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Abstract. In this paper, we propose a process grid free algorithm for a massively 
parallel dense symmetric eigensolver with a communication splitting multicasting 
algorithm. In this algorithm, a tradeoff exists between speed and memory space to 
keep the Householder vectors. As a result of a performance evaluation with the T2K 
Open Supercomputer (U. Tokyo) and the RX200S5, we obtain the performance with 
0.86x and 0.95x speed-downs and 1/2 memory space compared to the conventional 
algorithm for a square process grid. We also show a new algorithm for small-sized 
matrices in massively parallel processing that takes an appropriately small value of p 
of the process grid p x q. In this case, the execution time of inverse transformation is 
negligible.  

Keywords: parallel and distributed computing, numerical algorithms for CS&E 

1   Introduction 

A parallel dense symmetric eigensolver is a crucial tool for scientific computing. 
Some applications need few eigenvalues and eigenvectors for a sparse matrix. But 
other cases need all eigenvalues and all eigenvectors for a dense matrix. For example, 
all eigenvalues and eigenvectors for a dense matrix are needed in the density 
functional calculation of the electronic structure of an insulin hexamer [1]. Hundreds 
of computations of eigenvalues and eigenvectors are required to optimize the structure 
in some applications. Hence, we need to optimize the eigensolver to match both the 
dense and small sizes of the matrix in massively parallel processing because of the 
time restriction of computer services, such as at a supercomputer center. 

In addition, current computer architectures are increasing in complexity. Therefore, 
we need to administrate deep hierarchical caches, non-uniform memory accesses, and 
increase of the number of cores. Due to the features of current computer architectures, 
a cache-aware algorithm, that is, a blocking algorithm, is used in many numerical 
libraries. As an example in eigensolvers, a blocking algorithm for the reduction of 
dense matrices was proposed by Dongarra et al. [2]. After that, to reduce the 
communication time, a two-step reduction algorithm was proposed by Bischof et al. 
[3]. 



These algorithms, however, are not aimed at small matrices. Instead, the target is a 
huge matrix to obtain high “computational” efficiency for one-time computation. This 
efficiency does not consider the actual execution limit of computer services. In 
current massively parallel machines, more than 10,000 cores are implemented. In this 
massively parallel environment, the conventional approach cannot work well because 
the actual matrix size that can be solved is very limited. For a dense eigensolver, the 
computation complexity grows to O(n3), and hence the computation time increases on 
the order of 100x of execution time with one core in weak scaling when we use 
100,000 cores. 

Katagiri et al. [4] proposed a massively parallel algorithm with a communication 
splitting multicast algorithm. The algorithm established more than a 5x speedup 
compared to that of ScaLAPACK [4], although the algorithm does not implement a 
blocking algorithm. The drawback of this algorithm was the restriction of process grid 
construction. In this paper, we propose an algorithm for a square process grid 
configuration. The goal of this paper is two-fold.  

First, we propose a process grid free algorithm based on [4]. This enables us not 
only many opportunities to adapt our algorithm, but also another tuning approach. 

Second, the process grid free algorithm has a tradeoff between memory space and 
execution speed. We evaluate the tradeoff by using two kinds of parallel machines. 
The execution speed with a small-sized matrix is examined in this paper. We focus on 
the small dimension of 10,000, which represents the real usage for a chemical 
simulation. The execution time for a small size of 10,000 is shown in the performance 
evaluation. 

This paper is organized as follows. Section 2 explains sequential and parallel 
algorithms for symmetric eigensolvers. Section 3 proposes a new algorithm with 
communication-splitting multicasts. Section 4 is a performance evaluation with the 
T2K Open Supercomputer (U. Tokyo) and the RX200S5. Finally, we summarize our 
findings in Section 5. 

2   Symmetric Dense Eigensolver 

To calculate the symmetric standard eigenproblem xAx  , where 
nnn xA   ,, 1　 , we need to reduce the dense matrix A to a tridiagonal matrix 

T. This transformation is called “tridiagonalization.” After solving the new 
eigenproblem for T, we obtain an eigenvalue and an eigenvector. The eigenvector, 
which is y in this example, is not the eigenvector for matrix A. Therefore, we need a 
transform from y to x, which is the eigenvector of A. This transformation is called 
“inverse transformation.” 
 
Non-blocking Sequential Algorithm 
We describe the tridiagonalization processes shown in Figure 1. 

In this figure, the notation          indicates the sub-matrix of     , which 
consists of rows from a to b and columns from c to d. Figure 1 includes a dense vector 
matrix multiplication in line <3>, a dot product in line <4>, a copy in line <5>, and a 
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matrix update in line <6>. To perform inverse transformation, we need a workspace 
to store the Householder (pivot) vectors              .  

Inverse transformation is described in Figure 2. Figure 2 includes a dot product in 
line <3>, and a matrix update in line <4>. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Tridiagonalization Processes. 

 
 
 
 
 

 

Figure 2.  Inverse Transformation Processes. 

3   The Communication Splitting Multicasting Algorithm 

3.1   The Data Distribution 

Let the number of MPI processes be np = px x py, and the process grid be p x q. The 
process identification is also defined in a 2D manner, that is, (myidx, myidy), which 
ranges from 0 to p-1 for myidx and from 0 to q-1 for myidy. 

The symmetric dense matrix A is distributed to each process in a cyclic-cyclic 
manner with a non-compressed form; thus, it does not use symmetry. In the cyclic-
cyclic distribution, indexes of the row and column for matrix A are distributed as 
follows. 

 (1) 

where, 
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By using the index sets in Equation (1), we can denote the distributed matrix and 
vectors. For example, )(

,
k

kA  is a vector that consists of a cyclic distribution for the 

first dimension and an entire k-th column for matrix )(kA , and ku is a vector in 

which the elements are distributed with the cyclic manner of vector ku . 

3.2   The Square Grid Algorithm for Tridiagonalization  

For the parallel algorithm for a square grid [4], that is, the case of p=q, 
tridiagonalization is used, as described in Figure 3. 

In Figure 3, all communications can be implemented by using multiple 
MPI_BCASTs or MPI_ALLREDUCEs on the splitted communicator of MPI. The 
communication time can be reduced in massively parallel execution, in contrast to the 
time needed by a conventional algorithm that cannot split the communication. To 
perform matrix updating in parallel in lines <25>-<29> in Figure 3, we need the 
partial elements of xk and uk. The copies can perform 2x the tridiagonal multicasting 
operations in lines <5>-<7> to obtain the elements from 

ku  to 
ku , and in lines 

<12>-<14> to transpose y to x. This enables us to dramatically reduce the 
communication time for the operation in comparison to that of the conventional 
algorithm [2]. 

Figure 4 shows the data distribution of vectors uk, xk, and yk in the square grid 
algorithm. The data distribution of their duplications is also shown. 

3.3   The Process Grid Free Algorithm for Tridiagonalization 

The Case of a Rectangle Grid (p < q)  
In [4], there is no description of rectangle process grid algorithms for the rectangle 
grid (p < q). However, the algorithm can be constructed by exchanging MPI_BCAST 
in Figure 3 with MPI_ALLREDUCE. We consequently establish a multicasting 
algorithm, but the communication time increases compared to the case of the square 
process grid.  

The key point of the change is the transpose operations in lines <5>-<7> and <12>-
<14> in Figure 3. In the case of p < q, there is no data for the elements of yk with a p 
cyclic distribution to go with the elements of xk with a q cyclic distribution. To avoid 
this situation, we add a copy process of 

ku =
ku stridden (myidy / px) with offset (py 

/ px), before line <6> in Figure 3 for uk operation. This is the key implementation 
technique of this distribution. Figure 5 shows the data distribution of yk and its 
multicastings based on this implementation. 
 
The Case of a Rectangle Grid (p > q)  
There is also no description and no performance evaluation in [4] for the rectangle 
grid (p > q). According to our verification, this algorithm can be described by 
exchanging MPI_BCASTs with MPI_ALLREDUCE, as in the case of p < q. But the 
stride and offset are changed to (myidx / py) and (px / py), respectively. This is also a 



key implementation technique to establish a grid free algorithm. Figure 6 shows the 
data distribution of yk and its multicastings based on the above implementation. 

The number of multicasting is reduced to the case of p < q, but the number of 
processes by MPI_ALLREDUCEs is increased. Hence, the best grid configuration 
depends on the communication performance of the tridiagonalization process.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 

<1> do k=1, n-2 
<2>   if ( k   )  MPI_BCAST ( )(

,
k

kA
 ) to Cores sharing rows  . 

<3>   else  Receive data with MPI_BCAST ( )(
,

k
kA
 )  endif; 

<4>   Computation of ( kk ua ,  ) with MPI_ALLREDUCE; 

<5>   if ( I have diagonal elements of A )  
<6>     MPI_BCAST ( 

ku  ) to Cores sharing columns  . 

<7>   else  Receive data with MPI_BCAST ( ku  )  endif; 
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<9>     if ( j   ) )(
,

k
j

T
kk

T
k

T
k Auyy

j     

<10>  enddo 

<11>  MPI_ALLREDUCE of T
ky   to Cores sharing rows  . 

<12>  if ( I have diagonal elements of A ) 
<13>     MPI_BCAST ( T

ky   ) to Cores sharing columns  . 

<14>  else  Receive data with MPI_BCAST ( kx  )  endif; 

<15>  do j=k, n 
<16>      k

T
kkk uy   enddo 

<17>  MPI_ALLREDUCE of 
k  to Cores sharing rows  . 

<25>  do j=k, n 
<26>     do i=k, n 
<27>       if (i   .and. j   ) then 
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<29>     enddo;  enddo; 
<30>  if (k   )  }{k   endif 

<31>  if (k   )  }{k   endif 

<32> enddo 

Figure 3.  Parallel Tridiagonalization Algorithm with Square Process Grid Proposed in [4]. 
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Figure 4.  Data Distribution of Vectors uk, xk, and yk , and Vectors of Their Duplications. 

Figure 5.  Data Distribution of Vector yk and Its Multicastings on the Process Grid Free 
Algorithm for Tridiagonalization. (the Case of Rectangle Grid (p < q), p = 2 and q = 4). 
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3.4   The Process Grid Free Algorithm for Inverse Transformation 

Figure 7 shows the parallel algorithm for inverse transformation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The algorithm in Figure 7 also can be described with multiple MPI_BCASTs. The 
process grid affects the execution performance since p is the number of 
MPI_BCASTs for the p x q grid. The small p seems to perform better, but it depends 
on network performance. The data distribution of uk and its multicastings are shown 
in Figure 8.  

However, the memory requirement to store the Householder vector uk varies 
according to p. If p=2, it needs 2x memory space compared to p=4 to keep the 

<1> do k=n-2, 1, -1  

<2>   Gather the vector  ku  and  scalar k  by using  

p-times of MPI_BCAST for 
ku  with sharing . columns  . 
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Figure 6.  Data Distribution of Vector yk and Its Multicastings on the Process Grid Free 
Algorithm for Tridiagonalization. (the Case of Rectangle Grid (p > q), p = 4 and q = 2). 

Figure 7.  The Parallel Inverse Transformation Algorithm with Square Grid Proposed in [4]. 



Householder (pivot) vectors. Therefore, this algorithm is a tradeoff between execution 
time and memory space. This algorithm is process grid free. The process grid of the 
inverse transformation is the same as that of tridiagonalization. From this point of 
view, the entire performance is determined by the communication performance 
between tridiagonalization and inverse transformation. 
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4   Performance Evaluation 

4.1   Machine Environment  

We used the T2K Open Supercomputer (TODAI), which is a HITACHI HA8000 
installed at the Information Technology Center, The University of Tokyo. Each node 
contains 4 sockets of the AMD Opteron 8356 (Quad core, 2.3 GHz). The L1 cache is 
64 KB/core, the L2 cache is 512 KB/core, and the L3 cache is 2 MB/4 cores. The 
memory on each node is 32 GB with DDR2-667 MHz. The theoretical peak is 147.2 
GFLOPS/node. Inter-node connection is 4 lines of the Myri-10G with a full bisection 
connection. The inter-node connection attains 5 GB/sec in both directions. We used 
the HITACHI Fortran90 Compiler version V01-00-/B with option “-opt=ss -
noparallel.” Users can use a maximum of 64 nodes (1,024 cores) for a personal 
application in normal service, but a maximum of 256 nodes (4,096 cores) is available 
for a special service, which can be performed once per month.  

Figure 8.  Data Distribution of uk and Its Multicastings on the Process Grid Free Algorithm 
for Inverse Transformation. 



We also used the RICC PRIMERGY RX200S5 installed in the Advanced Center 
for Computing and Communication, RIKEN. Each node contains 2 sockets of the 
Intel Xeon X5570 (Quad core, 2.93 GHz). The L1 cache is 256 KB/core, the L2 cache 
is 1 MB/core, and the L3 is 8 MB/4 cores. The memory on the node is 12 GB with 
DDR3-1333 MHz. The theoretical peak is 93.0 GFLOPS/node. Inter-node connection 
is one line of the DDR InfinitiBand. We used the Fujitsu Fortran90 Compiler version 
3.2 with the option “-pc –high.” In this experiment, 32 nodes (256 cores) were used. 

We used ABCLib_DRSSED version 1.04 [5][6]. No automatic tuning was used in 
this experiment; hence, the default parameters were set. 

 

4.2   Performance on Different Process Grids  

Figure 9 shows the execution time. Table 1 shows the speedups and memory spaces in 
the cases of the square and rectangle grids on the T2K.  
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Figure 9.  Execution Time on Different Process Grids on the T2K. 

 
In Figure 9, the execution time of p > q increases because the gathering time for uk 

increases according to p. In Table 1, speedup, memory space, speedup per memory 
(SPM) based on conventional execution are calculated. The conventional executions 
are 16x32 (512 cores) and 32x32 (1024 cores). If SPM is more than 1.0, it performs 
with good efficiency with respect to the ratio of speedup based on unit memory space.  

Table 1 shows that the case of p>q has high efficiency with respect to SPM. 
Especially, the speed-down is only 0.86x, but memory space is reduced to 1/2 in 
Table 1 (a). In the p = q case, the algorithm of 32x32 is very fast compared to the 
others. If users accept the 0.41x speed-down, the memory space can be reduced to 1/4.  



Table 1.  Speedups and Memory Spaces on the T2K. The Memory Space Is Calculated by the 
Memory Requirement to Keep Householder Vectors uk. 

(a) 512 Cores (p != q) 
Grid 
(pxq) 

Time 
[sec.] 

Speed 
UP 

Mem. SPM

16x32 25.8 1x 1x 1 

8x64 24.0 1.07x 2x 0.5 

4x128 25.3 1.01x 4x 0.2 

2x256 31.3 0.82x 8x 0.1 

32x16 29.7 0.86x 0.5x 1.7 

64x8 24.6 0.74x 0.25x 2.9 

128x4 54.6 0.47x 0.125x 3.7 

256x2 90.0 0.28x 0.062x 4.5 
 

(b) 1024 Cores (p = q) 

Grid 
(pxq)

Time
[sec.]

Speed
UP 

Mem. SPM 

32x32 16.5 1x 1x 1 

64x16 32.0 0.51x 0.5x 1.02 

128x8 39.7 0.41x 0.25x 1.6 

256x4 73.1 0.22x 0.125x 1.7 

512x2 128 0.12x 0.062x 1.9 
 

 
Figure 10 shows the execution time. Table 2 shows the speedups and memory 

spaces in the cases of the square and rectangle grids on the RX200S5.  
 
 

0

5

10

15

20

25

30

35

40

2x64 4x32 8x16 16x8 32x4 64x2

23

18.3 17 17.5 18.5

25.3

7.74

7.85
8.11 8.88

9.89

13

Tridiagonalization Inverse Transform

N=10,000, 16 Nodes, 128cores
(RX200S5) 

T
im

e
 in
 Se

co
n
d
s

(a) 128 Cores (p != q) 

0

5

10

15

20

25

30

35

40

45

2x128 4x64 8x32 16x16 32x8 64x4 128x2

19

13.2
10.5

8
12 13.6

22

3.97

4.16

4.43
4.99

6.14

9.18

18.8

Tridiagonalization Inverse Transform

N=10,000, 32Nodes, 256Cores
(RX200S5) 

T
im

e
 in
 Se

co
n
d
s

(b) 256 Cores (p=q) 

Figure 10.  Execution Time in Different Processor Grids on the RX200S5. 

For Table 2 (a), (b), the ratios of SPM are better than those of the T2K. The speed-
down is only 0.95x, but the memory space is reduced to 1/2 in Table 2 (a). In Table 2 
(a), the speed-down is only 0.71x with 32x8 compared to the case of 16x16. 

 



Table 2.  Speedups and Memory Spaces on the RX200S5. The Memory Space Is Calculated 
by the Memory Requirement for Householder Vectors uk. 

(a) 128 Cores (p != q) 
Grid 
(pxq) 

Time 
[sec.] 

Speed 
UP 

Mem. SPM

8x16 25.1 1x 1x 1 

4x32 26.1 0.96x 2x 0.48

2x64 30.7 0.81x 4x 0.20

16x8 26.3 0.95x 0.5x 1.9 

32x4 28.3 0.88x 0.25x 3.5 

64x2 38.3 0.65x 0.125x 5.2 
 

(b) 1024 Cores (p = q) 

Grid 
(pxq)

Time
[sec.]

Speed
UP 

Mem. SPM 

16x16 12.9 1x 1x 1 

32x8 18.1 0.71x 0.5x 1.4 

64x4 22.7 0.56x 0.25x 2.2 

128x2 40.8 0.31x 0.125x 2.4 
 

4.3   Execution Performance in a Massively Parallel Environment 

Figure 11 shows the execution time with 4,096 cores (256 nodes) on the T2K. In this 
experiment, 11 kinds of processor-grid configurations were tested.  

Figure 11 indicates following interesting phenomena:  
1. The conventional square grid, 64x64 (total execution time is 11.7+22.4=34.1 

seconds), is not the fastest. In this case, 8x512 (the total execution time is 
2.05+26.8=28.8 seconds) is the fastest. 

2. The ratio between the time of inverse transformation and the total time decreases 
when p is reduced. The fastest case of inverse transformation takes only 0.283 
seconds of execution in the process grid 2x2048. The ratio of execution time of 
inverse transformation to the total time is 0.283/59.7=0.47%. This is negligible 
time. 

3. When p increases, the execution time of inverse transformation greatly increases. 
In addition, it causes a bottleneck due to the increase of processes according to 
multicastings. In contrast, the time of tridiagonalization only slightly affects the 
total time compared to the time of inverse transformation. This is due to good 
load balancing for the heavy computational part of tridiagonalization.   
 

Phenomena 2 and 3 provide another possibility of optimization for symmetric 
eigensolvers. If we use much memory to store pivot vectors, we take small values of p. 
Because the heavy computational part is only tridiagonalization in this case, we can 
tune the routine in a simple manner. Conventional tuning is very complex since there 
is a tradeoff between tridiagonalization and inverse transformation in the 
communication, especially in a conventional square process grid. Again, our target is 
small-sized matrices. There is a room for memory space in our target. Hence, the 
algorithm with small values of p is a candidate for an efficient parallel algorithm to be 
considered in the future. 
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5   Conclusion 

In this paper, we propose a process grid free algorithm for a massively parallel dense 
symmetric eigensolver with a communication splitting multicasting algorithm. A 
tradeoff exists between speed and memory space in this algorithm. As a result of the 
performance evaluation with the T2K Open Supercomputer (HITACHI HA8000) and 
RICC RX200S5, we found that 0.86x and 0.95x speed-downs with 1/2 memory space 
allows us to keep the Householder vectors.  

We showed the possibility of this new algorithm for small-sized matrices on 
massively parallel processing to take appropriately small values of p of process grid p 
x q. In this case, the execution time of inverse transformation is negligible.  

The blocking parallel algorithm is now being studied in [7] and takes into account 
the communication reduction for the symmetric dense eigensolver. Implementing a 
communication-hiding algorithm with previous sending for the next-step Householder 
vector is important future work for small-sized matrices on massively parallel 
processing. 
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