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t. Spe
tral Clustering is one of the most important methodbased on spa
e dimension redu
tion used in Pattern Re
ognition. Thismethod 
onsists in sele
ting dominant eigenve
tors of a matrix 
alleda�nity matrix in order to de�ne a low-dimensional data spa
e in whi
hdata points are easy to 
luster. By exploiting properties of Spe
tral Clus-tering, we propose a method where we apply independently the algorithmon parti
ular subdomains and gather the results to determine a globalpartition. Additionally, with a 
riterion for determining the number of
lusters, the domain de
omposition strategy for parallel spe
tral 
luster-ing is robust and e�
ient.1 Introdu
tionClustering aims to partition a data set by grouping similar elements into sub-sets. Two general main issues 
on
ern, on the one hand, the 
hoi
e of a sim-ilarity 
riterion and, on the other hand, the way to separate 
lusters the onefrom the other. Spe
tral methods, and in parti
ular the spe
tral 
lustering al-gorithm introdu
ed by Ng-Jordan-Weiss (NJW) [1℄, are useful when 
onsideringnon-
onvex shaped subsets of points. These methods are widely used in PatternRe
ognition and in parti
ular in Bioinformati
s and image segmentation. Thenumber of targeted 
lusters k is usually assumed to be known. From the spe
-tral elements of an a�nity normalized matrix, data points are 
lustered in alow-dimensionnal spa
e made by the �rst eigenve
tors of the normalized a�nitymatrix. Several approa
hes about parallel Spe
tral Clustering [5℄, [6℄, [2℄ werere
ently suggested, mainly fo
used on linear algebra te
hniques to redu
e 
om-putational 
osts. However, the authors do not get rid of the 
onstru
tion of the
omplete a�nity matrix and the problem of determining the number of 
lustersis still open.In this paper, we propose to 
luster on subdomains by breaking up the dataset into data subsets with respe
t to their geometri
al 
oordinates in a straigh-forward way. With an appropriate Gaussian a�nity parameter and a method todetermine the number of 
lusters, ea
h pro
essor applies independently the spe
-tral 
lustering algorithm on subsets of data points and provide a lo
al partitionon these data subsets. Based on these lo
al partitions, a gathering step ensures0 Candidate to the Best Student Paper Award



the 
onne
tion between subsets of data and determines a global partition. Weanalyze in parti
ular two di�erent approa
hes of the type and we experimenton a geometri
al parti
ular example and on an image segmentation example.We identify the potential for parallelism of the algorithm as well as numeri
albehaviour and limitations.2 Parallel Spe
tral Clustering: algorithm and justi�
ationSpe
tral 
lustering uses eigenve
tors of a matrix, 
alled Gaussian a�nity matrix,in order to de�ne a low-dimensional spa
e in whi
h data points 
an be 
lustered(see algorithm 1).Algorithm 1 Spe
tral Clustering AlgorithmInput: data set S, number of 
lusters k1. Form the a�nity matrix A ∈ R
n×n de�ned by:

Aij =

8

<

:

exp

„

−
‖xi−xj‖

2

σ/2

« if i 6= j,
0 otherwise, (1)2. Constru
t the normalized matrix: L = D−1/2AD−1/2 with Di,i =

Pn
j=1

Aij ,3. Assemble the matrix X = [X1X2..Xk] ∈ R
n×k by sta
king the eigenve
tors asso-
iated with the k largest eigenvalues of L,4. Form the matrix Y by normalizing ea
h row in the n × k matrix X,5. Treat ea
h row of Y as a point in R

k, and group them in k 
lusters via the K-meansmethod,6. Assign the original point xi to 
luster j when row i of matrix Y belongs to 
luster j.The Gaussian a�nity matrix de�ned by (1) 
ould be interpreted as a dis-
retization of the Heat kernel [3℄. And in parti
ular, it is shown in [8℄ that thismatrix is a dis
rete representation of the L2 heat operator onto appropriate 
on-ne
ted domains in R
p. Thanks to properties of the heat equation, eigenve
torsof this matrix are an asymptoti
al dis
rete representation of L2 eigenfun
tionswith support in
luded in only one 
onne
ted 
omponent.Clustering in subdomains resumes in restri
ting the support of these L2 par-ti
ular eigenfun
tions. Therefore, we 
an apply Spe
tral Clustering on subdo-mains to identify 
onne
ted 
omponents. The subdomains 
an be de�ned in astraightforward way by subdividing original data set a

ording to their geomet-ri
al 
oordinates and a partition 
an be extra
ted independently and in parallelfrom ea
h subset. Then, at the grouping level, spe
tral 
lustering algorithm ismade on a subset with geometri
al 
oordinates 
lose to the boundaries of theprevious subdomains. This partitionning will 
onne
t together 
lusters whi
h be-long to di�erent subdomains thanks to the transitive relation: ∀xi1 , xi2 , xi3 ∈ S,



if xi1 , xi2 ∈ C1 and xi2 , xi3 ∈ C2 then C1 ∪ C2 = P and xi1 , xi2 , xi3 ∈ P (2)where S is a data set, C1 and C2 two distin
t 
lusters and P a larger 
lusterwhi
h in
ludes both C1 and C2.Two main problems arise from this divide and 
onquer strategy: the di�
ultyto 
hoose a Gaussian a�nity parameter σ and the number of 
lusters k whi
hremains unknown and may even vary from one subdomain to the other. Wepropose two ways to over
ome these drawba
ks. In the following, let us 
onsidera p-dimensional data set S = {x1, .., xn} ⊂ R
p. In the next se
tion, we shalladdress the proper 
hoi
e of the parameter σ and in se
tion 2.2, we propose away to over
ome the problem of not knowing the number of 
lusters a priori.2.1 Choi
e of the a�nity parameter σThe Gaussian a�nity matrix (1) is widely used and depends on a free parameter

σ. It is known that this parameter a�e
ts the results in spe
tral 
lustering andspe
tral embedding. A global heuristi
 for this parameter was proposed in [4℄in whi
h both the dimension of the problem as well as the density of points inthe given p-th dimensional data set are integrated. With an assumption thatthe p-dimensionnal data set is isotropi
 enough, the data set S is in
luded ina p-dimensionnal box bounded by Dmax the largest distan
e between pairs ofpoints in S: Dmax = max1≤i,j≤n ‖xi − xj‖.So a referen
e distan
e noted σ 
ould be de�ned: this distan
e represents the
ase of an uniform distribution in the sense that all pair of points are separatedby the same distan
e σ in the box of edge size Dmax:
σ =

Dmax

n
1

p

. (3)From this de�nition, 
lusters may exist if there are points that are at a distan
eno more than a fra
tion of σ. We 
ould de�ne su
h parameter for ea
h subdomain.However, with a straighforward de
omposition as the one proposed, one 
an �ndeasily that a lo
al σ in ea
h subdomain will be 
lose to the value of a global σde�ned on the whole data set in the same way. This avoids lo
al 
omputations.However, this is not the 
ase for the interfa
e data set where a lo
al σ must be
onsidered. To 
on
lude, we only need to 
ompute two values of σ: one for theinterfa
e where the topology of the volume 
hanges drasti
ally, and one 
ommonto all the other "
ubi
" subdomains.2.2 Number of 
lusters kThe problemati
 of the right 
hoi
e of k is all the more a

urate that this numbermay vary from one subdomain to the other in su
h a domain de
ompositionstrategy. We therefore 
onsider in ea
h subdomain a quality measure based on



ratios of Frobenius norms, see for instan
e [4℄. For instan
e, after indexing datapoints by 
luster as followed, for k = 3:
L̂ =





L(11) L(12) L(13)

L(21) L(22) L(23)

L(31) L(32) L(33)



 ,the o�-diagonal blo
ks will represent the a�nity between 
lusters and the diag-onal ones the a�nity within 
lusters. The ratios between the Frobenius norm ofthe o�-diagonal blo
ks and that of the diagonal ones 
ould be evaluated:
rij =

‖L(ij)‖F

‖L(ii)‖F

.By de�nition, the appropriate number of 
lusters k 
orresponds to a situationwhere points whi
h belong to di�erent 
lusters have low a�nity between ea
hother whereas points in same 
lusters have higher a�nity. Among various valuesfor k, the �nal number of 
luster is de�ned so that the a�nity between 
lustersis the lowest and the a�nity within 
lusters is the highest as followed:
k = argmin

∑

i6=j

rij . (4)In Fig. 1, the ratio η =
∑

i6=j rij , fun
tion of the number of 
luster k, is plottedon two examples with various densities among 
lusters. The gap observed on theratio η between two 
onse
utive values of k indi
ates a strong 
hange in theaverage links between 
lusters.Moreoever, dividing the whole data set in subdomains may lead to situationsin whi
h a subdomain 
ontains only one 
luster. If the number of 
lusters k whi
hsatisfy (4) is equal to 2 in one subdomain, we then 
ompare the numerator ofratio η to its denominator. Based on a threshold β, if the ratio ‖L12‖F

‖L11‖F

is largerthan β, we set the value k to 1 instead of 2.3 Implementation: Algorithm 
omponentsWe shall now detail the di�erent steps, des
ribed in Fig. 2, of the algorithm withrespe
t to the strategy proposed previously.3.1 Pre-pro
essing step: Partition S in q subdomainsLet us in
lude all data points in a box of edge li for the ith-dimension, i =
{1, .., p} where:

li = max1<i1,i2≤n|xi1(i) − xi2(i)|, ∀i ∈ {1, .., p}. (5)A

ording to the maximum length on ea
h dimension, the box is divided in qsubboxes where q = Π
p
i=1qi and qi denotes the number of subdivisions on the

i-th dimension. Then, the a�nity parameter σ is 
omputed as indi
ated in (3).The number of pro
essors is �xed to nbproc = q + 1.
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Fig. 2. Prin
iple of parallel Spe
tral 
lustering for q = 2



3.2 Domain de
omposition: Interfa
e and subdomainsInterfa
e It in
ludes all points with a maximum norm distan
e to the bound-aries less than a given γ bandwidth. This interfa
e should help to re
onne
ttogether 
lusters with points in more than one subdomain. Pi
king up a band-width value γ = 3σ enables to group together points in the same 
luster. As theinterfa
e layer does not 
over the same volume as the other "
ubi
" subdomains,the isotropi
 assumption is not anymore satis�ed, and a parti
ular a�nity pa-rameter σ∗ must be 
onsidered. We therefore follow the same idea as in se
tion2.1 but with an adequate volume measure for the interfa
e:
σ∗ =

V ol(interface)

n
1

p

interfacewhere V ol(interface) represents the real volume of the interfa
e and ninterfacethe number of data points in the interfa
e. The volume of the interfa
e is fun
tionof bandwidth γ, the number of 
ut-size q and l1, ..lp the edges of the box in ea
hdire
tion as followed:
V ol(interface) =

p
∑

i=1

(qi − 1)γp−1li − γpΠ
p
i=1(qi − 1). (6)Subdomains Ea
h pro
essor from 1 to nbproc has a data subset Si, i =

1..nbproc whi
h 
oordinates are in
luded in a geometri
al subbox. The a�n-ity of all the subdomains have the same global parameter σ de�ned by (3).3.3 Spe
tral 
lustering on subdomainsSome elements of Algorithm 1 are now pre
ised.Computation of the spe
trum of the a�nity matrix (1) Classi
al rou-tines from LAPACK library [7℄ are used to 
ompute sele
ted eigenvalues andeigenve
tors of the normalized a�nity matrix A for ea
h subset of data points.Number of 
lusters The number of 
luster k is 
hosen to satisfy (4).Spe
tral embedding The 
enters for k-means in the spe
tral embedding areinitially 
hosen to be the furthest from ea
h other along a dire
tion.3.4 Grouping stepThe �nal partition is formed by grouping partitions from the nbproc − 1 inde-pendent spe
tral 
lustering analyses. The grouping is made with the interfa
e



partition and the transitive relation (2). If a point belongs to two di�erent 
lus-ters, both 
lusters are then in
luded in a larger one. As output of the parallelmethod, a partition of the whole data set S and the �nal number of 
lusters kare given.An example on how our method is applied on a target data set splitted in
q = 4 subboxes (see Fig. 3). On the left, the 
lustering result for the interfa
e isplotted. Ea
h 
olor represents a 
luster. On the right, the 
lustering results onthe 4 respe
tive subdomains are plotted.

Fig. 3. Target example: interfa
e and subdomains
4 Parallel experimentsAs numeri
al example, this parallel spe
tral 
lustering is tested on a 3D geomet-ri
al 
ase whi
h represents 2 non-
on
entri
 trun
ated spheri
al areas in
ludedin a larger one as shown in the left of Fig. 4. On the right of the same �gure, onezoom around ea
h in
luded trun
ated sphere is plotted. It shows the proximitybetween the small spheres and the big one.The numeri
al experiments were 
arried out on the Hyperion super
om-puter1. Hyperion is the latest super
omputer of the CICT (Centre Interuniver-sitaire de Cal
ul de Toulouse). With its 352 bi-Intel "Nehalem" EP quad-
orenodes it 
an develop a peak of 33TFlops. Ea
h node has 4.5 GB memory ded-i
ated for ea
h of the 
ores with an overall of 32 GB fully available memoryon the node. We vary the number of points of this geometri
al example from
n = 4361 to n = 15247 points.1 http://www.
almip.
i
t.fr/spip/spip.php?rubrique90



Fig. 4. Geometri
al example and zooms: n = 4361For our tests, the domain is su

essively divided in q = {1, 3, 5, 13} subboxes.The timings for ea
h step of parallel Spe
tral 
lustering are measured. We givein Table 1, for ea
h problem size and ea
h distribution the number of data inthe interfa
e, the total time and the per
entage of this time spent in the spe
tral
lustering 
omputation on the subdomains.n Number Number of data Total Time % of Total Time forof pro
essors in the interfa
e (se
) spe
tral 
lustering1 - 251.12 99.94361 5 1596 17.69 97.39 2131 32.22 97.713 2559 57.73 98.61 - 2930.3 99.99700 5 3601 214.47 99.49 4868 354.77 99.313 5738 628.81 99.61 - > 3h -15247 3 5532 695.41 99.69 7531 1289.43 99.613 8950 2394.01 99.8Table 1. 3 trun
ated spheres with interfa
e



We 
an retain from these results the following information:� the main part of our algorithm is the spe
tral 
lustering on subdomains;� the time spent in this part is the time of the pro
essor whi
h gets the moredata: there is a syn
hronization point at the end of this part, before thegrouping step;� with this example, the interfa
e gets the maximum number of data;� the speed-up is larger than the ratio between the total number of points tothe maximum data on one subdomain. For example, with n = 4361 pointsand 5 pro
essors, the ratio is 2.73 and the speed-up is 14.12. This 
an beexplained by the non-linearity of our problem with the 
omputation of eigen-ve
tors from Gaussian the a�nity matrix.� the spe
tral 
lustering on subdomains is faster than 
onsidering the wholedata set. Computation of parameters σ, σ∗ and the grouping step doesn'tpenalize our strategy; the time spent in these parts is negligible (less than
2% of total time).As remarks, the loop implemented to test several values of k in spe
tral
lustering algorithm until satisfying (4) be
ome less and less 
ostly when thenumber of pro
essors in
rease. This is due to eigenve
tors 
omputation whi
his less 
ostly with smaller dense a�nity matri
es. Also, subdividing the wholedata set impli
itely redu
es the Gaussian a�nity to diagonal subblo
ks (afterpermutations). However when the data set is subdivided in larger numbers ofsubdomains, the data set of the interfa
e be
omes the most time 
onsuming
omputational task.We shall investigate its in�uen
e and study the trade-o� between subdivisionsand interfa
e size.5 Dis
ussion and alternativeAs shown in the previous examples, using interfa
e whi
h 
onne
ts all the parti-tions 
ould present some limitations. In fa
t, the more the domain is subdivided,the larger is the set in the interfa
e. So to limit this drawba
k, a threshold, noted

τ , should be de�ned for the number of subdomains in ea
h axis. This threshold
τ represents the ratio between the volume 
overed by the interfa
e and the totalvolume.

τ =
V ol(interface)

V ol
(7)where V ol(interface) is de�ned by (6) and V ol is the total volume fun
tion of

li de�ned by (5) for i = {1, .., p}: V ol = Π
p
i=1li.To over
ome this drawba
k of 
onsidering the interfa
e as a distin
t subdo-main, the data set of interfa
e 
ould be in
luded in the others subdomains. Infa
t, the whole data set is subdivided in q subboxes whi
h have a non-emptyinterse
tion. This leads to redu
e the number of pro
essors (nbproc = q) andavoid 
omputing a spe
ial parameter σ∗ for the interfa
e. The main advantage



is that the Spe
tral 
lustering method is used on all subdomains with the sametopology of volume and does not break the isotropi
 distribution. However thethreshold τ is still preserved in order to redu
e the time in grouping step. So thevolume of the interse
tion between subdomains is upbounded by a fra
tion of thevolume of the whole data set. Thus, this strategy with interse
tion is resumedin Fig. 5 for q = 2.
Pre−processing step

Grouping Step

Spectral clustering

Subdomain 2Subdomain 1

Spectral clustering

Fig. 5. Prin
iple of alternative parallel Spe
tral 
lustering with interse
tion for q = 2In the same way, Fig. 6 illustrates this alternative on the previous targetexample divided in q = 4 subboxes. On the left, the �nal 
lustering results, afterthe grouping step, is plotted.

Fig. 6. Target example: subdomains with interse
tion



5.1 Numeri
al experiments: Geometri
al exampleThe same examples than in se
tion 4 are tested with this new strategy. In thesame way, the results are resumed in the Table 2 with the timings for respe
tivesteps of parallel spe
tral 
lustering with interse
tion.n Number Maximum of data Total Time % of Total Time forof pro
essors by pro
essor (se
) spe
tral 
lustering1 - 251.12 99.94361 4 1662 27.88 98.48 984 6.25 91.012 1004 6.76 88.51 - 2930.3 99.99700 4 3712 304.71 99.68 2265 70.35 98.112 2283 67.27 96.61 - > 3h -15247 4 5760 1034.09 99.88 3531 247.16 98.912 3517 231.71 97.9Table 2. 3 trun
ated spheres with interse
tion between subdomainsWe 
an observe that this alternative has the same main behaviours than theone with interfa
e:� very good speed-up, mu
h larger than the ratio of the total number of datato the maximum number of data on a subdomain;� the main part of the time is spent in the spe
tral 
lustering step;� the time of the spe
tral 
lustering step is the time of the pro
essor with themaximum number of data.We 
an express some spe
i�
 remarks for this strategy:� the times are better than the interfa
e strategy times with an equivalentnumber of pro
essor: for example, with q = 12 and n = 15247, the totaltime is divided by 10;� the time is de
reasing when the number of subdivisions in
reases at the
ondition that the maximum number of data on a pro
essor de
reases. Weobserve, for example, that with n = 4361 points and q = 12, the pro
essorwith the maximum number of points has more points that the equivalentone with q = 8. That explains the larger time with q = 12 than q = 8.The last remark opens some re�exion about how to divide the domain: a splittingthat balan
es the number of data among the pro
essors will give better resultsthan an automati
 splitting of the geometry.



5.2 An image segmentation exampleAn image segmentation in grays
ale is now 
onsidered. This kind of exampleis well designed to the parallel strategy thanks to an uniform distribution withrespe
t to the geometri
al 
oordinates per pro
essor. The a�nity matrix is de-�ned as a 3-dimension re
tangular box [4℄ whi
h in
ludes both geometri
al 
o-ordinates and brightness. The steps between pixels and brightness are about thesame magnitude. This means that the image data 
an be 
onsidered as isotropi
enough. This approa
h is tested on an image representing �owers. This image isa 186× 230 pi
ture i.e n = 42780 data points. Due to the large number of data,the parallel spe
tral 
lustering is applied on q = 20 pro
essors.
(a) Original data set (b) Clustering resultFig. 7. Example of image segmentation tested on HyperionIn Fig. 7, the original data set is plotted on the left and the �nal 
lusteringresults on the right. The spe
tral 
lustering result has determined 66 
lusters.Compared to the original data set, the shapes of the di�erent �owers are well-des
ribed. Moreover, the details on the lily 
an be re
ognized. The total timespent is equal to 675.67 se
 for n = 42780 whi
h 
on�rms the 
omputationalperforman
e with this parallel spe
tral 
lustering with interse
tion.6 Con
lusion and ongoing worksBy exploiting the property of 
onne
ted 
omponents, Spe
tral 
lustering 
ouldbe independently applied on geometri
al subdomains without altering the �-nal partition. With an independant way of determining the number of targeted
lusters k in ea
h subdomain, the method is 
ompletely unsupervised. However,
onsidering an isolated data set for interfa
e presents some limit. It depends onthe trade-o� between dividing and grouping. The alternative whi
h 
onsists inin
luding this interfa
e in all the subdomains improves the parallel approa
h.Futhermore, the strategy 
ould be improved with te
hniques for distributinguniformily the data per pro
essor and some te
hniques for sparsifying Gaussian



a�nity matrix. On sparse data sets, sparse in the sense of the distribution inthe en
losing volume, we may also bene�t from te
hniques of graph partitioning,su
h as Metis te
hniques. Applied to the graph of nearest neighbours in the dataset, we partition in a more equilibrated way the data points in subsets. Somesparsi�
ation te
hniques, su
h as thresholding the a�nity between data points,
ould also be introdu
ed to speed up the algorithm when the subdomains are stilllarge enough. It will permit redu
ing the time dedi
ated to spe
tral 
lusteringin subdomains.Referen
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