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Abstract. A Cellular Automata (CA) model for traffic roads based on
Nagel and Schreckenberg’s model is presented. The probabilistic model,
investigated in this work, models the individual behavior through an
extension of the base model in which a continuous probability function
is applied to define an expectancy of a follower with respect to its leading
vehicle. This anticipatory feature leads to a counter flow velocity tunning.
Moreover, two issues regarding the proposed model are discussed: the use
of open boundary conditions (OBC) as well as its parallelizability. Thus,
simulations are developed and discussed herein and compared to real
data fundamental diagrams.

1 Introduction

The traffic flow increasingly affects the quality of life in modern societies. Traffic
jams and their companion pollution generation, as well as mental stress effects,
are some of the reasons to seek a better understanding of traffic flows. These
help understand why the subject has been receiving so much attention for the
last decades. Several attempts were made to mathematically model traffic flows.
These models are organized as either macroscopic or microscopic. Among them,
a specific microscopic model named Cellular Automata has been employed with
good results, due to the fact that it mimics the whole spectrum of vehicles’
movement. Some features about traffic control’s strategies are discussed in [1],
an on-line service using a CA model has been made available [2], so as to de-
scribe the freeway traffic in North Rhine-Westphalia. Although CA models have
been applied for managing, describing and understanding the traffic character-
istics, their application in this context is recent and a perfect model is yet to
be developed. One of the main advantages of CA models is that they are easily
implemented, lead to moderate computational cost and keep the basic features
of the phenomena ([3], [4],[5]). In [6] open boundary conditions policies and
inflow/outflow strategies are discussed.

Among the objectives of this work one has the improvement of the flow-
density relation, leading to real data resembling transition to jammed flow.
Moreover, due to the explicit nature of the algorithm, which allows the algo-
rithm to be decoupled, i.e., another objective arises. This refers to the splitting



of the computational procedure in two steps: the first is responsible for defin-
ing the new velocity and the second updates all vehicles’ positions, as described
below.

A continuous probability function properly defines the driver’s average be-
havior. Moreover, during the determination of velocities’ step, the counter flow
velocity tunning gives rise to a recursive procedure that provides the new ve-
locities’ definition while preventing the occupation of a single cell by more than
one vehicle. This is performed in such a way that velocities are adjusted to
appropriate values even in the event of a velocity reduction by a leading vehi-
cle. The inflow and outflow of vehicles to/from the highway is discussed, and a
preliminary evaluation of the computation cost of parallel of proposed model.

This work is organized as follows: in Section 2, related work on cellular
automata models applied to traffic highways is discussed; in Section 3 some
concepts of traffic-flow theory are reviewed; Section 4 describes the proposed
algorithm; Section 5 presents some test cases. Concluding remarks about the
proposed method are discussed in Section 6.

2 Related Work

The class of Cellular Automata models applied for traffic problems is often orga-
nized in two sets, so-called deterministic and probabilistic models. Among them,
Rule-184 [7] is one of the most known deterministic models. Fukui and Ishibashi
[8] modified this model in order to introduce more velocity variations, supporting
a variation of up to 5 cells per unit time simulation. The uncertainty introduced
by probabilistic models tries to properly represent the behavior of drivers, so as
to improve the flow-density relation. Nagel and Schreckenberg [9] pioneered in
the study of this class of models. Their proposed algorithm, NaSch, has been
largely employed, has become the basis for many improvements ever since. The
algorithm consists of simple rules: all vehicles try to speed up to the maximum
velocity allowed by the flow of vehicles or the road’s speed limit. The uncertainty
introduced in the algorithm tries to mimic the behavior of a driver in that this
shall keep the vehicle’s velocity or, without any apparent reason, simply reduce
it. A subsequent adjustment of each vehicle’s speed considers its distance to the
one immediately ahead.

Slow-to-start models form a subset of the set of probabilistic models. Their
main purpose is to represent the driver’s eagerness for restoring his velocity when
his vehicle is stopped, i.e., the inertia effect of the vehicles. Although slow-to-start
models can represent the meta stability phase, drivers’ conservative behavior
leads to jammed flow with lower density than empirical data indicate.

Among the slow-to-start, one has the following: models discussed in [10] and
[11] consider the space ahead after some simulation time, in order to restore the
car’s velocity. In [13] and [14] the flow adjustment method defines that a driver
considers the space between vehicles ahead and adds the free space between
them. The concept adopted in such method is that every driver considers that
its leading vehicle (that is, the one immediately ahead) will move in the same



velocity as in the previous time frame. Thus, a model with an anticipatory
feature.

The anticipatory policy represents a level of expectancy that a driver has in
relation to its leading vehicle. It is given by the distance between two vehicles plus
the potential distance that the leader has for moving. The level of expectancy is
quantified by a randomness related with the velocity of the leading vehicle. The
other rule of anticipation delineates the situation when a (driver’s) vehicle has a
high level of expectancy that its leader is going to keep its velocity at next time
frame and this does not happen.

3 Traffic-Flow Theory

The behavior of traffic is analyzed here on the basis of a set of variables: density
describes the number of vehicles per unit length of a highway at some time (see
Eq. 1) where n is the number of vehicles as well as L represents a part of the
highway.

ρ =
n

L
(1)

The average velocity, i.e., the averaged sum of velocities, is established as
(Eq. 2)

v =

∑n
i=1 vi
n

(2)

Flow is defined as the number of vehicles that pass by a specific point of the
highway per unit time, as in Eq. 3

J = ρv (3)

By using Eqs. 2 and 3, J can be re-written as in Eq. 4.

J =

∑n
i=1 vi
L

(4)

The equations, as described previously, show how to compute the variables
at a particular time. However, when one tries to simulate realistic scenarios,
many time steps should be used in order for the complexity of the phenomena
to emerge. Thus, the equations shall be re-written for greater adequacy, as in
Eq. 5, where m is the number of vehicles that pass at a highway section and T
is a time period.

J =
m

T
(5)

Moreover, the average velocity is re-written, so as to consider the vehicles
that pass at a highway section, as in Eq.6.

v =

∑m
i=1 vi
m

(6)



In order to obtain the average density at a highway section, Eqs. 5 and 6 are
replaced by Eq. 7, that is

ρ =
m2

T
∑m

i=1 vi
(7)

The equations above represent the behavior of traffic flow on a highway by means
of vehicle counts over long periods of time. Typically, the analysis of traffic flow is
performed by constructing the corresponding fundamental diagram. This depicts
how flow and density relate. The theoretical model is illustrated in Fig. 1 and
real data is presented in Fig. 2.

Fig. 1. Theoretical fundamental dia-
gram
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Fig. 2. Real data fundamental diagram
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The fundamental diagram exhibits three well defined phases, namely: the
first one represents the free-flow and corresponds to the region of low to medium
density and weak interaction between vehicles. In this phase, the vehicles can
move almost at the highway’s speed limit, and the flow increases linearly with
increasing density, density ranging in 0 ≤ ρ ≤ c1. The second phase presents
medium and high density, the flow shall behave either free or jammed, i.e., the
phase c1 < ρ < c2 shows a flow that is not defined only by density, but by the
interaction between the vehicles instead. This phase is named the metastable
phase. The last phase is ρ > c2, and represents the jammed flow, where an
increase in density forces a decrease in the flow.

Therefore, usable models have to represent both qualitatively (mandatory)
as well as quantitatively (desirable) the fundamental diagram, making it possible
for a coherent analysis of all variables involved in the process to be carried on.

4 The Proposed Model

In this section, NaSch’s model is briefly reviewed, and its algorithmic description,
Algorithm 1, provides a framework for the presentation of the new probabilistic



model, which is based on NaSch’s model and extends the anticipatory concept
proposed by [14].

For NaSch’s model, variables space and time are both discrete, so t ∈ N,
xti ∈ Z; The highway is considered to have periodic boundary condition, i.e.,
the position X is the same as position X + L where L is the length of the
circuit. Likewise, the ith vehicle is the same as the (i + N)th vehicle, where
N is the number of vehicles. Each cell represents a length space of 7.5 meters
and the time evolution scale is measured in seconds. Besides, the variable (vti)
denotes the velocity of the ith vehicle in time instant t, in cells per time, while
xti denotes the spatial position. The distance between two vehicles in a time
instant is represented by dti, and the maximum speed allowed is given by vmax.
The probabilistic character of the model is represented by p and pm. The first
is chosen from the uniform distribution and the latter is an initial parameter.
They represent the probability for a vehicle to preserve its speed at the next
time instant t+ 1.

Algorithm 1 NaSch’s Algorithm

1: for from the last to the first vehicle do
2: vti ← min[vt−1

i + 1, vmax]
3: dti = xt−1

i − xt−1
i−1 − 1

4: p← randomize number ∈ [0, 1]
5: if vti > dti then
6: vti ← dti
7: end if
8: if p ≤ pm and vt−1

i > 0 then
9: vti ← vt−1

i − 1
10: end if
11: xti ← xt−1

i + vti
12: end for

Even though it does not generate the meta stability phase, NaSch model
presents satisfactory results. The Fig 3 shows the effects of different values of
pm. These define in which density the free flow behavior switches into the jammed
one.

Algorithms 2 and 3 describe the probabilistic model proposed. The main
characteristic of the model is that it is explicit in time. Moreover, the counter
flow velocity tunning ensures the correct velocity definition for each vehicle at
each simulation instant, so that the occupation of a cell by two differnt vehicles
is forbidden.

The model’s algorithm is splitted in two stages: the first one is responsible
for the correct velocity definition, the second updates position of each vehicle
based on the velocity defined in the previous stage. Lines 2− 14 of algorithm 2
describe the first stage while the second is represented by line 17 of the same
algorithm. Since velocity definition and position updating are independent tasks,



Fig. 3. Fundamental diagram of NaSch’s model

they are not constrained by the update direction, that is, free access to the data
structure is allowed.

Algorithm 2 The Proposed Algorithm - main algorithm

1: for all vehicles do
2: vti ← min(vt−1

i + 1, vmax)
3: p← randomize number ∈ [0, 1]
4: if p ≤ pm and vt−1

i > 0 then
5: vti ← vt−1

i − 1
6: end if
7: αti ← normal(µ, σ)
8: dti = xt−1

i − xt−1
i−1 − 1

9: dtis ← dti + [vt−1
i+1 × (1− αt−1

i+1)]
10: if vti > dtis then
11: vti ← dtis
12: end if
13: if [vt−1

i × (1− αti)] > dtis then
14: call Solver Vehicles’ Cluster (i)
15: end if
16: end for
17: for all vehicles do
18: xti ← xt−1

i + vti
19: end for

The explicit procedure of reverse adjustment of velocity is indicated by algo-
rithm 3, which is part of algorithm 2 . This procedure is evoked when any vehicle
reduces its velocity unexpectedly, making the algorithm redefined the velocities
of all vehicles affected by this fact.

The policy employed for the anticipatory procedure adopts two different dis-
tances: the distance between the vehicle analyzed i and its leader (dti); the ef-



Algorithm 3 The Proposed Algorithm - Solver Vehicles’ Cluster algorithm

1: while vti > dti do
2: αti ← normal(µ, σ)
3: dti = xt−1

i − xt−1
i−1 − 1

4: dtis ← dti + [vti+1 × (1− αti+1)]
5: if vti > dtis then
6: vti ← dtis
7: end if
8: if [vti × (1− αti)] > dtis then
9: call Solver Vehicle’s Cluster (i)

10: end if
11: i← i− 1
12: end while

fective distance, which considers the distance between two vehicles increased by
an expectation term (dtis). This term is an expectation level of how much the
next vehicle will move, analyzing its velocity in the previous time instant. It is
described by lines 9 and 4 of algorithms 2 and 3, respectively.

The procedure described in 3 is applied when the condition αiv
t−1
i > dis

holds. This is used to restrict the number of vehicles that need to have their
velocities updated. Then, the highway is divided in regions composed by clusters
of vehicles that will be affected by sudden changes in other vehicles’ velocities.

A cluster is identified by collecting members along the direction opposing the
flow. One begins with a vehicle that does not update its velocity until the vehicle
that is not affected by the decrease of the velocities of the vehicles belonging to
the cluster. Additionally, the signalization process may be propagated as any
vehicle in the cluster may move with a velocity which differs from the one it
was expected to. This will result in the creation of subclusters inside the main
cluster. This is computationally treated by using a recursive strategy. In a cluster
where one vehicle does not move as expected, the iterative procedure is applied
within all cluster and its subclusters.

The open boundary condition permits the use of different values for incre-
menting and decrementing vehicles at the highway. The velocity definition of the
vehicle that is being inserted is another parameter that should be considered,
i.e., the inflow boundary condition. Three approaches for defining the vehicles’
velocity are adopted in this work: the first, the vehicles are added to the high-
way with velocity equal to 1cell/s; the second approach, the vehicles’ velocity
are equal to maximum velocity; in the last one, the vehicles’ velocity is set ac-
cording to the average velocity of outflowing vehicles. The Figs. 4 and 5 show the
fundamental diagram of open boundary condition with inflowing velocities (Vi)
equal to 1 and Vmax, respectively. The fundamental diagram for the approach
that employs velocity average of the outflowing vehicles is illustrated by Fig. 6.

The Fig. 11 shows the space time diagram. Thus, the flow is around to 35%
of highway, some platoons of vehicles of formed and dissolved when the vehicles



Fig. 4. Flow-density diagram / p =
0.30 / N(µ = 0.5, σ = 0.1) / Vi = Vmax
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Fig. 5. Flow-density diagram / p =
0.30 / N(µ = 0.5, σ = 0.1) / Vi = 1
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leave the highway and are replaced by inflowing others. This is a more realistic
representation of reality than the one provided by periodic boundary conditions.

4.1 The Rejection Technique - Monte Carlo

In this work a recently proposed policy for anticipation is employed. A continuous
probability function is used, representing a flexible and realistic model, instead
of the fixed probabilities that describe all vehicles on the highway to behave
equally as average.

The rejection technique employed herein shall be described by algorithm 4:

Algorithm 4 Rejection Rule (µ, σ)

1: repeat
2: x← randomize
3: y ← randomize

4: p(x)← 1

σ
√
2π
e

−(x−µ)2

2σ2

5: until y > px
6: return ← x

4.2 Preliminary Evaluation of the Computational Cost of
Parallelization

The scalability of a problem is a crucial issue when one discusses techniques
which are to be applied to problems with many variables. The model presented,
and its future developments, shall be applicable to tens of thousands of vehicles
on a road network. The time explicit method allows the cells to be divided in
subsets which can be updated in parallel.



Fig. 6. Fundamental diagrams - open boundary condition

Fig. 7. p = 0.10 - Normal
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Fig. 8. p = 0.10 - Uniform
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Fig. 9. p = 0.40 - Normal
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Fig. 10. p = 0.40 - Uniform
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The proposed parallel model is composed by a domain partition, where each
cluster node has a subset of cells of the problem. Moreover, each node must
change information about boundaries (leftmost and rightmost) with its neigh-
boring nodes. In order to guarantee the correct change information, two buffers
are created: one for the leftmost cells and the other for rightmost cells, subset
inflow and outflow respectively. The size of the buffers is based on the maximum
speed for all cells, i.e., the maximum velocity of the highway. Their size is defined
a priori for the simulation, and is a static parameter for the whole process.

Since data for velocity, behavior expectancy and vehicles’ position are re-
quired during a simulation, the data structure should store information about
these attributes. They shall require, e.g., 16 bytes per cell. Consider that each
buffer has length 80 bytes, where (16 bytes per cell ×5 maximum velocity ×2
boundaries condition). Thus, the message from a node to its neighborhood is
sent for each simulation instant.

The parallel approach of the proposed model must obey two constraints,
which are applied only for the counter flow velocity tunning procedure. Before
re-adjusting the velocity, all speeds must have been already defined. Thus, when



Fig. 11. Space time diagram with p = 0.35 and normal distribution

this procedure is invoked for one vehicle, it can remain in wait state until all its
trailing vehicles within the cluster have their velocity set. The effectiveness of
the parallelization is ensured by synchronization through a barrier. Furthermore,
the update stage is completely parallelizable due to the fact that each vehicle
has its position updated independently of the other.

As a preliminary evaluation of the computational cost of parallelization of
the proposed model, some data which correspond to a sample architecture are
chosen and the subsequent computational costs under very simple assumptions
for a parallel implementation are obtained. These give rise to estimates which
suggest a promising performance for the parallel version of the computational
model.

The amount of message passing in the network depends on granularity of
cells per node. Considering the cluster is composed by processors Intel Core 2
Quad 2.4 GHz CPU with gigabit architecture network and running MPI.

According to [15], the latency for MPI short message (MTU equal 1500 bytes)
is 22 µs and the bandwidth up to 1.9 Gb/s. There are four messages communi-
cated for each time step simulation, i.e., message passing cost per time simulation
is 320bytes. Additionally, the cost of latency is 88 µ/s. Hence the cost per mes-
sage passing is approximately 22µs plus 3.92136 × 10−14µ/s, i.e., the message
passing cost is constant for all time steps.

Table 1 presents the elapsed time with processing of cells in the sequential
approach. Next, considering that each node processes a subset of the domain
and the information about latency, bandwidth as well as elapsed time with the
processing cells, the effect of granularity (cells per node) is estimated. Upon
inspection of table 1, the parallel approach apparently becomes a good strategy
above 1000 cells per node, i.e., the elapsed time with message passing would
represent less than 1% of the time.

5 Test and results

The tests translate qualitative results, since this work is a first approach of the
model. This uses a set of parameters in order to define what one intends to



Table 1. Elapsed time for processing cells and changing messages

cells elapsed time (µs) cells processed / time messages / time

1000 26802.938 0.996716778 0.003283222
5000 132526.938 0.999335984 0.000664016
10000 264681.938 0.999667525 0.000332475

simulate: simulation time, number of cells, number of vehicles and probability
of maintaining the velocity are required to define any simulation. An important
feature carried out by the model is the fact that the simulations are independent
of the initial state, i.e., hundreds of time steps are performed before the ”mem-
ory” of the any initial state stops influencing the dynamics of the process. One
refers to this as the convergence of the simulation to satisfactory result.

All tests in this work were performed on an intel Core 2 Quad 2.4 GHz
CPU with 4 GB of RAM with CENTos 64bits operation system. Each instance
of test was executed with the configuration: periodic boundary condition, 300
cells, 10.000 simulation time steps and the first 1000 time transient time steps.
The simulations were carried out using highway densities ranging from 0.01 to
0.99. The maximum speed value allowed is 5 cells per unit time.

In Figs. 12 different values for pm (the uncertainly of a vehicle keeps its
velocity in the next time instant) are considered; normal and uniform continuous
probability functions with the same values of pm parameter are used. The left
column figures presents results with normal functions with parameters µ = 0.5
and σ = 0.1, while the right column shows results with uniform functions. Both
are built in accordance to the Monte Carlo method.

Despite uniform probability function shows a good flow-density relation, the
values of pm parameter do not give arise to the metastable phase as clearly as
can be seen in the simulations for the normal probability function. Among the
exhibited results for the pm values, pm = 0.30 with normal probability function
closely resembles real data (see Fig. 15).

In Fig. 17 and 18 velocity-density and velocity-flow diagrams, respectively,
are illustrated. For the former, a density increase leads to a speed decrease.
The latter shows the relation between velocity and flow. For this, an increase in
flow occurs almost with constant average velocity until the flow jams; next, the
decrease in flow occurs for decreasing average speed.

5.1 Complexity and convergence of the simulation

The method is composed by two parts: velocity definition and position update.
Thus, the complexity should be analyzed under the sequential paradigm.

In the algorithm the velocity definition and position update are applied to
all vehicles. Both of them have complexity O(n), where n is the number of
vehicles, i.e., for each time simulation the algorithm is invoked for each vehicle for
defining velocity followed by other n iterations in order to update their position.



Fig. 12. Fundamental diagrams - periodic condition

Fig. 13. p = 0.10 - Normal
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Fig. 14. p = 0.10 - Uniform
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Fig. 15. p = 0.30 - Normal
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Fig. 16. p = 0.30 - Uniform
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Besides, the counter flow velocity tunning should be analyzed separately from
the ordinary velocity definition procedure (lines 1-16 of algorithm 2). When this
special procedure is enabled, its complexity is O(n2) in the worst case, since the
worst case represents invoking it for each vehicle and the first of all vehicles.

During the simulation, there is no significant impact in enabling the counter
flow velocity tunning procedure. Fig. 19 illustrates the average number of re-
adjustments per iteration within different values for pm, using normal probability
function. The worst case happens with pm = 0.10, i.e., only 10% of drivers will
keep their velocity in the next time instant. In this case, the average number of
re-adjustments represents less than 1% of iteration. Therefore, the impact of re-
adjustments does not represent a significant amount of the whole computation.

6 Conclusion

Since each driver’s behavior does not fit an uniform distribution, the continuous
probability function based on normal distribution provides an appropriate mod-
eling for driver’s behavior. Furthermore, the anticipatory feature of the drivers
helps provide a model which appears to more closely represent the real world.



Fig. 17. Velocity-density diagram /
p = 0.30 / N(µ = 0.5, σ = 0.1)
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Fig. 18. Velocity-density diagram /
p = 0.30 / N(µ = 0.5,σ = 0.1)
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Fig. 19. Average of re-adjust
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The model proposed in this work requires few variables to set up one simu-
lation. Despite being an explicit method, it is stable. After the transient phase,
the algorithm always reaches the proper state, which means the simulations
converge. The parallelizability is discussed and a quantitative estimate seems
promising for future development of a simulator for real traffic networks with
tens of thousands of vehicles.

Results illustrate many realistic features and qualitative, as well as quantita-
tive match with real data. Some improvements are under development, including
multilane roads, traffic signs, and other aspects.
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