
Load balancing in dynamic networks by bounded
delays asynchronous diffusion

Jacques M. Bahi1, Sylvain Contassot-Vivier2,3 and Arnaud Giersch1

1 LIFC, University of Franche-Comté, Belfort, France
jacques.bahi@univ-fcomte.fr, arnaud.giersch@univ-fcomte.fr

Web page: http://info.iut-bm.univ-fcomte.fr/staff/
2 LORIA, University Henri Poincaré, Nancy, France

sylvain.contassotvivier@loria.fr,
Web page: http://www.loria.fr/~contasss/homeE.html

3 AlGorille INRIA Team, France

Abstract. Load balancing is a well known problem, which has been ex-
tensively addressed in parallel algorithmic. However, there subsist some
contexts in which the existing algorithms cannot be used. One of these
contexts is the case of dynamic networks where the links between the
different elements are intermittent. We propose in this paper an efficient
algorithm, based on asynchronous diffusion, to perform load balancing in
such a context. A convergence theorem is proposed and proved. Finally,
experimental results performed in the SimGrid environment confirm the
efficiency of our algorithm.

Keywords: Load balancing, dynamic network, asynchronism, diffusion algo-
rithm

1 Introduction

In the parallel computation domain, the load balancing is often a central issue
to reach the optimal theoretical performances. As a consequence, that prob-
lem has been extensively studied since the beginning of parallelism in computer
science [4, 2, 9, 12]. It can be observed that the evolution of the load balancing al-
gorithms has rather closely followed the one of the parallel architectures. Hence,
balancing algorithms have muted from static and centralized distributions [10,
7] to dynamic and/or decentralized ones [11, 1].

Although those mutations allow for load balancing in numerous parallel con-
texts, there are always emergent architectures which require new breakthroughs
in the balancing schemes in order to fully benefit from the endlessly increasing
computational power. The parallel systems are more and more complex, of-
ten including heterogeneous computational units and interconnection networks.
Moreover, the modularity of those systems sharply increases the number of pos-
sible parallel contexts. So, it becomes less and less interesting to design balancing
algorithms specific to a given context. Thus, there is a strong demand for fully

adaptive algorithms which are also as generic as possible, that is to say, which
can be used on any kind of parallel architecture without sensible modifications.

Moreover, in addition to the complex architectures, the emergence of more
and more dynamical systems has also been observed during the recent years.
The dynamical aspect typically stands at the level of the communications as the
links between the computing units are only intermittent.

The most suited strategies to such contexts are the neighborhood strategies
based on diffusion algorithms [5, 1, 8]. Unfortunately, most of the current so-
lutions are either synchronous or assume a static network. In the objective to
respond to these two current issues, we propose in this paper a load balancing
algorithm based on bounded delays asynchronous diffusion.

The following section presents the general computing model used to per-
formed our theoretical study and design of our algorithm. In section 3, a detailed
discussion on the balancing ratios to be used in our algorithm is given. Then,
the algorithm is provided in section 4 as well as the proof of the balancing con-
vergence in time in section 5.2. Finally, a quality evaluation of our algorithm,
performed with the SimGird environment, confirms the very good performances
of our approach in section 6.

2 Model

As our balancing algorithm is iterative, its convergence must be proven in order
to ensure that the load will be balanced in finite time till there are no modifi-
cation of the state of the system during the balancing phase. When the system
configuration dynamically evolves during the running of the algorithm being bal-
anced, no load stabilization may be observable although our balancing algorithm
will follow the evolution of the computational power repartition. Hence, as soon
as the system configuration is stabilized, the load repartition will follow with a
slight delay. This behavior of our algorithm is proved in a convergence theorem
given below. Nevertheless, that theorem and its proof require some notations
and a description of the temporal evolution of the system state.

2.1 Notations

For the sake of clarity, we distinguish two kinds of features: those of the platform
and the elements related to the application.

Platform characteristics:

P = {1, . . . , n} : the set of the n processors in the system.
G(t) = (P,L(t)) : the undirected connection graph of the links between the n

processors at time t.
Ni(t) : the set of processors directly connected to i at time t.
dij(t) : the delay of j according to i at time t. By definition, it verifies dij(t) ≤ t.
B : the bound of the delays, i.e. ∀i, j ∈ P, ∀t ∈ N, t−B < dij(t) ≤ t.

Application related values:

xi(t) : the load of processor i at time t.
xij(t) = xj(d

i
j(t)) : the load of processor j at time dij(t). That information rep-

resents the evaluation at time t on processor i of the load on processor j.
sij(t) = αij(t)(xi(t)− xij(t)) : the amount of load sent by processor i to pro-

cessor j at time t. Concerning αij(t), we have the following constraints:
∀i, j ∈ P, αij(t) ∈ [0, 1] and

∑n
j=1 αij(t) = 1. Also, sij(t) = 0 if j 6∈ Ni(t) or

xi(t) ≤ xij(t).
rij(t) : the amount of load received on processor j from processor i at time t.
vij(t) : the amount of load sent by processor i before time t and not yet received

by processor j at time t.

2.2 General load balancing scheme

First of all, we consider that we have an initial total load L such that

n∑
i=1

xi(0) = L (1)

and that there is a conservation of the load in the sense that it is either on the
processors or in transit in the interconnection network. In that context, we use
the following decentralized scheme to balance the load in the system.

Algorithm 1. At each time step t, each processor:

1. Compares its load to the loads of its connected neighbors
2. Determines the load quantities to send to its less loaded neighbors
3. Sends those amounts of load to the corresponding nodes
4. Potentially receives some load from its more loaded neighbors

2.3 Dynamical evolution of the system state

In the scope of that study, the main issue addressed is the temporal evolution of
the interconnection network of the system. Contrary to classical parallel systems,
we consider dynamic links between the different processing units. However, some
constraints are necessary to ensure the diffusion of the loads through the system.

Concerning the network, we define the extended neighborhood of a processor
i at time t as the set

N i(t) = {j | ∃t′ : t−B < t′ ≤ t such that j ∈ Ni(t′)}

This means that j has been connected at least one time to i during the time
interval {t−B + 1, . . . , t}.

Assumption 1. There exists B ∈ N such that ∀i, j ∈ P × P and t ≥ 0,
max(0, t−B) ≤ dij(t) ≤ t and the union of the communication graphs ∪t−B+1

τ=t G(τ)
is a connected graph.

This assumption, known as the jointly connected condition [8], implies that
information can be exchanged between any couple of nodes i and j within any
time interval of length B, and that the delay between two nodes cannot exceed B.

The example given in Fig. 1 shows the effect of that assumption. In the two
consecutive times, the connection graphs G(t) are not fully connected. However,
their fusion yields a virtual graph which is actually connected.

Fig. 1. jointly connected graph

It is interesting to point out that the load balancing in such a context is
similar to a kind of information percolation in an intermittent network [6].

Assumption 2. ∀t ≥ 0, ∀i ∈ P and ∀j ∈ Ni(t), when xi(t) > xij(t), there

exists αij(t) > 0 such that αij(t)(xi(t)− xij(t)) ≤ sij(t).

Assumption 2 indicates that as soon as two nodes are connected, the more
loaded sends a non negligible ratio of its load excess to the other node.

Assumption 3.

xi(t)−
∑

k∈Ni(t)

sik(t) ≥ xij(t) + sij(t), ∀j ∈ Ni(t) s.t. sij(t) > 0

Assumption 3 is essential to avoid the starvation and the ping-pong phenom-
ena. It ensures that the remaining load on the sending processor will not become
smaller than the loads on the receptors. A famine occurs when a node has no
more workload. The ping-pong state is established when two nodes continually
exchange load between each other without reaching an equilibrium.

These last two assumptions are similar to assumption 4.2 in [2].
So, according to these assumptions, we have ∀i ∈ P , ∀t ∈ N, the following

load evolution:

xi(t+ 1) = xi(t)−
∑

j∈Ni(t)

sij(t) +
∑

j∈Ni(t)

rji(t) (2)

where:

– sij(t) is given by αij(t)(xi(t)− xij(t)) with the constraints given above. The
values αij(t) ∈ [0, 1] define the strategy of the load balancing algorithm. As
already mentioned, they must be carefully chosen to ensure the convergence
of the algorithm. Their determination is detailed in the following section,

– the last term corresponds to the total amount of load received by processor
i from the processors in its extended neighborhood.

Although that equation describes the load evolution on the processors, it does
not give any information on the loads in transit. For this, we have:

vij(t) =

t−1∑
s=0

(sij(s)− rij(s))

and vij(0) = 0. Moreover, the constraint of load conservation discussed above
implies that:

n∑
i=1

xi(t) +
∑

j∈Ni(t)

vij(t)

 = L, ∀t ≥ 0 (3)

Once again, it is worth noticing that although the convergence of our balanc-
ing is proved in the context of load conservation, our algorithm should provide
also interesting results in a more general context of intermittent load evolu-
tions. In fact, inside each time interval where the global load stays constant,
our algorithm will tend to balance the current global amount of load among the
processors. Thus, an overall gain in performance may be expected in numerous
contexts of dynamic loads. However, it is obvious that the detailed behavior
and applicability of our algorithm in such cases would require another complete
study.

3 Choice of the load ratios

As seen above, the values of the αij(t) must be chosen such that the amount of
load on every node converges to L

n .
Let’s denote by j∗, the processor satisfying xij∗ = mink∈Ni(t) x

i
k(t). It clearly

appears that j∗ depends on both time and processor i.
In order to correctly choose the αij(t), Assumptions 2 and 3 are used to

deduce the constraints. Assumption 2 can be carried out by fixing an arbitrary
constant β ∈ [0, 1[and choosing:

∑
k 6=j∗∈Ni(t)

αik(t)(xi(t)− xik(t)) ≤ β(xi(t)− xij∗(t))

αij∗(t) = 1
2

(
1−

∑
k 6=j∗ αik(t)(xi(t)−xi

k(t))

xi(t)−xi
j∗ (t)

)
(4)

And we deduce

αij∗(t) ≥
1− β

2
= α

Finally, it comes that ∀i, j∗, t such that j∗ ∈ Ni(t) and xij∗(t) = mink∈Ni(t) x
i
k(t),

sij∗(t) = αij∗(t)(xi(t)− xij∗(t)) ≥ α(xi(t)− xij∗(t)).

We can observe that the load sent cannot exceed the halve of the load difference
between the sender and the receiver.

Furthermore, Assumption 3, avoiding ping-pong effects, implies to choose
αij(t) such that ∀t ≥ 0, ∀i ∈ P , and j 6= j∗ ∈ Ni(t) satisfying xi(t) > xij(t),

0 ≤ αij(t) ≤
1

2

(
1−

∑
k 6=i αik(t)(xi(t)− xik(t))

xi(t)− xij(t)

)
(5)

4 Load balancing algorithm

The algorithmic scheme of our load balancing is given below.

Algorithm 2. At each time step t, each processor:

1. Compares its load to the loads of its connected neighbors
2. Determines the αij(t) and deduces the sij(t)
3. Sends those amounts of load to the corresponding nodes
4. Receives some loads from more loaded nodes

Although it does not appear directly, the heterogeneity of the processors
can be taken into account in this algorithm, for example by introducing virtual
processors of the same power (GCD of the actual powers) and distributing them
among the actual processors according to their relative speeds. Finally, at each
time t and on each node i, the load update is given by (2) and the global behavior
of that algorithm is depicted by the following theorem.

Theorem 1. Under Assumptions 1, 2 and 3, the asynchronous load balancing
Algorithm 2 converges to x∗ = 1

n

∑n
i=1 xi(0).

5 Proof of the load balancing convergence

5.1 Technical results

Let m(t) = mini mint−B<τ≤t xi(τ). Note that xij(τ) ≥ m(t), ∀i, j, t. Lemma 1
and 2 below can be proven similarly to the lemma of pages 521 and 522 in [BT89].

From Assumption 1 we can conclude that the amount of load vij(t) in the
network before time t and not yet received consists in workloads sent in the time
interval {t−B + 1, ..., t− 1} , so vij(t) ≤

∑t−1
τ=t−B+1 sij(τ), ∀i ∈ P,∀j ∈ Ni(t).

Lemma 1. The sequence m(t) is monotone, non-decreasing and converges and
∀i ∈ P,∀s ≥ 0,

xi(t+ s) ≥ m(t) +

(
1

n

)s
(xi(t)−m(t))

Let i ∈ P, t0 ∈ N and t ≥ t0, we say that the event Ej(t) occurs if there
exists j ∈ N i(t) such that

xij(t) < m(t0) +
α

2nt−t0
(xi(t0)−m(t0)) and sij(t) ≥ α

(
xi(t)− xij(t)

)
,

where α is deduced from (4).

Lemma 2. Let t1 ≥ t0, if Ej(t1) occurs, then Ej(τ) doesn’t occur for any
τ ≥ t1 + 2B.

Lemma 3. ∀i ∈ P,∀t0 ∈ N,∀j ∈ N i(t),

t ≥ t0 + 3nB ⇒ xj(t) ≥ m(t0) + η

(
1

n

)t−t0
(xi(t0)−m(t0)).

where η = α
2

(
1
n

)B
.

Definition 1. We say that a node j is l-connected to a node i if it is logi-
cally connected to i by l communication graphs, i.e. if there exists a minimal
sequence (without redundancy) {i0(t0), i1(t1), . . . , il(tl)} such that i = i0(t0),
ij−1 ∈ Nij (tj) ∀j ∈ {1, ..., l}, il = j and t1 < t2 < · · · < tl.

Lemma 4. If node j is l-connected to node i then

∀t ≥ t0 + 3nlB, xj(t) ≥ m(t0) + ηl
(

1

n

)(t−t0)l

(xi(t0)−m(t0)) .

5.2 Proof of Theorem 1

Consider a node i and a time t0. Assumption 1 implies that node i is B-connected
to any node j ∈ P and Lemma 4 gives: ∀t ∈ [t0 + 3nMB, t0 + 3nMB +B] ,
∀j ∈ P,

xj(t0 + 3nMB +B) ≥ m(t0) + δ (xi(t0)−m(t0)) ,

where δ > 0. This inequality being true for all i ∈ P , it follows that

m(t0 + 3nMB +B) ≥ m(t0) + δ
(

max
i
xi(t0)−m(t0)

)
.

We show that
lim
t0→∞

max
i
xi(t0)−m(t0) = 0,

otherwise we would have limt0→∞m(t0) = +∞. As limt→∞m(t) = c and
m(t) ≤ xj(t) ≤ maxi xi(t), we deduce that

∀j ∈ P, lim
t→∞

xj(t) = c,

which implies that
lim
t→∞

sij(t) = 0.

Thanks to Assumption 1, we deduce that

lim
t→∞

vij(t) = 0,

and thanks to (1) and (3), we deduce that

nc = lim
t→∞

xi(t) =

n∑
i=1

xi(0),

i.e.

c =

n∑
i=1

xi(0)/n,

which leads to

lim
t→∞

xi(t) =
1

n

n∑
i=1

xi(0) =
L

n
,

proving Theorem 1.

6 Experimental evaluation

In order to evaluate the efficiency of our load balancing algorithm, we have
implemented it in the SimGrid environment [3]. This is a simulation-based com-
plete framework for evaluating cluster, grid and P2P algorithms and heuristics.
Among its numerous interests, let’s point out realistic computations and com-
munications models. So, the results presented here are fully representative of
real results that should be obtained with a similar parallel architecture.

As mentioned in the introduction, our load balancing algorithm is quite
generic. However, it should be more interesting in the context of parallel iterative
algorithms in which a pool of tasks is repeatedly executed. In that context, we
model the iterative process by associating to each task a number of iterations
to be performed. Thus, a same task with a constant number of operations is
repeatedly executed until its associated number of iterations becomes null. So,
as the load balancing takes the form of the migration of those tasks from one
node to one of its neighbors, a task may accomplish its iterations on different
nodes.

Temporal dependencies between the tasks only occur in synchronous itera-
tive algorithms and when there are some data dependencies between the tasks.
Classically, we say that a task A depends on another task B if the computations
of A require the knowledge of the data processed in B (typically at the previous
iteration). In such a case, when two data dependent tasks are migrated on dif-
ferent nodes, this implies a dependency between those two nodes. However, in
the context of use of iterative algorithms, such dependencies very often already
exist due to the domain decomposition induced by the parallel treatment of the
problem. Indeed, the notion of neighbor between nodes is commonly related to
those data dependencies.

In asynchronous iterative algorithms, there are no temporal dependency be-
tween the tasks, even if there are some data dependencies. This comes from
the fact that each task performs its computations without waiting for the last
version of its data dependencies but by using the version of those dependencies
which are locally available at that time. In that way, asynchronous algorithms
are much more flexible and provide better performances than synchronous ones
in numerous parallel contexts.

Due to that last remark and to the fact that our balancing algorithm is also
asynchronous by nature, the evaluations presented below take place in the case

of asynchronous iterative algorithms. Moreover, we consider that the domain de-
composition is regular and that the tasks all have the same amount of workload.

Before presenting the results, it is necessary to explain how the efficiency of
the balancing is evaluated.

6.1 Efficiency evaluation

In the scope of this study, we evaluate the efficiency of the balancing by compar-
ing the performance gains obtained with our algorithm and with a near optimal
scheduling. That optimal performance is deduced from the nodes speeds and the
tasks workload. As the tasks are composed of a given number of iterations whose
workload is always the same, the problem is reduced to the choice of the correct
node for each iteration of each task. Thus, the optimal makespan is obtained by
successively placing each iteration of each task on the node which is able to offer
the soonest ending.

6.2 Experimental contexts

In the following, the efficiency of our algorithm is evaluated for three common
topologies: a line, a ring and a complete graph. Although the line is a bit easier
to manage from the algorithmic point of view, it is actually the worst case in
terms of performances as the load diffusion will be the longest in that case.
The experiments have been conducted in the following conditions:

Cluster
Size 10 and 50 machines
Powers homogeneous or heterogeneous (ratio 10 between slowest and fastest)
Links homogeneous

Initial distribution of the tasks
All on a single node

or
evenly distributed over the processors

Communications
Always active

or
Intermittent while ensuring Assumption 1

Tasks
Number 10000
Data size 80 bytes per task
Iterations random in the range [100,500]
Flops 1600 per iteration

6.3 Results

For the sake of clarity, we present our results in different tables for each topology
used. In each cell of the tables, there are two percentages. The first one (on top)
gives the relative overhead of our balancing relatively to the theoretically optimal
one. That reference time only includes the computation time of all the tasks but

not any scheduling or task migration overhead. As mentioned in Section 6.1,
that theoretical makespan is computed by using a best choice list algorithm at
the level of the iterations inside the tasks. It is quite obvious that this time is
not always attainable in practice but it gives a good reference for the evaluation
of our load balancing algorithm. So, 10% indicates that our balancing makes the
whole iterative process terminate in a time 10% greater than the optimal one.
The second value, in italic, indicates the gain of our balancing relatively to the
iterative process without any balancing.

Table 1. Results obtained with a linear topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

31.38 387.82 34.96 367.5All tasks on
one node 86.86 90.24 92.09 83.9

0.44 2.33 16.25 46.26
Constant links

Even
distribution 0.97 3.13 80.64 75.31

55.58 967.35 146.73 832.17All tasks on
one node 84.44 78.65 85.54 67.89

0.48 3.18 52.78 99.89
Intermittent
links Even

distribution 0.93 2.33 74.56 66.26

Table 2. Results obtained with a ring topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

11.55 292.48 23.43 370.14All tasks on
one node 88.85 92.15 92.76 83.8

0.26 2.08 2.78 44.39
Constant links

Even
distribution 1.15 3.37 82.89 75.63

23.75 1187.76 127.99 1116.72All tasks on
one node 87.63 74.24 86.64 58.09

0.54 3.45 34.94 80.62
Intermittent
links Even

distribution 0.87 2.07 77.53 69.51

Table 3. Results obtained with a complete graph topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

6.12 811.01 15.24 791.51All tasks on
one node 89.39 81.78 93.25 69.29

0.4 7.45 2.8 108.62
Constant links

Even
distribution 1.01 -1.72 82.89 64.79

28.11 4101.52 46.96 1085.86All tasks on
one node 87.19 15.97 91.39 59.15

0.31 6.74 7.93 331.93
Intermittent
links Even

distribution 1.09 -1.04 82.03 27.09

Table 1 provides the results for the line topology. That topology is the most
difficult case of load balancing as every node has at most two neighbors and this
is the communication network with the largest diameter. Hence, that case will
yields the longest load diffusions. It can be observed that the results are better
for the smaller cluster. This could be expected as a load diffusion will always
be longer in a larger system. Moreover, in large systems, each processor has less
work to do and for the same initial amount of work, the makespan will be much
smaller. This explains the higher ratios according to the optimal makespan. Also,
the results are quite different according to the initial load distribution and it is
interesting to see that our balancing does not imply any overhead in simple
cases like the even distribution on homogeneous nodes. Finally, concerning the
intermittent links, our balancing is farther from the optimal time, but this is
normal for two reasons. The first one is that the load diffusion is more difficult
and naturally longer in such contexts. The second one is that, as mentioned
above, the optimal time is computed without taking into account the scheduling
and migration costs, which are much more important with intermittent links.
Moreover, the absolute performances of our algorithm stay very good in that
context as large gains are still obtained relatively to the unbalanced version.

The results for the ring topology are presented in Table 2. As expected for
a topology with a smaller diameter, the gains are better than with the linear
topology in all the contexts with the small cluster. With the larger cluster, the
results are similar or better except for the intermittent links with the initial
distribution of the work on only one node. This probably comes from the tuning
of the parameters of our load balancing algorithm which have not been optimized.
However, the results stay globally satisfying.

In Table 3 are given the results for the complete graph topology. Here again,
a good behavior can be observed for the small cluster whereas the algorithm
gives rather deceptive results for the larger one. Here again, the local strategy
of work distribution seems to play a major role. That strategy gives the rules of
how a node distributes its overload to its less loaded nodes while respecting the
constraints given in Section 3. So, it defines the β and αij values. For example, the
use of a slightly different strategy taking into account the load average among the
node itself and its less loaded neighbors to compute those parameters produces
slightly better results in the context of the complete graph. In particular, there
are no more loss of time in the already balanced cases as we obtain an overhead
of only 4.67% and a gain of 0.92% in the case of an evenly distributed load on
homogeneous processors with constant links and an overhead of 3.31% and a
gain of 2.21% in the same context with intermittent links.

Finally, all those results are very encouraging but they point out that a single
distribution strategy is not adapted to all the contexts of parallel systems. So, a
deeper study on the behavior of our algorithm according to its inner parameters
will be necessary to precisely analyze the potential causes of inefficient results.
Our future investigations on the optimization of the inner parameters of our al-
gorithm (the β value in particular) should provide good results in every contexts
of use.

7 Conclusion

An asynchronous decentralized load balancing algorithm has been presented.
Its main advantages are to be usable on dynamic networks where the links are
intermittent. Moreover, it is quite generic and can be applied to numerous com-
putational algorithms.

The convergence of the balancing has been proved in the context of load
conservation. Also, it has been pointed out that in case of variable load, the
algorithm will implicitly tend to balance the load during the time intervals in
which the load stays constant and will thus globally follow the load variations.

Some simulations have been conducted within the SimGrid environment in
the context of an asynchronous parallel iterative algorithm. Globally, the exper-
iments confirm the good behavior of our algorithm, even in the most difficult
case of a linear topology. In most of the cases, our algorithm does not induce any
sensible overhead in already balanced contexts and provide sharp improvements
in the other contexts.

However, as has been pointed out by the simulations, there is still some room
for a finer tuning of our algorithm and for the enhancement of its adaptability
to large systems. By this way, our next investigation will focus on the automatic
determination of the optimal inner parameters of our load balancing scheme in
order to be efficient in every context of parallel systems.

References

1. Bahi, J., Couturier, R., Vernier, F.: Accelerated diffusion algorithms on general
dynamic networks. In: Fifth International Conference PPAM. pp. 77–82. Poland
(2004)

2. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation. Prentice Hall,
Englewood Cliffs, New Jersey (1999)

3. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a Generic Framework for Large-
Scale Distributed Experiments. In: 10th IEEE International Conference on Com-
puter Modeling and Simulation (Mar 2008)

4. Cybenko, G.: Dynamic load balancing for distributed memory processors. Journal
of Parallel and Distributed Computing 7, 279–301 (1989)

5. Elsässer, R., Monien, B., Preis, R.: Diffusion schemes for load balancing on het-
erogeneous networks. Theory of Computing Systems 35, 305–320 (2002)

6. Fatès, N.: Directed percolation phenomena in asynchronous elementary cellular
automata. In: 7th International Conference on Cellular Automata for Research
and Industry (ACRI 2006). pp. 667–675. LNCS 4173, Perpignan, France (2006)

7. Genaud, S., Giersch, A., Vivien, F.: Load-balancing scatter operations for grid
computing. Parallel Computing 30(8), 923–946 (Aug 2004)

8. J.M.Bahi, R.Couturier, F.Vernier: Synchronous distributed load balancing on dy-
namic networks. Journal of Parallel and Distributed Computing 65(11), 1397–1405
(2005)

9. Kumar, V.: Introduction to Parallel Computing. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

10. Miguet, S., Robert, Y.: Elastic load-balancing for image processing algorithms. In:
Proceedings of the First International ACPC Conference on Parallel Computation.
pp. 438–451. Springer-Verlag, London, UK (1992)

11. Willebeek-Lemair, M.H.: Startegies for dynamic load balancing on highly parallel
computers. IEEE Transactions on Parallel and Distributed Systems 4(9), 979–993
(1993)

12. Yawei, L., Zhiling, L.: A survey of load balancing in grid computing. LNCS Com-
putational and Information Science 3314, 280–285 (2005)

