
The High Performance Solution of Sparse

Linear Systems and its Application to Large 3D

Electromagnetic Problems

D. Goudin, A. Pujols, M. Sesques, M. Mandallena, J.J. Pesqué, B. Stupfel1

CEA/DAM/CESTA, BP 2, F-33114 Le Barp, France
david.goudin@cea.fr

Abstract. The numerical treatment of high frequency electromagnetic
scattering in inhomogeneous media is very computationally intensive.
For scattering, the electromagnetic field must be computed around and
inside 3D complex bodies composed of inhomogeneous media. Because
of this, accurate numerical methods must be used to solve Maxwell’s
equations in the frequency domain. In this paper, we consider the hy-
brid integral equation and the finite element techniques. For some high
frequency applications, these numerical approaches lead to linear sys-
tems that are too large for current computer architecture. In order to
solve these very large systems, typically tens of millions of Degrees Of
Freedom (DOF), we have combined modern numerical methods with
very efficient parallel algorithms.

Related topics: parallel computing, large scale simulation

1 Introduction

Our primary focus is on the simulation of electromagnetic (EM) phenomena
around 3D stealthy bodies using the time harmonic formulation. This problem
leads to numerically solving Maxwell’s equations in penetrable bodies and un-
bounded domains. We are interested in predicting Radar Cross Section (RCS)
of bodies. The computation of RCS for complex 3D bodies for high frequen-
cies can lead to systems with millions of DOF. For these simulations, we need
to combine efficient algorithms, multiple levels of parallelism, and high per-
formance linear solvers. Our main goal is to study 3D bodies that may be
composed of complex materials.

High accuracy is an important aspect for these computations, especially
in achieving confidence for very low levels of RCS. From a numerical point
of view, we have to overcome two major hurdles. First, the computational do-
main is unbounded. Thus, one procedure consists of truncating the domain and
putting an Absorbing Boundary Condition (ABC) on the interface (Limiting
Conditions of Berenger for example). But for our applications, this approach
is not sufficiently accurate. We choose instead to take into account the exact
far field radiation condition using a Boundary Integral Equation (BIE) on the



interface, which can be very close to the target surface or even on the target
surface itself. This BIE formulation leads to a dense linear system (complex
non-hermitian but symmetric).

The second major difficulty is discretization accuracy, which correlates to
very large linear systems. In fact, in the time-harmonic formulation, the size of
the mesh, and thus the linear system, is a function of the wavelength. Typically,
we need to put at least 10 discretization points per wavelength in each direction.
With the domain sizes mentioned above, problems with several millions of DOF
are common. So, in order to reach higher frequency levels, we need very efficient
numerical methods, as well as high performance computing.

2 Surface discretization

Our initial electromagnetics simulation codes were based on numerical methods
such as the BIE method and Partial Differential Equation (PDE). The PDE
discretization uses the finite elements method and gives rise to the solution of
linear systems. Concerning the BIE method, we choose a classical BIE approach
with the Electric Field Integral Equation method (EFIE). It leads to a dense
linear system with complex coefficients. This matrix is dense, non-hermitian
but symmetric. Using this formulation, since the matrix does not have good
properties, iterative methods do not perform well.

The main advantage of this BIE method is that only the surface has to be
meshed when the body is perfectly conducting. When the body is composed
of coating with high refractive index, discretization of the external surface is
sufficient using a local reflection operator R (function of the surface impedance
of the coating). For more complicated isotropic coating, we only have to mesh
the interfaces of all of the homogeneous zones. These interfaces are typically
between the homogeneous medium and the outer boundary of the body where
the RCS is given. For this reason, the number of electric and magnetic current
unknowns on the interface is reasonable. However, this approach leads to a
dense matrix.

The BIE method is not suitable when we have many thin media layers. In
fact, the number of DOF nearly equals to the one given by a volume finite ele-
ment discretization, and moreover, the BIE matrix is dense. It is well known, for
large-scaled problems, dense direct methods are infeasible because they require
the storage of N2 entries of the matrix, and O(N3) floating point operations
to compute the factorization. Moreover, thin layers can cause numerical diffi-
culties in the computation of matrix coefficients involving DOF that belong to
elements that are too close.

Finally, non-isotropic coatings are also non-tractable for the BIE. Thus, in
order to overcome all these complexities, we have developed a hybrid numerical
method.



3 Hybrid numerical method: coupling volumic

subdomains and boundary formulations

We have extended our surface discretization and BIE code to include an hy-
brid discretization approach. To describe this approach, consider the coupling
interface between two subdomains, the interior of the penetrable body and the
truncated exterior domain. The interface is the surface of the body. For the ex-
terior domain we still use the BIE so that the radiation boundary condition can
be satisfied. In the interior, we apply a Finite Element (FE) method to a PDE.
The unknowns in the interior are the electric fields. This coupling method leads
to a mesh that consists of tetrahedrons in the interior domain, and triangles
on the coupling interface. The unknowns of this hybrid method are the electric
fields in the interior and the electric and magnetic currents on the interface.

The key idea of this new approach is to partition the domain into concentric
regions and to apply a Robin transmission condition between the interfaces.
On the outermost boundary, the radiation boundary condition is handled with
a new BIE formulation (Despres Integral Equations, EID). This formulation
is used because of the algebraic structure of the generated linear system. In
particular, this structure allows us to derive convergence theory for iterative
methods.

To solve the complete linear system (the system with concentric subdomains
and the outer boundary problem), rather than applying a direct linear solver
method, we have adopted a direct/iterative domain decomposition approach.
In this Domain Decomposition, an outermost iteration is combined with an
inner loop involving direct methods for the volume subdomains problems. For
the outer boundary condition, a separate iterative scheme is also used (fast
multipole method).

PDE

S0

S1
Sn

BIEM : EID

Ω Ω1 n

Fig. 1. A weak coupling of numerical methods.

3.1 Domain Decomposition

The volume domain is divided into m concentric subdomains Ωk, starting from
the interior to exterior. The radiation problem, the last domain Ωm, is the sub-
domain where we use the EID formulation. We proceed in an iterative fashion
solving this domain decomposition by looping over the subdomains from the
interior to exterior.



The domain decomposition algorithm, which is a block Gauss Seidel cycle,
is intrinsically sequential: the first subdomain Ω1 is solved then the second one
Ω2, continuing until Ωm where the integral equation is solved.

The boundary condition of each domain is taken at the interior interface
at iteration (n+1) and at the exterior interface at iteration n. On the interior
interface of the first domain, which is the boundary of the obstacle, we apply
the perfectly conducting boundary condition (or Leontovitch condition). For
the last subdomain, we apply the radiation boundary condition using the BIE.

Since obviously our Domain Decomposition Method (DDM) is intrinsically
sequential, our parallelization effort will focus on the solution procedure for
each subdomain solve. Each of these subdomain solves can consist in either a
standard parallel Conjugate Gradient iteration or a parallel direct method. For
the purpose of high performance computing, and overall for good convergence,
we choose the parallel direct solver library Emilio, developed in collaboration
with the Bacchus team of INRIA Bordeaux Sud-Ouest (France).

4 Emilio : software library for solution of large sparse

linear systems by direct methods

As explain in section 3, we choose to use parallel direct methods for their
robustness and the predictability of their performances. Over the past few
years, direct methods have made significant progress thanks to research studies
on both the combinatorial analysis of Gaussian elimination process and on the
design of parallel block solvers optimized for high-performance computers. It is
now possible to solve real-life three-dimensional problems having in the order
of several millions equations, in a very effective way with direct solvers. This
is achievable by exploiting superscalar effects of modern processors and taking
advantage of computer architectures based on networks of SMP nodes. All of
the techniques described in this paper have been integrated in the PaStiX

software, which uses the static mapping and sparse matrix ordering software
package Scotch. To get more details about all the techniques described here,
it is easy to find some papers in Scientific Journals or in proceedings.

The main characteristic of our solver library is that it relies on blockwise
algorithms and on a load balancing and computational task scheduling that
take into account the target architecture. We use these techniques for high
performance sparse supernodal LDLT or LLT parallel factorization without
pivoting for large sparse symmetric positive definite systems, and for sparse
supernodal LU parallel factorization with static pivoting for non-symmetric
matrices having a symmetric pattern.

The library developed at INRIA is called PaStiX while the industrial ver-
sion of this software (Emilio) includes in addition algorithms for parallel as-
sembly in the context of the finite element method. Moreover, as in our EM
problems we only deal with complex coefficients, Emilio performs all of its
computations on complex variables in the symmetric matrix.

In order to achieve efficient parallel sparse factorization, we consider the
following pre-processing phases (see figure 2).



Scotch Fax Blend Pablas Sopalin

amalgamation factorization
ordering & block symbolic refinement &

mapping assembly

Supernodal
partition

Block symbolic
matrix L matrix L

Distributed block Distributed block
matrix L with coefficients

block matrix L solutionto matrix A
graph associated

parallel factorization
& solution

distributeddistributed factorized

Fig. 2. Emilio/PaStiX library for solving large sparse linear systems.

– The ordering phase (performed by the Scotch software) computes a sym-
metric permutation of the initial matrix A such that factorization process
will exhibit as much concurrency as possible while incurring low fill-in. We
use a tight coupling of the Nested Dissection and Approximate Minimum
Degree algorithms. The partition of the original graph into supernodes is
achieved by merging the partition of separators computed by the Nested
Dissection algorithm and the supernodes amalgamated for each subgraph
ordered by Halo Approximate Minimum Degree.

– The block symbolic factorization phase (performed by the Fax software)
determines the block data structure of the factorized matrix L associated
with the partition resulting from the ordering phase. One can efficiently
perform such a block symbolic factorization in quasi-linear space and time
complexities. From this block structure, one can deduce the weighted task
graph that captures all dependencies between blocks, as well as the supern-
odal elimination tree.

– The block repartitioning and scheduling phase (performed by the Blend

software) refines the previous partition by splitting large supernodes in or-
der to exploit concurrency within dense block computations, and maps the
resulting blocks onto the processors of the target architecture. We presented
in a mapping and scheduling algorithm based on a combination of 1D and
2D block distributions. This algorithm computes an efficient static schedul-
ing of the block computations for the supernodal parallel solver that uses
local aggregations of contributions to minimize the communication volume.
This can be done by very precisely taking into account the computational
costs of the BLAS3 primitives, the communication cost and the cost of local
aggregations.

– The parallel sparse factorization phase (performed by the Sopalin soft-
ware) is fully driven by the scheduling of the block computations produced
by the previous phase.



The parallel backward forward solves phase uses the same scheme of com-
putations and communications as Sopalin.

– The parallel assembly phase is a special phase, because it doesn’t exist in
the PaStiX software but only in Emilio. This phase is performed by the
Pablas software. It concerns the matrix associated with finite elements
discretization. Since, as said above, the global matrix is distributed (see in
previous lines), the parallel assembly is guided by two distributions : the
distribution of the blocks of the factorized matrix (computed by Blend)
and the distribution of the elements of the mesh. This distribution assigns
a roughly equivalent number of mesh elements to every processor (it uses
criteria of locality and information from the mesh). The assembly is fully
parallel and could be used in different domains of application and thus in
different simulation codes based on finite element method.

Nevertheless, a major memory bottleneck in our parallel supernodal factor-
ization scheme is caused by this local aggregation mechanism. The local aggre-
gation mechanism is due to the fact that during the factorization of some local
column-blocks, a processor has to update several times a block Aij mapped
on another processor (as illustrated on figure 3). In order to overcome this

k1

k2

j

i
Aij

On P1

On P2

AUBij

Fig. 3. Local aggregation of block updates. Column-block k1 and k2 are mapped on
processor P1, column-block j is mapped on processor P2. Contributions from processor
P1 to the block Aij of processor P2 are locally summed in AUBij .

problem of aggregation, the new generation of supercomputers gives us a re-
sponse. Because nowadays, the massively parallel high performance computers
are generally designed as networks of SMP nodes. So, on those SMP-nodes
architectures, to fully exploit shared memory advantages, a relevant approach
is to use an hybrid MPI+threads implementation of our algorithm. As said



previously, the local aggregation mechanism is inherent to the message pass-
ing model used in our parallel factorization algorithm. For very large matrices
from 3D problems, the highest peak of memory consumption is all the more
reduced of aggregated block contributions during the factorization amounts
several times the local factorized matrix part on a processor. Thus, in an SMP
context, the simplest way to lower the use of aggregate update blocks is to avoid
message-passing communications between processors on a same SMP node. In
an SMP node, a unique MPI process spawns a thread on every processor. These
threads are then able to address the whole memory space of the SMP node.
Each thread is therefore able to access the matrix part mapped onto its MPI
process. By this way, though the computational tasks are distributed between
the threads, any update of the matrix part of the MPI process is directly per-
formed in the local matrix. The communication between MPI processes still
uses the local aggregation scheme we described earlier. This implies that the
amount of extra-memory required for the storage of the AUBs depends only
on the number of MPI processes. Therefore, the additional memory needed to
store the AUBs is all the more reduced that the SMP nodes are wider (in terms
of number of processors).

5 Results

The parallel experiments were run on the TERA10 supercomputer of CEA/DAM
with a network based on a Quadrics switch. All computations are performed
in double precision and all time results are given in seconds. The blocking size
parameter for BLAS3 computations is set to 60 and we use here a one di-
mensional distribution as default. NNZ represents the number of non zeroes
in the matrix A, and OPC is the number of operations needed for the LDLt
factorization.For each test, we use only one Gauss Seidel iteration, because we
only wanted to test the performance of the new direct solver. Moreover, the
global computation time for the all runs is mainly due to the factorization time
of the volumic subdomains. In fact, the surfacic domains are quite small, so
we can easily use Scalapack to compute the solution of the dense linear systems.

The table below shows results for a problem with N1=23 millions of vo-
lumic DOF and N2=3132 surface DOF. These results came from the MPI
version of our 3D code and the MPI version of the solver PaStiX. NNZ(A)=
1.38 e+10, OPC=2.1 e+14. This is the biggest test case we could run with our
full MPI code because the memory needed for this test case is about 60Gbytes
per MPI task, that means for 64 MPI tasks we had to reserve 32 SMP nodes
with 128 Gbytes per node (and 16 cores per SMP node). In fact we must
reserve 512 cores, use only 64 of them, just because of the memory consump-
tion...Concerning the preprocessing phase, because we use for the moment only
a sequential version, it takes about 45 minutes and more than 4 Gigabytes of
RAM.



Step C.P.U. (sec)
Assembly 900

Factorization 8700
Solution 40

The table below shows computational time of the factorization (because
this operation is the most C.P.U. time consumming for individual operation)
for the same 3D object, but this time with the MPI+threads version of the
solver PaStiX. We give the results with 16 threads per MPI task (our SMP
nodes have 16 cores), and the time for preprocessing is the same than the MPI
one.

Number of Tasks C.P.U. Max Memory (Gbytes)
(MPI/Threads) (sec.) per SMP node

512 (32/16) 1461 29

The table below shows computational time of the factorization for a 3D
object with N1=45 millions of volumic DOF (only one subdomain in the vol-
ume), NNZ(A)=2.59e+10, OPC=1.04e+15. The time needed to compute the
preprocessing is about one hour and more than 8 Gbytes of RAM.

Number of Tasks C.P.U. Max Memory (Gbytes)
(MPI/Threads) (sec) per SMP node

512 (32/16) 6126 49
1024 (64/16) 3054 32
2048 (128/16) 2018 35

The table below shows computational time of the factorization for a 3D
object with N1=83 millions of volumic DOF (only 1 subdomain in the volume),
NNZ(A)=5.97e+10, OPC=4.28e+15. Concerning this case, in the future we will
need to use the PTScotch software instead of Scotch because for the moment,
when we use Scotch it takes more than 2 hours and more than 16Gbytes of RAM
to compute the ordering. The first tests with PTScotch are very encouraging
and we are working on the integration of PTScotch in our industrial software.

Number of Tasks C.P.U. Max Memory (Gbytes)
(MPI/Threads) (sec.) per SMP node

768 (48/16) 27750 115

In the last three test cases, the memory overhead is drastically reduced
thanks to the hybrid MPI+threads implementation. In addition, we observe a
significant decreasing of the factorization time and a better global scalability
of the parallel solver.

6 Conclusion and Prospects

This paper presents promising results on the parallel solution of large sparse
linear systems by direct methods and so, on the parallel solution of RCS for



3D bodies. The arrival of massively parallel supercomputers with tens thou-
sands of processors gives the possibility to solve larger linear systems (tens or
hundreds millions of DOF). The work regarding all the stages combined in our
new simulation code in electromagnetism is still in progress. Especially, thanks
to the powerful SMP version of the solver PaStiX, we are currently develop-
ping a complete MPI+threads version of the code to bypass our problems with
memory. It is important to note that we have validated with success all the
physics contained, thanks to comparisons with other codes (in particular 2D
codes) and measurements. Moreover, relying on the direct solver precision and
robustness, a whole new method based on full multigrid is under development.
Unlike classical iterative solvers, the multigrid setup phase uses a coarse solu-
tion given by direct solver as an entry point. Refining volumic subdomain and
using previous coarse solution, allows us to compute a new linear system whose
fine solution is near the interpolated coarse one. Simple iterative methods such
as Jacobi can reduce the error, leading to an accurate fine solution at minimal
cost. Moreover, the Jacobi method got two main advantages: it is intrinsically
parallel (reusing direct solver unknowns distribution) and can be performed
without assembling the whole system.


