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Abstract. One of the great benefits of computational grids is to provide
access to a wide range of scientific software and a variety of different
computational resources. It is then possible to choose from this large
variety of available resources the one that solves a given problem, and
even to combine these resources in order to obtain the best solution.
Grid service trading (searching for the best combination of software and
execution platform according to the user requirements) is thus a crucial
issue. Trading relies on the description of available services and com-
puters, on the current state of the grid, and on the user requirements.
Given the large amount of services that may be deployed over a Grid,
this description cannot be reduced to a simple service name.
In this paper, a sophisticated service specification approach similar to
algebraic data types is combined with a grid middleware. This leads to a
transparent solution for users: they give a mathematical expression to be
solved, and the appropriate grid services will be transparently located,
composed and executed on their behalf.

1 Introduction

Grid computing and distributed computing projects have been very effective in
exposing large collections of services and computational resources to users. But
users still need to handle all the difficulties involved in finding and composing the
appropriate resources to solve their problem. In Figure 1 we express the general
problem of matching user service requests to the appropriate resources. On the
right side of the figure, there is a set of services running on some computational
resources, and on the left side there are end users that want to use these services
to solve their problems. The goal is to find the services or combination of services
that can solve the users problem accurately and efficiently, to execute these
services and return the result to the user.

A corollary part of this problem is providing the user with the appropriate
syntax to express their needs. This syntax has to be sufficiently precise to find
relevant solutions, and it should also be easy for the user to express complex
problems.
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Fig. 1. A simplified overview of the general problem of matching service requests to
available resources

Our solution (see Figure 2) combines a service trader and a GridRPC mid-
dleware. In this scenario, the end user asks the GridSolve [DLSY08,YSS+06]
GridRPC middleware to solve some (possibly complex) problem request. The
service trader uses its knowledge of the available services and matches the prob-
lem request with a service or a combination of services. GridSolve is then used
to execute the services and the final result is returned to the user.

2 Service Trading

A service trader acts on the behalf of a user to find a combination of the available
computational services that will handle the users request. The details of the
service trader used in this work are described in [HDP09]. For this research,
improvements have been made in the way it searches for solutions to the users
request. The computational complexity of the available services is used to select
less computationally expensive solutions from the available services. This leads
to an improvement in the execution time for the users request, since, in practical
situations, we can prune the more computationally complex solutions.

2.1 Inputs for the service trader

The trader needs a description of the application domain using an algebraic
specification. To this goal we use an order-sorted signature (S,≤,Σ) where:
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Fig. 2. Our solution takes complex user problems and using a service trader matches
them to grid services exposed via GridSolve

S is a set of sorts (usually called types in programming languages, both terms
will be used in this discussion);

≤ is an order to express the subsorting (subtyping) link between sorts;
Σ is a set of symbols standing for constants and sorted (typed) functions.

For a complete definition see [GM92]. The operators used may be overloaded and
some extra equations E are added to describe the properties of the operators (e.g.,
commutativity, associativity, neutral element). For example, a partial represen-
tation for linear algebra over scalars and matrices is: S = {Scalar, Matrix}
Σ = {
0, I :Matrix

0, 1 :Scalar

+ :Matrix × Matrix → Matrix

+ :Scalar × Scalar → Scalar

∗ :Matrix × Matrix → Matrix

∗ :Scalar × Matrix → Matrix

∗ :Scalar × Scalar → Scalar

}

E = {
Matrix x, Matrix y : x + y = y + x

Matrix x : 1 ∗ x = x

Matrix x : 0 ∗ x = 0
Matrix x : I ∗ x = x

}
The Matrix types can have lots of subtypes to describe and handle different
matrix properties, for example, symmetric, dense, space, triangular and band.

The computational services are described as terms in an order-sorted sig-
nature. This leads to a really natural description, in particular in mathematical
domains, since the notations are very similar. For example, the BLAS (Basic



Linear Algebra Subroutines) [BDD+02] saxpy (addition) and sgemm (multipli-
cation) functions can be described (in a simplified way) in the algebraic notation
as:

Scalar α, Matrix x, y : saxpy(α, x, y) = α ∗ x + y

Scalar α, β, Matrix x, y, z : sgemm(α, x, y, β, z) = α ∗ x ∗ y + β ∗ z

A user request is also specified in this algebraic notation. For example a request
to add three matrices would simply be expressed as:

Matrix a, b, c : a + b + a

The service trader is generic and the application domain can include any-
thing that can be described using an algebraic specification. We have performed
additional work with some optimization libraries [Hur06]. The main types in the
optimization domain are functions and constraints, and the elements manipu-
lated by these functions and constraints (e.g., Real, Matrix). The operators are
minimization and maximization operators, the function description (→), and
the operators for constraints (≤, &, . . . ) and the operators for the manipulated
elements (*, +, . . . ). Equations are used to express the constraints on the opti-
mization.

The optimization libraries we have considered provided the following func-
tionality: min

x

f(x), min
x

cT x, min
x

1

2
‖Cx − d‖2

2 and min
x

1

2
xT Hx + fT x. With

or without the constraints: Ax ≤ b, Ax = b and l ≤ x ≤ u. We are particularly
interested in the Matlab optimization toolbox3 and in the E04 package of the
NAG4 library.

2.2 The trader output

The trader generates a list of services and combination of services that satisfy
the request. For example, given the linear algebra domain and saxpy and sgemm

services described earlier, for the user request of a + b + c, the possible solutions
satisfy the request include:

saxpy(1, a, saxpy(1, b, c))

saxpy(1, a, sgemm(1, I, b, 1, c))

sgemm(1, I, a, 1, saxpy(1, b, c)),

If the saxpy function is less computationally expensive than the sgemm

function (which is true if for the BLAS functions), then the solution

saxpy(1, a, saxpy(1, b, c))

3 http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml
4 http://www.csc.fi/cschelp/sovellukset/math/nag/NAGdoc/fl/html/E04_fl19.

html



will be only solution returned by the trader, since the other possible solutions
(saxpy(1, a, sgemm(1, I, b, 1, c)), sgemm(1, I, a, 1, saxpy(1, b, c)), . . . ) are more
computationally expensive. To this end, the complexity of the services are input
to the trader as well as the size of the matrices. Since before finishing the com-
parison we do not know what the parameters will be, we can’t compute the exact
cost. We use a medium size of the data to have an approximate cost and decide
if it is interesting to do the comparison, or if we currently have better answers.
We might lose some interesting responses, but by not doing some comparisons,
we will win in the search time taken the trader.

For example, we are trying to find solutions to the request ”A ∗B”, where A

and B are matrices. To evaluate if it is interesting to compare another solution
with the sgemm service, we will approximate the cost of the sgemm service. To
do that we use an estimated medium size for the matrices, since the trader does
not know the sizes we will give when calling the sgemm service. This cost can
be compared with the cost other known solutions.

The BLAS saxpy function has additional parameters not related to function
signature (for example, the sizes of the matrices). These need to be available to
do data transfer and execute the services. These parameters are considered after
the analysis of the functional signature . The trader focuses on the functional
aspect and considers the other parameters later. For example, considering the
BLAS strsm (triangular solver) routine:

STRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)

M specifies the number of rows of the parameter B (matrix);
UPLO specifies if the matrix A is an upper or a lower triangular matrix;
SIDE specifies if the problem solved is op(A)∗X = α∗B or X ∗op(A) = α∗B.

We add different mechanisms in the algorithm that allow us to find the value for
those parameters:

– When a procedure implements several functionalities, we introduce the ”switch
/ case” functionality. The procedure will generate different services, each
with one parameter set for a given value. In our example, one service with
SIDE set to ’left’ and one service with SIDE set to ’right’ are generated.

– When some parameters depend on other, we describe this dependence, and
when the value of the first parameter is known, the value of the second one
is computed. In our example, when the exact type of A is known, UPLO

will be set to ’u’ or ’l’.
– When some parameters specify the properties of other parameters or for

default value, a term is assigned to a parameter, using only the constant of
the domain and of the request. In our example, M will be assigned to m(B)
(number of rows of B). When B will be known, m(B) will also be known
and the value of M will be fixed.

The full service description of saxpy is:

SAXPY( n,alpha,x,incx,y,incy ):



y <- alpha * x + y

n = m(x) * n(x) || m(y) * n(y);

incx = default 1;

incy = default 1;

Where m(x) is the number of rows of the x matrices and n(x) the number of
columns. Some default values are given for incx and incy.

2.3 Inside the trader

As explained in [HDP09], the trader is based on equational unification and more
particularly on the work of Gallier and Snyder [GS89]. It has a type system
adapted to overloaded functions with subtyping, based on the λ&−calculus de-
fined by Castagna [CGL92]. The algorithm of Gallier and Snyder has been modi-
fied by adding an amount of energy to ensure that the computation will end. This
amount is composed by the depth of combination and the number of equations
that can be applied.

Since we are trying to compute an efficient combination of services, we first
check the services that are less complex. To this end, we use the mathemati-
cal expression of the computational complexity of the services (as provided by
GridSolve). The service complexity (e.g., O(2n2)) uses the sizes of its parameters
(e.g.,n) to estimate the execution time. We can thus compare the execution cost
of the various service choices taking into account the size of the parameters. This
has two major benefits:

– We find some efficient solutions;
– We prune branches on search tree, since we do not look at more expensive

solutions.

3 Overview of GridSolve and GridRPC

The purpose of GridSolve is to create the middleware necessary to provide a
seamless bridge between computational scientists using desktop systems and the
rich supply of services supported by the emerging Grid architecture. The goal
is that the users of desktop systems can easily access and reap the benefits
(in terms of shared processing, storage, software, data resources, etc.) of using
grids. GridSolve is designed to enable a broad community of scientists, engineers,
research professionals and students to easily draw on the vast, shared resources
of the Grid. Working with the powerful and flexible tool set provided by their
familiar desktop computing environment, they can tap into the power of the
Grid for unique or exceptional resource needs.

GridSolve is a client-agent-server (or brokered RPC) system which provides
remote access to hardware and software resources through a variety of client
interfaces.

The system consists of three entities, as illustrated in Figure 3.
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Fig. 3. Architectural overview of GridSolve

– The Client, which needs to execute some remote procedure call. In addition
to C and Fortran programs, the GridSolve client may be an interactive prob-
lem solving environment such as Matlab, Octave, or IDL (Interactive Data
Language).

– The Server executes functions on behalf of the clients. The server hard-
ware can range in complexity from a uniprocessor to a MPP system and
the functions executed by the server can be arbitrarily complex. Server ad-
ministrators can add straightforwardly their own function services without
affecting the rest of the GridSolve system.

– The Agent is the focal point of the GridSolve system. It maintains a list of all
available servers and performs resource selection for client requests as well
as ensuring load balancing of the servers.

In practice, from the user’s perspective the mechanisms employed by Grid-
Solve make the remote procedure call fairly transparent. However, behind the
scenes, a typical call to GridSolve involves several steps as follows:

1. The client asks the agent for appropriate servers that can execute the desired
function.

2. The agent returns a list of available servers, ranked in order of suitability.
3. The client attempts to contact a server from the list, starting with the first

and moving down through the list. The client then sends the input data to
the server.



4. Finally the server executes the function on behalf of the client and returns
the results.

In addition to providing the middleware necessary to perform the brokered
remote procedure call, GridSolve aims to provide mechanisms to interface with
other existing Grid services. This can be done by having a client that knows how
to communicate with various Grid services or by having servers that act as prox-
ies to those Grid services. GridSolve provides some support for the proxy server
approach, while the client-side approach would be supported by the emerging
GridRPC standard API [SHM+02].

4 Integration of service trading into GridSolve

As explained in the introduction, the goal is to facilitate a user job by making
transparent calls to the grid, so that the user does not have to be knowledgeable
about the available Grid resources or services.

To this aim, we proceed in four steps:

1. GridSolve provides information about available services.
2. The trader finds the combination of services that solves the user request.
3. The output of the trader is analyzed and the services are called.
4. The response is transferred back to the user.

4.1 Generating the inputs of the trader

GridSolve is responsible for providing information about the available services
to the service trader. The service trader requires some additional semantic in-
formation that has to be added to the standard service descriptions provided by
GridSolve.

This additional information is the mathematical expression of the functions
computed by the service, and some information about the non-functional pa-
rameters. For example, for the BLAS dgemm and the dsymm functions, it will
be:

SUBROUTINE dgemm

APPLICATION_DOMAIN="LinearAlgebra"

TRADER_DESCRIPTION="

c <-((alpha*((op transa a)*(op transb b)))+(beta*c)) ;

value m = (m c) || (m (op transa a)) ;

..."

SUBROUTINE dsymm

APPLICATION_DOMAIN="LinearAlgebra"

PARAMETERS_PROPERTIES = "a symmetric"

TRADER_DESCRIPTION="

c <- if (side=’l’) then ((alpha*(a*b))+(beta*c))



if (side=’r’) then ((alpha*(b*a))+(beta*c)) ;

value m = (m c) ;

...

if ( a instanceof UpTriInvMatrix ) then ( uplo = ’u’ );

..."

4.2 Discover the combination of services

Given a user request in the GridSolve client, GridSolve calls the service trader,
which processes the request and returns a file containing a sequence of services
calls that will satisfy the users request. For example, for the request a + b + c:

def, res2, copy c

def, res1, copy a

call, saxpy, m(b)*n(b), 1.0, copy b, 1, res2, 1

call, saxpy, m(res2)*n(res2), 1.0, res2, 1, res1, 1

The GridSolve runtime can then transform this sequence of requests into a
workflow DAG [LDSY08] to improve the performance and be able to run different
parts in parallel when possible.

4.3 Call the services

To do the calls, the GridSolve client parses the output file. When it finds a
”def”, a new local variable is created and set to the second pointer. When it
finds a ”copy”, a copy of the user data is created. And when it finds a ”call”,
the GridRPC call is done with the parameters that follow. To do the call, some
additional information is needed: type of data, sizes of data, pointer to the data.
In the C and Matlab interfaces, those parameters are discovered in different
ways:

– Information provided by the user in the C interface.
– Information found via Matlab data querying mechanisms in the Matlab in-

terface.

In fact, a first analysis will create the temporary variables needed for the
computation. Then a second analysis is done in order to make the GridRPC
call. The calls are executed using DAG interface of GridSolve in order to enable
any the parallelism in the sequence of calls.

4.4 The Service Trader C API

We have added two functions to the GridSolve C API for the service trader.

int gs_call_service_trader(char *req,... );

int gs_call_service_trader_stack(char * req, grpc_arg_stack *argsStack);



The first parameter is a string that expresses the request in a simple analytical
or mathematical expression . The other arguments are pointers to the actual
data, and information about the variable name and size. An example call using
the service trader interface:

float *a = malloc (sizeof(float)*ma*na);

float *b = malloc (sizeof(float)*mb*nb);

...

gs_call_service_trader("(a+(b+a))","a",a,ma,na,...);

4.5 The Matlab interface

The Matlab client interface is substantially simpler than the C interface since
a variety of information about the variable names and sizes can be obtained by
querying Matlab internal data representations. An example service trader call
using the Matlab interface:

a=[1,2,3;4,5,6;7,8,9]

b=[10,20,30;40,50,60;70,80,90]

[output]=gs_call_service_trader("(a+(b+a))"),

output =

12. 24. 36.

48. 60. 72.

84. 96. 108.

The output variable is integrated back into the Matlab workspace and can be
used for later computation in Matlab.

5 Experiments

In these experiments we show the creation of a DAG from a users problem
request, and the selection of the appropriate services using computational com-
plexities to guide the selection.

For our small test experiment, the relevant Grid services are the previ-
ously described BLAS services (saxpy, daxpy, sgemm and dgemm) and a ser-
vice implementing the Strassen-Winograd algorithm for matrix-multiplication
(sgemmb). This variant has a lower computational complexity (approximately
O(n2.8)) than standard matrix-multiplication algorithms (O(n3)), but it only
becomes efficient if the matrix size is sufficiently large. With the complexity
information provided as an input to the trader, it will be able to choose the
best algorithm as a function of the size of the matrices. The ”exact” complexity
information given to the trader is 7 ∗ pow(n, log2(7)) + 3 ∗ m ∗ k − 6 ∗ n ∗ n for
the Strassen-Winograd algorithm and 2.0 ∗m ∗ n ∗ k + 2.0 ∗m ∗ k for the classic
algorithm.

As an example, we want to compute (((a∗ b)+ c)+ ((biga∗ bigb)+ c)), where
a, b and c are 3x3 matrices, biga is a 3x3000 matrix and bigb is a 3000x3 matrix.
Using the Matlab interface:



gs_call_service_trader("(((a*b)+c)+((biga*bigb)+c)))")

The trader generates a sequence of 3 service calls that will solve this problem.
GridSolve then creates a DAG based on the data dependencies between these
calls and calls the services.

r1=dgemmb(biga,bigb,c) r2=dgemm(a,b,c)

r=daxpy(r1,r2)

These events are totally transparent to the user, who simply needs to present
the desired mathematical expression.

In this experiment, we observe that based on the size of the matrices, the
service trader uses the complexity information to select the more efficient mul-
tiplication algorithm: the Strassen-Winograd matrix multiplication dgemmb for
the bigger matrices and standard dgemm for the smallest ones.

6 Summary

In this paper we developed a combination of a service trader and a grid middle-
ware system to enable a ”novice” user to gain access a remote library, without
knowing about grid computing or about the available library and services.

The key point for the end user is the transparency of all the details involved
in this process. The fact that the services are evaluated at each call makes the
solution more tolerant to a service crash. If a service disappear, the trader will
find some other solution to the users problem with a different combination of
services. For example, if the dgemmb service is not available, the service trader
will be able to replace it by dgemm. If the daxpy is not available, the trader will
be able to find a solution with dgemm. The user doesn’t have to be aware of all
the alternative services that may satisfy their request.

The execution of the users request is made more efficient by two factors;
firstly, the service trader evaluates the computational complexity of the available
services on the users specific data, and secondly, the GridSolve DAG execution
system enables any parallelism in the execution of the services. There is a cost
for the analysis done by the service trader in this current prototype, however
we expect that this cost can be reduced in the future. Moreover, the major
advantage provided by the work developed here is ease-of-use. The end user
does not have to be knowledgeable in grid computing, mathematical libraries,
algorithmic complexity, data dependency analysis, fault-tolerance, or any of the
details that are transparently handled by this system.
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