observe that the 9× 1 grid delivers, analogue to all
other experiments, the most inaccurate result. The fact that the 3× 3 grid is a
little more accurate than the 1 × 9 grid might be astonishing on the first view
but this is possible because the mathematical theory gives only a upper bound
for the rounding error propagation.

Fig. 3. Average error to the verified result for different grids and different numbers of
processes. A matrix similar to M1 but with dimension 8192 was taken for the experi-
ments.

The results in Figure 3 show for different number of processes and grids of
processes the average error to the verified result based on a matrix with dimen-
sion 8192 and input data generated like in M1. For all grids np× 1 the accuracy
is like in the sequential case and independent of the number of processes. The
plot shows that the more processes are used the better is the result. It can be

seen that the larger the number of processes, the better is the accuracy, following
a logarithmic behavior, which corresponds to the theoretical findings.

Performance This section presents the performance analysis considering ma-
trix M1. The performance analysis for matrices 2 to 4 were not discussed since
they have small dimensions. In this case it is not worth to parallelize the multi-
plication, since the program would spend more time communicating among the
processors than computing the result. And it would maybe increase the compu-
tational time instead of speedup the computation. Since matrix 1 has dimension
16000, it is the natural choice for the performance test.

Figure 4 shows that directly interrelated to the grid is the processing speed.
It is possible to notice that the computational time for the same problem size is
very different depending on the grid.

Fig. 4. Commutation time for three different grids of processes and a fixed number of
nine processes for the test case M1.

This performance variation can be explained by the fact that different grids
communicate differently. The amount, length and topology of such communica-
tion have a significant impact on the performance [6]. In Table 3 is possible to
notice that some of the data that a processes need may be stored in another pro-
cesses, and therefore the processes need to communicate before the computation
to send/receive parts these data. This occurs also after the computation, when
parts of the result have to be collected from each processor and accumulates so
that we found the result. This necessity can be seen in Table 4, for the 1 × 4
grid.

The communication load-balance is optimal if it is equally distributed on all
processes. The impact on the performance depends significantly on the under-
lying hardware (interconnect, memory bandwidth etc.). This means that not a
single process is sending or receiving a big bunch of data to all other processes,
but that all processes are sending little bunches of data to all other processes.
The data has to be divided equally among all processes.

For the grids shown above, the structure of the communication is:

(a) Grid (1× 4)
before computation after computation

sender → receiver length sender → receiver length
P 0 → P 1 nb P 1 → P 0 n
P 0 → P 2 nb P 2 → P 0 n
P 0 → P 3 nb P 3 → P 0 n

(b) Grid (4× 1)
before computation after computation

sender → receiver length sender → receiver length
P 0 → P 1 nb −
P 0 → P 2 nb −
P 0 → P 3 nb −
P 1 → P 0 nb −
P 1 → P 2 nb −
P 1 → P 3 nb −
P 2 → P 0 nb −
P 2 → P 1 nb −
P 2 → P 3 nb −
P 3 → P 0 nb −
P 3 → P 1 nb −
P 3 → P 2 nb −

(c) Grid (2× 2)
before computation after computation

sender → receiver length sender → receiver length
P 0 → P 2 2 ∗ nb P 1 → P 0 n/2
P 2 → P 1 2 ∗ nb P 3 → P 2 n/2
P 2 → P 3 2 ∗ nb

4 Final Remarks and Future Work

This paper presents benchmarks to analyze the influence of the process-grid using
the two-dimensional block cyclic distribution on performance and accuracy. Tests
show that the process-grid has a significant impact on both, but in a different
way. The experiments suggested that the more columns the grid has, the better
is the accuracy. However, this is not true for the performance, in which the effect
is the opposite: the more columns the grid has, the worse is the performance. For
symmetric grids, we found a good performance, due to a better balance in the
communication process, with a little less accuracy. These aspects were validated
through the theory of rounding error and many experiments.

As a future work, more tests should be performed, considering different li-
braries and self coded implementations of PBLAS routines. Some testes concern-
ing the hardware platforms (CPUs, GPUs and other accelerators) and compilers
are also planned.

In addition, more experiments in the context of complete solvers should be
performed. The idea is to present a strategy that use the influence of the load
balance among the processes as a guide to find a compromise between accuracy
and performance. This compromise will depend on the application needs.

References

1. L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scalapack:
A portable linear algebra library for distributed memory computers Design Issues
And Performance. In SUPERCOMPUTING ’96. IEEE Computer Society, 1996.

2. L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C.
Whaley. An Updated Set of Basic Linear Algebra Subprograms (BLAS). ACM
Transactions on Mathematical Software, 28(2):135–151, 2002.

3. James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable.
Numer. Math., 108(1):59–91, 2007.

4. James Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and
E. Jason Riedy. Error bounds from extra-precise iterative refinement. ACM Trans.
Math. Softw., 32(2):325–351, 2006.

5. Jim Demmel and Jack Dongarra. LAPACK 2005 prospectus: Reliable and scal-
able software for linear algebra computations on high end computers. LAPACK
Working Note 164, February 2005. UT-CS-05-546, February 2005.

6. J. Dongarra and D. Walker. Lapack working note 58: The design of linear alge-
bra libraries for high performance computers. Technical Report UT-CS-93-188,
Knoxville, TN, USA, 1993.

7. Carter Edwards, Po Geng, Abani Patra, and Robert Van De Geijn. Parallel matrix
distributions: Have we been doing it all wrong?, 1996.

8. L. Giraud, A. Haidar, and L. T. Watson. Mixed-precision preconditioners in par-
allel domain decomposition solvers. Technical Report TR/PA/06/84, CERFACS,
Toulouse, France, 2006. Also appeared as IRIT Technical report ENSEEIHT-IRIT
RT/APO/06/08.

9. R. Hammer, D. Ratz, U. Kulisch, and M. Hocks. C++ Toolbox for Verified Scien-
tific Computing I: Basic Numerical Problems. Springer-Verlag New York, Secaucus,
NJ, USA, 1997.

10. R. Klatte, U. Kulisch, C. Lawo, R. Rauch, and A. Wiethoff. C-XSC- A C++ Class
Library for Extended Scientific Computing. Springer-Verlag Berlin, 1993.

11. U. Kulisch. and W. L. Miranker. Computer Arithmetic in Theory and Practice.
Academic Press, New York, 1981.

12. Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and
Jack Dongarra. Exploiting the performance of 32 bit floating point arithmetic in
obtaining 64 bit accuracy (revisiting iterative refinement for linear systems). In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page
113, New York, NY, USA, 2006. ACM.

13. LAPACK. Linear Algebra Package. http://www.cs.colorado.edu/ jessup/lapack/.
visited in 09th February 2009.

14. Peter Linz. Accurate floating-point summation. Commun. ACM, 13(6):361–362,
1970.

15. Majed Sidani and Bill Harrod. Parallel matrix distributions: Have we been doing
it all right? Technical report, Knoxville, TN, USA, 1996.

