
On a strategy for Spetral Clusteringwith parallel omputationSandrine Mouysset, Joseph Noailles, Daniel Ruiz and Ronan Guivarh1University of Toulouse, IRIT-ENSEEIHT, Frane{sandrine.mouysset,jnoaille,daniel.ruiz,ronan.guivarh}�enseeiht.frAbstrat. Spetral Clustering is one of the most important methodbased on spae dimension redution used in Pattern Reognition. Thismethod onsists in seleting dominant eigenvetors of a matrix alleda�nity matrix in order to de�ne a low-dimensional data spae in whihdata points are easy to luster. By exploiting properties of Spetral Clus-tering, we propose a method where we apply independently the algorithmon partiular subdomains and gather the results to determine a globalpartition. Additionally, with a riterion for determining the number oflusters, the domain deomposition strategy for parallel spetral luster-ing is robust and e�ient.1 IntrodutionClustering aims to partition a data set by grouping similar elements into sub-sets. Two general main issues onern, on the one hand, the hoie of a sim-ilarity riterion and, on the other hand, the way to separate lusters the onefrom the other. Spetral methods, and in partiular the spetral lustering al-gorithm introdued by Ng-Jordan-Weiss (NJW) [1℄, are useful when onsideringnon-onvex shaped subsets of points. These methods are widely used in PatternReognition and in partiular in Bioinformatis and image segmentation. Thenumber of targeted lusters k is usually assumed to be known. From the spe-tral elements of an a�nity normalized matrix, data points are lustered in alow-dimensionnal spae made by the �rst eigenvetors of the normalized a�nitymatrix. Several approahes about parallel Spetral Clustering [5℄, [6℄, [2℄ werereently suggested, mainly foused on linear algebra tehniques to redue om-putational osts. However, the authors do not get rid of the onstrution of theomplete a�nity matrix and the problem of determining the number of lustersis still open.In this paper, we propose to luster on subdomains by breaking up the dataset into data subsets with respet to their geometrial oordinates in a straigh-forward way. With an appropriate Gaussian a�nity parameter and a method todetermine the number of lusters, eah proessor applies independently the spe-tral lustering algorithm on subsets of data points and provide a loal partitionon these data subsets. Based on these loal partitions, a gathering step ensures0 Candidate to the Best Student Paper Award



the onnetion between subsets of data and determines a global partition. Weanalyze in partiular two di�erent approahes of the type and we experimenton a geometrial partiular example and on an image segmentation example.We identify the potential for parallelism of the algorithm as well as numerialbehaviour and limitations.2 Parallel Spetral Clustering: algorithm and justi�ationSpetral lustering uses eigenvetors of a matrix, alled Gaussian a�nity matrix,in order to de�ne a low-dimensional spae in whih data points an be lustered(see algorithm 1).Algorithm 1 Spetral Clustering AlgorithmInput: data set S, number of lusters k1. Form the a�nity matrix A ∈ R
n×n de�ned by:
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Aij ,3. Assemble the matrix X = [X1X2..Xk] ∈ R
n×k by staking the eigenvetors asso-iated with the k largest eigenvalues of L,4. Form the matrix Y by normalizing eah row in the n × k matrix X,5. Treat eah row of Y as a point in R

k, and group them in k lusters via the K-meansmethod,6. Assign the original point xi to luster j when row i of matrix Y belongs to luster j.The Gaussian a�nity matrix de�ned by (1) ould be interpreted as a dis-retization of the Heat kernel [3℄. And in partiular, it is shown in [8℄ that thismatrix is a disrete representation of the L2 heat operator onto appropriate on-neted domains in R
p. Thanks to properties of the heat equation, eigenvetorsof this matrix are an asymptotial disrete representation of L2 eigenfuntionswith support inluded in only one onneted omponent.Clustering in subdomains resumes in restriting the support of these L2 par-tiular eigenfuntions. Therefore, we an apply Spetral Clustering on subdo-mains to identify onneted omponents. The subdomains an be de�ned in astraightforward way by subdividing original data set aording to their geomet-rial oordinates and a partition an be extrated independently and in parallelfrom eah subset. Then, at the grouping level, spetral lustering algorithm ismade on a subset with geometrial oordinates lose to the boundaries of theprevious subdomains. This partitionning will onnet together lusters whih be-long to di�erent subdomains thanks to the transitive relation: ∀xi1 , xi2 , xi3 ∈ S,



if xi1 , xi2 ∈ C1 and xi2 , xi3 ∈ C2 then C1 ∪ C2 = P and xi1 , xi2 , xi3 ∈ P (2)where S is a data set, C1 and C2 two distint lusters and P a larger lusterwhih inludes both C1 and C2.Two main problems arise from this divide and onquer strategy: the di�ultyto hoose a Gaussian a�nity parameter σ and the number of lusters k whihremains unknown and may even vary from one subdomain to the other. Wepropose two ways to overome these drawbaks. In the following, let us onsidera p-dimensional data set S = {x1, .., xn} ⊂ R
p. In the next setion, we shalladdress the proper hoie of the parameter σ and in setion 2.2, we propose away to overome the problem of not knowing the number of lusters a priori.2.1 Choie of the a�nity parameter σThe Gaussian a�nity matrix (1) is widely used and depends on a free parameter

σ. It is known that this parameter a�ets the results in spetral lustering andspetral embedding. A global heuristi for this parameter was proposed in [4℄in whih both the dimension of the problem as well as the density of points inthe given p-th dimensional data set are integrated. With an assumption thatthe p-dimensionnal data set is isotropi enough, the data set S is inluded ina p-dimensionnal box bounded by Dmax the largest distane between pairs ofpoints in S: Dmax = max1≤i,j≤n ‖xi − xj‖.So a referene distane noted σ ould be de�ned: this distane represents thease of an uniform distribution in the sense that all pair of points are separatedby the same distane σ in the box of edge size Dmax:
σ =

Dmax
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p

. (3)From this de�nition, lusters may exist if there are points that are at a distaneno more than a fration of σ. We ould de�ne suh parameter for eah subdomain.However, with a straighforward deomposition as the one proposed, one an �ndeasily that a loal σ in eah subdomain will be lose to the value of a global σde�ned on the whole data set in the same way. This avoids loal omputations.However, this is not the ase for the interfae data set where a loal σ must beonsidered. To onlude, we only need to ompute two values of σ: one for theinterfae where the topology of the volume hanges drastially, and one ommonto all the other "ubi" subdomains.2.2 Number of lusters kThe problemati of the right hoie of k is all the more aurate that this numbermay vary from one subdomain to the other in suh a domain deompositionstrategy. We therefore onsider in eah subdomain a quality measure based on



ratios of Frobenius norms, see for instane [4℄. For instane, after indexing datapoints by luster as followed, for k = 3:
L̂ =
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 ,the o�-diagonal bloks will represent the a�nity between lusters and the diag-onal ones the a�nity within lusters. The ratios between the Frobenius norm ofthe o�-diagonal bloks and that of the diagonal ones ould be evaluated:
rij =

‖L(ij)‖F

‖L(ii)‖F

.By de�nition, the appropriate number of lusters k orresponds to a situationwhere points whih belong to di�erent lusters have low a�nity between eahother whereas points in same lusters have higher a�nity. Among various valuesfor k, the �nal number of luster is de�ned so that the a�nity between lustersis the lowest and the a�nity within lusters is the highest as followed:
k = argmin

∑

i6=j

rij . (4)In Fig. 1, the ratio η =
∑

i6=j rij , funtion of the number of luster k, is plottedon two examples with various densities among lusters. The gap observed on theratio η between two onseutive values of k indiates a strong hange in theaverage links between lusters.Moreoever, dividing the whole data set in subdomains may lead to situationsin whih a subdomain ontains only one luster. If the number of lusters k whihsatisfy (4) is equal to 2 in one subdomain, we then ompare the numerator ofratio η to its denominator. Based on a threshold β, if the ratio ‖L12‖F

‖L11‖F

is largerthan β, we set the value k to 1 instead of 2.3 Implementation: Algorithm omponentsWe shall now detail the di�erent steps, desribed in Fig. 2, of the algorithm withrespet to the strategy proposed previously.3.1 Pre-proessing step: Partition S in q subdomainsLet us inlude all data points in a box of edge li for the ith-dimension, i =
{1, .., p} where:

li = max1<i1,i2≤n|xi1(i) − xi2(i)|, ∀i ∈ {1, .., p}. (5)Aording to the maximum length on eah dimension, the box is divided in qsubboxes where q = Π
p
i=1qi and qi denotes the number of subdivisions on the

i-th dimension. Then, the a�nity parameter σ is omputed as indiated in (3).The number of proessors is �xed to nbproc = q + 1.
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3.2 Domain deomposition: Interfae and subdomainsInterfae It inludes all points with a maximum norm distane to the bound-aries less than a given γ bandwidth. This interfae should help to reonnettogether lusters with points in more than one subdomain. Piking up a band-width value γ = 3σ enables to group together points in the same luster. As theinterfae layer does not over the same volume as the other "ubi" subdomains,the isotropi assumption is not anymore satis�ed, and a partiular a�nity pa-rameter σ∗ must be onsidered. We therefore follow the same idea as in setion2.1 but with an adequate volume measure for the interfae:
σ∗ =

V ol(interface)

n
1

p

interfacewhere V ol(interface) represents the real volume of the interfae and ninterfacethe number of data points in the interfae. The volume of the interfae is funtionof bandwidth γ, the number of ut-size q and l1, ..lp the edges of the box in eahdiretion as followed:
V ol(interface) =

p
∑

i=1

(qi − 1)γp−1li − γpΠ
p
i=1(qi − 1). (6)Subdomains Eah proessor from 1 to nbproc has a data subset Si, i =

1..nbproc whih oordinates are inluded in a geometrial subbox. The a�n-ity of all the subdomains have the same global parameter σ de�ned by (3).3.3 Spetral lustering on subdomainsSome elements of Algorithm 1 are now preised.Computation of the spetrum of the a�nity matrix (1) Classial rou-tines from LAPACK library [7℄ are used to ompute seleted eigenvalues andeigenvetors of the normalized a�nity matrix A for eah subset of data points.Number of lusters The number of luster k is hosen to satisfy (4).Spetral embedding The enters for k-means in the spetral embedding areinitially hosen to be the furthest from eah other along a diretion.3.4 Grouping stepThe �nal partition is formed by grouping partitions from the nbproc − 1 inde-pendent spetral lustering analyses. The grouping is made with the interfae



partition and the transitive relation (2). If a point belongs to two di�erent lus-ters, both lusters are then inluded in a larger one. As output of the parallelmethod, a partition of the whole data set S and the �nal number of lusters kare given.An example on how our method is applied on a target data set splitted in
q = 4 subboxes (see Fig. 3). On the left, the lustering result for the interfae isplotted. Eah olor represents a luster. On the right, the lustering results onthe 4 respetive subdomains are plotted.

Fig. 3. Target example: interfae and subdomains
4 Parallel experimentsAs numerial example, this parallel spetral lustering is tested on a 3D geomet-rial ase whih represents 2 non-onentri trunated spherial areas inludedin a larger one as shown in the left of Fig. 4. On the right of the same �gure, onezoom around eah inluded trunated sphere is plotted. It shows the proximitybetween the small spheres and the big one.The numerial experiments were arried out on the Hyperion superom-puter1. Hyperion is the latest superomputer of the CICT (Centre Interuniver-sitaire de Calul de Toulouse). With its 352 bi-Intel "Nehalem" EP quad-orenodes it an develop a peak of 33TFlops. Eah node has 4.5 GB memory ded-iated for eah of the ores with an overall of 32 GB fully available memoryon the node. We vary the number of points of this geometrial example from
n = 4361 to n = 15247 points.1 http://www.almip.it.fr/spip/spip.php?rubrique90



Fig. 4. Geometrial example and zooms: n = 4361For our tests, the domain is suessively divided in q = {1, 3, 5, 13} subboxes.The timings for eah step of parallel Spetral lustering are measured. We givein Table 1, for eah problem size and eah distribution the number of data inthe interfae, the total time and the perentage of this time spent in the spetrallustering omputation on the subdomains.n Number Number of data Total Time % of Total Time forof proessors in the interfae (se) spetral lustering1 - 251.12 99.94361 5 1596 17.69 97.39 2131 32.22 97.713 2559 57.73 98.61 - 2930.3 99.99700 5 3601 214.47 99.49 4868 354.77 99.313 5738 628.81 99.61 - > 3h -15247 3 5532 695.41 99.69 7531 1289.43 99.613 8950 2394.01 99.8Table 1. 3 trunated spheres with interfae



We an retain from these results the following information:� the main part of our algorithm is the spetral lustering on subdomains;� the time spent in this part is the time of the proessor whih gets the moredata: there is a synhronization point at the end of this part, before thegrouping step;� with this example, the interfae gets the maximum number of data;� the speed-up is larger than the ratio between the total number of points tothe maximum data on one subdomain. For example, with n = 4361 pointsand 5 proessors, the ratio is 2.73 and the speed-up is 14.12. This an beexplained by the non-linearity of our problem with the omputation of eigen-vetors from Gaussian the a�nity matrix.� the spetral lustering on subdomains is faster than onsidering the wholedata set. Computation of parameters σ, σ∗ and the grouping step doesn'tpenalize our strategy; the time spent in these parts is negligible (less than
2% of total time).As remarks, the loop implemented to test several values of k in spetrallustering algorithm until satisfying (4) beome less and less ostly when thenumber of proessors inrease. This is due to eigenvetors omputation whihis less ostly with smaller dense a�nity matries. Also, subdividing the wholedata set impliitely redues the Gaussian a�nity to diagonal subbloks (afterpermutations). However when the data set is subdivided in larger numbers ofsubdomains, the data set of the interfae beomes the most time onsumingomputational task.We shall investigate its in�uene and study the trade-o� between subdivisionsand interfae size.5 Disussion and alternativeAs shown in the previous examples, using interfae whih onnets all the parti-tions ould present some limitations. In fat, the more the domain is subdivided,the larger is the set in the interfae. So to limit this drawbak, a threshold, noted

τ , should be de�ned for the number of subdomains in eah axis. This threshold
τ represents the ratio between the volume overed by the interfae and the totalvolume.

τ =
V ol(interface)

V ol
(7)where V ol(interface) is de�ned by (6) and V ol is the total volume funtion of

li de�ned by (5) for i = {1, .., p}: V ol = Π
p
i=1li.To overome this drawbak of onsidering the interfae as a distint subdo-main, the data set of interfae ould be inluded in the others subdomains. Infat, the whole data set is subdivided in q subboxes whih have a non-emptyintersetion. This leads to redue the number of proessors (nbproc = q) andavoid omputing a speial parameter σ∗ for the interfae. The main advantage



is that the Spetral lustering method is used on all subdomains with the sametopology of volume and does not break the isotropi distribution. However thethreshold τ is still preserved in order to redue the time in grouping step. So thevolume of the intersetion between subdomains is upbounded by a fration of thevolume of the whole data set. Thus, this strategy with intersetion is resumedin Fig. 5 for q = 2.
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Fig. 5. Priniple of alternative parallel Spetral lustering with intersetion for q = 2In the same way, Fig. 6 illustrates this alternative on the previous targetexample divided in q = 4 subboxes. On the left, the �nal lustering results, afterthe grouping step, is plotted.

Fig. 6. Target example: subdomains with intersetion



5.1 Numerial experiments: Geometrial exampleThe same examples than in setion 4 are tested with this new strategy. In thesame way, the results are resumed in the Table 2 with the timings for respetivesteps of parallel spetral lustering with intersetion.n Number Maximum of data Total Time % of Total Time forof proessors by proessor (se) spetral lustering1 - 251.12 99.94361 4 1662 27.88 98.48 984 6.25 91.012 1004 6.76 88.51 - 2930.3 99.99700 4 3712 304.71 99.68 2265 70.35 98.112 2283 67.27 96.61 - > 3h -15247 4 5760 1034.09 99.88 3531 247.16 98.912 3517 231.71 97.9Table 2. 3 trunated spheres with intersetion between subdomainsWe an observe that this alternative has the same main behaviours than theone with interfae:� very good speed-up, muh larger than the ratio of the total number of datato the maximum number of data on a subdomain;� the main part of the time is spent in the spetral lustering step;� the time of the spetral lustering step is the time of the proessor with themaximum number of data.We an express some spei� remarks for this strategy:� the times are better than the interfae strategy times with an equivalentnumber of proessor: for example, with q = 12 and n = 15247, the totaltime is divided by 10;� the time is dereasing when the number of subdivisions inreases at theondition that the maximum number of data on a proessor dereases. Weobserve, for example, that with n = 4361 points and q = 12, the proessorwith the maximum number of points has more points that the equivalentone with q = 8. That explains the larger time with q = 12 than q = 8.The last remark opens some re�exion about how to divide the domain: a splittingthat balanes the number of data among the proessors will give better resultsthan an automati splitting of the geometry.



5.2 An image segmentation exampleAn image segmentation in graysale is now onsidered. This kind of exampleis well designed to the parallel strategy thanks to an uniform distribution withrespet to the geometrial oordinates per proessor. The a�nity matrix is de-�ned as a 3-dimension retangular box [4℄ whih inludes both geometrial o-ordinates and brightness. The steps between pixels and brightness are about thesame magnitude. This means that the image data an be onsidered as isotropienough. This approah is tested on an image representing �owers. This image isa 186× 230 piture i.e n = 42780 data points. Due to the large number of data,the parallel spetral lustering is applied on q = 20 proessors.
(a) Original data set (b) Clustering resultFig. 7. Example of image segmentation tested on HyperionIn Fig. 7, the original data set is plotted on the left and the �nal lusteringresults on the right. The spetral lustering result has determined 66 lusters.Compared to the original data set, the shapes of the di�erent �owers are well-desribed. Moreover, the details on the lily an be reognized. The total timespent is equal to 675.67 se for n = 42780 whih on�rms the omputationalperformane with this parallel spetral lustering with intersetion.6 Conlusion and ongoing worksBy exploiting the property of onneted omponents, Spetral lustering ouldbe independently applied on geometrial subdomains without altering the �-nal partition. With an independant way of determining the number of targetedlusters k in eah subdomain, the method is ompletely unsupervised. However,onsidering an isolated data set for interfae presents some limit. It depends onthe trade-o� between dividing and grouping. The alternative whih onsists ininluding this interfae in all the subdomains improves the parallel approah.Futhermore, the strategy ould be improved with tehniques for distributinguniformily the data per proessor and some tehniques for sparsifying Gaussian



a�nity matrix. On sparse data sets, sparse in the sense of the distribution inthe enlosing volume, we may also bene�t from tehniques of graph partitioning,suh as Metis tehniques. Applied to the graph of nearest neighbours in the dataset, we partition in a more equilibrated way the data points in subsets. Somesparsi�ation tehniques, suh as thresholding the a�nity between data points,ould also be introdued to speed up the algorithm when the subdomains are stilllarge enough. It will permit reduing the time dediated to spetral lusteringin subdomains.Referenes1. Ng, A. Y., Jordan, M. I. and Weiss, Y. On spetral lustering: analysis and analgorithm. Pro.Adv.Neural Info.Proessing Systems, 2002.2. Chen, W-Y., Yangqiu, S., Bai H., Lin C-J. and Chang E. Y. Parallel Spetral Clus-tering in Distributed Systems. IEEE Transations on Pattern Analysis and MahineIntelligene,2010.3. Belkin, M. and Niyogi, P. Laplaian Eigenmaps and Spetral Tehniques for Em-bedding and Clustering. Advanes in Neural Information Proessing Systems, 2002.4. Mouysset, S. and Noailles, J. and Ruiz, D. Using a Global Parameter for GaussianA�nity Matries in Spetral Clustering, High Performane Computing for Compu-tational Siene: 8th International Conferene, 2008.5. Song, Y. and Chen, W.Y. and Bai, H. and Lin, C.J. and Chang, E.Y. Parallelspetral lustering, Proessing of European Conferene on Mahine Learning andPriniples and Pratie of Knowledge Disovery in Databases, 2008.6. Fowlkes, C. and Belongie, S. and Chung, F. and Malik, J., Spetral grouping usingthe Nystrom method, IEEE Transations on Pattern Analysis and Mahine Intel-ligene, 2004.7. Anderson, E. and Bai, Z. and Bishof, C. and Blakford, S. and Demmel, J. and Don-garra, J. and Du Croz, J. and Greenbaum, A. and Hammarling, S. and MKenney,A. and others LAPACK Users' guide, Soiety for Industrial Mathematis, 1999.8. Mouysset, S. and Noailles, J. and Ruiz, D. On an interpretation of Spetral Clus-tering via Heat equation and Finite Elements theory, International Conferene onData Mining and Knowledge Engineering, 2010, (to appear).


