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Abstract. Spectral Clustering is one of the most important method
based on space dimension reduction used in Pattern Recognition. This
method consists in selecting dominant eigenvectors of a matrix called
affinity matrix in order to define a low-dimensional data space in which
data points are easy to cluster. By exploiting properties of Spectral Clus-
tering, we propose a method where we apply independently the algorithm
on particular subdomains and gather the results to determine a global
partition. Additionally, with a criterion for determining the number of
clusters, the domain decomposition strategy for parallel spectral cluster-
ing is robust and efficient.

1 Introduction

Clustering aims to partition a data set by grouping similar elements into sub-
sets. Two general main issues concern, on the one hand, the choice of a sim-
ilarity criterion and, on the other hand, the way to separate clusters the one
from the other. Spectral methods, and in particular the spectral clustering al-
gorithm introduced by Ng-Jordan-Weiss (NJW) [1], are useful when considering
non-convex shaped subsets of points. These methods are widely used in Pattern
Recognition and in particular in Bioinformatics and image segmentation. The
number of targeted clusters k is usually assumed to be known. From the spec-
tral elements of an affinity normalized matrix, data points are clustered in a
low-dimensionnal space made by the first eigenvectors of the normalized affinity
matrix. Several approaches about parallel Spectral Clustering [5], [6], [2] were
recently suggested, mainly focused on linear algebra techniques to reduce com-
putational costs. However, the authors do not get rid of the construction of the
complete affinity matrix and the problem of determining the number of clusters
is still open.

In this paper, we propose to cluster on subdomains by breaking up the data
set into data subsets with respect to their geometrical coordinates in a straigh-
forward way. With an appropriate Gaussian affinity parameter and a method to
determine the number of clusters, each processor applies independently the spec-
tral clustering algorithm on subsets of data points and provide a local partition
on these data subsets. Based on these local partitions, a gathering step ensures
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the connection between subsets of data and determines a global partition. We
analyze in particular two different approaches of the type and we experiment
on a geometrical particular example and on an image segmentation example.
We identify the potential for parallelism of the algorithm as well as numerical
behaviour and limitations.

2 Parallel Spectral Clustering: algorithm and justification

Spectral clustering uses eigenvectors of a matrix, called Gaussian affinity matrix,
in order to define a low-dimensional space in which data points can be clustered
(see algorithm 1).

Algorithm 1 Spectral Clustering Algorithm
Input: data set .S, number of clusters k

1. Form the affinity matrix A € R™*" defined by:

lei=a 17\ .o, .
Ay = exp <—70/2 if i #£ j, (1)

0 otherwise,

2. Construct the normalized matrix: L = D™ 2AD~ /2 with D;; = ;.1:1 Aij,

3. Assemble the matrix X = [X; X2..Xx] € R™** by stacking the eigenvectors asso-
ciated with the k largest eigenvalues of L,

4. Form the matrix Y by normalizing each row in the n x k matrix X,

5. Treat each row of Y as a point in R, and group them in k clusters via the K-means
method,

6. Assign the original point x; to cluster j when row 7 of matrix Y belongs to cluster j.

The Gaussian affinity matrix defined by (1) could be interpreted as a dis-
cretization of the Heat kernel [3]. And in particular, it is shown in [8] that this
matrix is a discrete representation of the L? heat operator onto appropriate con-
nected domains in RP. Thanks to properties of the heat equation, eigenvectors
of this matrix are an asymptotical discrete representation of L? eigenfunctions
with support included in only one connected component.

Clustering in subdomains resumes in restricting the support of these L? par-
ticular eigenfunctions. Therefore, we can apply Spectral Clustering on subdo-
mains to identify connected components. The subdomains can be defined in a
straightforward way by subdividing original data set according to their geomet-
rical coordinates and a partition can be extracted independently and in parallel
from each subset. Then, at the grouping level, spectral clustering algorithm is
made on a subset with geometrical coordinates close to the boundaries of the
previous subdomains. This partitionning will connect together clusters which be-
long to different subdomains thanks to the transitive relation: V;, , zi,, zi, €5,



if x;,,1;, € C* and z4,,2;, € C* then C* UC? = P and x;,, x,, 74, € P (2)

where S is a data set, C! and C? two distinct clusters and P a larger cluster
which includes both C' and C?.

Two main problems arise from this divide and conquer strategy: the difficulty
to choose a Gaussian affinity parameter o and the number of clusters k& which
remains unknown and may even vary from one subdomain to the other. We
propose two ways to overcome these drawbacks. In the following, let us consider
a p-dimensional data set S = {x1,..,2,} C RP. In the next section, we shall
address the proper choice of the parameter ¢ and in section 2.2, we propose a
way to overcome the problem of not knowing the number of clusters a priori.

2.1  Choice of the affinity parameter o

The Gaussian affinity matrix (1) is widely used and depends on a free parameter
o. It is known that this parameter affects the results in spectral clustering and
spectral embedding. A global heuristic for this parameter was proposed in [4]
in which both the dimension of the problem as well as the density of points in
the given p-th dimensional data set are integrated. With an assumption that
the p-dimensionnal data set is isotropic enough, the data set S is included in
a p-dimensionnal box bounded by D,,.. the largest distance between pairs of
points in St Dpax = maxi<; j<n ||€; — ;]|

So a reference distance noted o could be defined: this distance represents the
case of an uniform distribution in the sense that all pair of points are separated
by the same distance o in the box of edge size D,,qz:

o=—. (3)

ne

From this definition, clusters may exist if there are points that are at a distance
no more than a fraction of . We could define such parameter for each subdomain.
However, with a straighforward decomposition as the one proposed, one can find
easily that a local ¢ in each subdomain will be close to the value of a global o
defined on the whole data set in the same way. This avoids local computations.
However, this is not the case for the interface data set where a local o must be
considered. To conclude, we only need to compute two values of o: one for the
interface where the topology of the volume changes drastically, and one common
to all the other "cubic" subdomains.

2.2 Number of clusters k

The problematic of the right choice of k is all the more accurate that this number
may vary from one subdomain to the other in such a domain decomposition
strategy. We therefore consider in each subdomain a quality measure based on



ratios of Frobenius norms, see for instance [4]. For instance, after indexing data
points by cluster as followed, for k£ = 3:

L(ll) L(12) L(13)

I = | @D [(22) 1,(23)
1,31) 1,(32) ,(33)

the off-diagonal blocks will represent the affinity between clusters and the diag-
onal ones the affinity within clusters. The ratios between the Frobenius norm of
the off-diagonal blocks and that of the diagonal ones could be evaluated:

s
VIl
By definition, the appropriate number of clusters k corresponds to a situation
where points which belong to different clusters have low affinity between each
other whereas points in same clusters have higher affinity. Among various values
for k, the final number of cluster is defined so that the affinity between clusters
is the lowest and the affinity within clusters is the highest as followed:

k = argmin Z Tij- (4)
i#]

In Fig. 1, the ration = Z#j ri;, function of the number of cluster k, is plotted
on two examples with various densities among clusters. The gap observed on the
ratio n between two consecutive values of k indicates a strong change in the
average links between clusters.

Moreoever, dividing the whole data set in subdomains may lead to situations
in which a subdomain contains only one cluster. If the number of clusters & which
satisfy (4) is equal to 2 in one subdomain, we then compare the numerator of
[ L12]lF

ratio 7 to its denominator. Based on a threshold g, if the ratio 1Tl
11l|F

is larger

than 3, we set the value k to 1 instead of 2.

3 Implementation: Algorithm components

We shall now detail the different steps, described in Fig. 2, of the algorithm with
respect to the strategy proposed previously.

3.1 Pre-processing step: Partition S in ¢ subdomains

Let us include all data points in a box of edge [; for the ith-dimension, i =
{1,..,p} where:

li = max1<i17i2§n|xil (Z) — Ty (Z)|,V’L S {1, ,p} (5)

According to the maximum length on each dimension, the box is divided in ¢
subboxes where ¢ = II”_,¢; and ¢; denotes the number of subdivisions on the
i-th dimension. Then, the affinity parameter o is computed as indicated in (3).
The number of processors is fixed to nbproc = q + 1.
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Fig. 1. Examples for determining the number of cluster
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Fig. 2. Principle of parallel Spectral clustering for ¢ = 2



3.2 Domain decomposition: Interface and subdomains

Interface It includes all points with a maximum norm distance to the bound-
aries less than a given v bandwidth. This interface should help to reconnect
together clusters with points in more than one subdomain. Picking up a band-
width value v = 30 enables to group together points in the same cluster. As the
interface layer does not cover the same volume as the other "cubic" subdomains,
the isotropic assumption is not anymore satisfied, and a particular affinity pa-
rameter o* must be considered. We therefore follow the same idea as in section
2.1 but with an adequate volume measure for the interface:

_ Vol(inter face)

- 1

*

P
ninterface

where Vol(inter face) represents the real volume of the interface and ninter face
the number of data points in the interface. The volume of the interface is function
of bandwidth v, the number of cut-size ¢ and [y, ..[,, the edges of the box in each
direction as followed:

P
Vol(inter face) = Z(QZ —D)yP N — AP (g — 1). (6)

i=1

Subdomains Each processor from 1 to nbproc has a data subset S;, i =
1..nbproc which coordinates are included in a geometrical subbox. The affin-
ity of all the subdomains have the same global parameter o defined by (3).

3.3 Spectral clustering on subdomains

Some elements of Algorithm 1 are now precised.

Computation of the spectrum of the affinity matrix (1) Classical rou-

tines from LAPACK library [7] are used to compute selected eigenvalues and
eigenvectors of the normalized affinity matrix A for each subset of data points.

Number of clusters The number of cluster & is chosen to satisfy (4).

Spectral embedding The centers for k-means in the spectral embedding are
initially chosen to be the furthest from each other along a direction.
3.4 Grouping step

The final partition is formed by grouping partitions from the nbproc — 1 inde-
pendent spectral clustering analyses. The grouping is made with the interface



partition and the transitive relation (2). If a point belongs to two different clus-
ters, both clusters are then included in a larger one. As output of the parallel
method, a partition of the whole data set S and the final number of clusters &
are given.

An example on how our method is applied on a target data set splitted in
q = 4 subboxes (see Fig. 3). On the left, the clustering result for the interface is
plotted. Each color represents a cluster. On the right, the clustering results on
the 4 respective subdomains are plotted.
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Fig. 3. Target example: interface and subdomains

4 Parallel experiments

As numerical example, this parallel spectral clustering is tested on a 3D geomet-
rical case which represents 2 non-concentric truncated spherical areas included
in a larger one as shown in the left of Fig. 4. On the right of the same figure, one
zoom around each included truncated sphere is plotted. It shows the proximity
between the small spheres and the big one.

The numerical experiments were carried out on the Hyperion supercom-
puter!. Hyperion is the latest supercomputer of the CICT (Centre Interuniver-
sitaire de Calcul de Toulouse). With its 352 bi-Intel "Nehalem" EP quad-core
nodes it can develop a peak of 33TFlops. Each node has 4.5 GB memory ded-
icated for each of the cores with an overall of 32 GB fully available memory
on the node. We vary the number of points of this geometrical example from
n = 4361 to n = 15247 points.

! http://www.calmip.cict.fr/spip/spip.php?rubrique90



Fig. 4. Geometrical example and zooms: n = 4361

For our tests, the domain is successively divided in ¢ = {1,3,5,13} subboxes.
The timings for each step of parallel Spectral clustering are measured. We give
in Table 1, for each problem size and each distribution the number of data in
the interface, the total time and the percentage of this time spent in the spectral

clustering computation on the subdomains.

n Number Number of data Total Time | % of Total Time for
of processors in the interface (sec) spectral clustering

1 - 251.12 99.9

4361 5 1596 17.69 97.3

9 2131 32.22 97.7

13 2559 57.73 98.6

1 - 2930.3 99.9

9700 5 3601 214.47 99.4

9 4868 354.77 99.3

13 5738 628.81 99.6

1 _ ~ 3h 5

15247 3 5532 695.41 99.6

9 7531 1289.43 99.6

13 8950 2394.01 99.8

Table 1. 3 truncated spheres with interface




We can retain from these results the following information:

— the main part of our algorithm is the spectral clustering on subdomains;

— the time spent in this part is the time of the processor which gets the more
data: there is a synchronization point at the end of this part, before the
grouping step;

— with this example, the interface gets the maximum number of data;

— the speed-up is larger than the ratio between the total number of points to
the maximum data on one subdomain. For example, with n = 4361 points
and 5 processors, the ratio is 2.73 and the speed-up is 14.12. This can be
explained by the non-linearity of our problem with the computation of eigen-
vectors from Gaussian the affinity matrix.

— the spectral clustering on subdomains is faster than considering the whole
data set. Computation of parameters o, ¢* and the grouping step doesn’t
penalize our strategy; the time spent in these parts is negligible (less than
2% of total time).

As remarks, the loop implemented to test several values of k in spectral
clustering algorithm until satisfying (4) become less and less costly when the
number of processors increase. This is due to eigenvectors computation which
is less costly with smaller dense affinity matrices. Also, subdividing the whole
data set implicitely reduces the Gaussian affinity to diagonal subblocks (after
permutations). However when the data set is subdivided in larger numbers of
subdomains, the data set of the interface becomes the most time consuming
computational task.

We shall investigate its influence and study the trade-off between subdivisions
and interface size.

5 Discussion and alternative

As shown in the previous examples, using interface which connects all the parti-
tions could present some limitations. In fact, the more the domain is subdivided,
the larger is the set in the interface. So to limit this drawback, a threshold, noted
7, should be defined for the number of subdomains in each axis. This threshold
T represents the ratio between the volume covered by the interface and the total

volume.
_ Vol(inter face)

T Vol ™

where Vol(inter face) is defined by (6) and Vol is the total volume function of
l; defined by (5) for i = {1,..,p}: Vol = II'_,1;.

To overcome this drawback of considering the interface as a distinct subdo-
main, the data set of interface could be included in the others subdomains. In
fact, the whole data set is subdivided in ¢ subboxes which have a non-empty
intersection. This leads to reduce the number of processors (nbproc = ¢) and
avoid computing a special parameter ¢* for the interface. The main advantage



is that the Spectral clustering method is used on all subdomains with the same
topology of volume and does not break the isotropic distribution. However the
threshold 7 is still preserved in order to reduce the time in grouping step. So the
volume of the intersection between subdomains is upbounded by a fraction of the
volume of the whole data set. Thus, this strategy with intersection is resumed
in Fig. 5 for ¢ = 2.

Pre—processing step

T

Spectral clustering Spectral clustering
Subdomain 1 Subdomain 2
Grouping Step

Fig. 5. Principle of alternative parallel Spectral clustering with intersection for ¢ = 2

In the same way, Fig. 6 illustrates this alternative on the previous target
example divided in ¢ = 4 subboxes. On the left, the final clustering results, after
the grouping step, is plotted.
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Fig. 6. Target example: subdomains with intersection



5.1 Numerical experiments: Geometrical example

The same examples than in section 4 are tested with this new strategy. In the
same way, the results are resumed in the Table 2 with the timings for respective
steps of parallel spectral clustering with intersection.

n Number Maximum of data Total Time | % of Total Time for
of processors by processor (sec) spectral clustering

1 - 251.12 99.9

4361 4 1662 27.88 98.4

8 984 6.25 91.0

12 1004 6.76 88.5

1 - 2930.3 99.9

9700 4 3712 304.71 99.6

8 2265 70.35 98.1

12 2283 67.27 96.6

1 - > 3h B

15247 4 5760 1034.09 99.8

8 3531 247.16 98.9

12 3517 231.71 97.9

Table 2. 3 truncated spheres with intersection between subdomains

We can observe that this alternative has the same main behaviours than the
one with interface:

— very good speed-up, much larger than the ratio of the total number of data
to the maximum number of data on a subdomain;

— the main part of the time is spent in the spectral clustering step;

— the time of the spectral clustering step is the time of the processor with the
maximum number of data.

We can express some specific remarks for this strategy:

— the times are better than the interface strategy times with an equivalent
number of processor: for example, with ¢ = 12 and n = 15247, the total

time is divided by 10;

— the time is decreasing when the number of subdivisions increases at the
condition that the maximum number of data on a processor decreases. We
observe, for example, that with n = 4361 points and ¢ = 12, the processor
with the maximum number of points has more points that the equivalent
one with ¢ = 8. That explains the larger time with ¢ = 12 than ¢ = 8.

The last remark opens some reflexion about how to divide the domain: a splitting
that balances the number of data among the processors will give better results
than an automatic splitting of the geometry.




5.2 An image segmentation example

An image segmentation in grayscale is now considered. This kind of example
is well designed to the parallel strategy thanks to an uniform distribution with
respect to the geometrical coordinates per processor. The affinity matrix is de-
fined as a 3-dimension rectangular box [4] which includes both geometrical co-
ordinates and brightness. The steps between pixels and brightness are about the
same magnitude. This means that the image data can be considered as isotropic
enough. This approach is tested on an image representing flowers. This image is
a 186 x 230 picture i.e n = 42780 data points. Due to the large number of data,
the parallel spectral clustering is applied on ¢ = 20 processors.

cluster
66

10

(a) Original data set (b) Clustering result

Fig. 7. Example of image segmentation tested on Hyperion

In Fig. 7, the original data set is plotted on the left and the final clustering
results on the right. The spectral clustering result has determined 66 clusters.
Compared to the original data set, the shapes of the different flowers are well-
described. Moreover, the details on the lily can be recognized. The total time
spent is equal to 675.67 sec for n = 42780 which confirms the computational
performance with this parallel spectral clustering with intersection.

6 Conclusion and ongoing works

By exploiting the property of connected components, Spectral clustering could
be independently applied on geometrical subdomains without altering the fi-
nal partition. With an independant way of determining the number of targeted
clusters k in each subdomain, the method is completely unsupervised. However,
considering an isolated data set for interface presents some limit. It depends on
the trade-off between dividing and grouping. The alternative which consists in
including this interface in all the subdomains improves the parallel approach.
Futhermore, the strategy could be improved with techniques for distributing
uniformily the data per processor and some techniques for sparsifying Gaussian



affinity matrix. On sparse data sets, sparse in the sense of the distribution in
the enclosing volume, we may also benefit from techniques of graph partitioning,
such as Metis techniques. Applied to the graph of nearest neighbours in the data
set, we partition in a more equilibrated way the data points in subsets. Some
sparsification techniques, such as thresholding the affinity between data points,
could also be introduced to speed up the algorithm when the subdomains are still
large enough. It will permit reducing the time dedicated to spectral clustering
in subdomains.
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