
A Computing Resource Discovery Mechanism
Over a P2P Tree Topology

D. Castellà1, H. Blanco, F. Giné, and F. Solsona

University of Lleida, C/ Jaume II, 69, Lleida, Spain,
dcastella,hectorblanco,sisco,francesc@diei.udl.cat

Abstract. Peer-to-Peer (P2P) computing, the harnessing of idle com-
pute cycles through Internet, offers new research challenges in the domain
of distributed computing. In this paper, we propose an efficient comput-
ing resource discovery mechanism based on a balanced multi-way tree
structure capable of supporting both exact and range queries, efficiently.
Likewise, a rebalancing algorithm is proposed. By means of simulation,
we evaluated our proposal in relation to other approaches of the litera-
ture. Our results reveal the good performance of our proposals.

Topics: Parallel and distributed computing, P2P computing.

1 Introduction

P2P paradigm takes advantage of the under utilization of personal computers,
integrating thousand or even millions of users into a platform based on the shar-
ing of computational resources [1]. Some current research projects, such as Com-
puP2P [2], CHEDAR [3] or CoDiP2P [4], propose using the P2P paradigm for
distributed computing. P2P computing is distinguished by a mutable amount of
computational resources (CPU, Memory and Bandwidth) provided by each peer.
Thus, the computational resource management becomes a research challenge.

The resource discovery mechanisms in P2P computing are classified in struc-
tured and unstructured ones [5]. The unstructured algorithms are character-
ized by the fact that they use only local information of their neighbors. The
CHEDAR’s searching mechanism [3] fits in this category. Although these sys-
tems adapt easily to frequent node joins and disjoins, they do not scale very well
for very large networks. On the other hand, the searching mechanisms based on
structured information are generally faster and have a predictable service search
time. In this set, we can find the well known Chord algorithm [6], which is used
by the CompuP2P platform [2]. Although the Chord protocol is very efficient for
exact queries, this is not well suited for range queries since hashing destroys the
ordering of data. Recent works, such as Squid [13] supports keyword searches, in-
cluding wildcards, partial keywords and ranges queries, based on DHT. It uses a
locality-preserving indexing scheme based on Space Filling Curves (SFC), where
each data element is indexed and shared using a set of keywords and mapped to
a single point in its key space. Other works, such as [11, 7, 12], propose network

discovery services without the use of DHTs. Caron et al. [11] presents a new ar-
chitecture, Distributed Lexical Placement Table (DLP), based on a Prefix Tree
which supports automatic completion of partial search string, range queries and
multicriteria searches. Likewise, BATON [7] proposes a balanced tree structure
overlay which supports exact and range queries, also without the use of DHTs.
This emphasizes that adding a small number of links in addition to tree edges,
they are able to obtain an excellent fault tolerance and a balanced congestion.
Finally, Harren et al. [12] take advantage of DHTs to improve the scalability and
addapts it to support complex queries in relational databases. Altought these
works are very optimized for resource discovery services, they are very restric-
tive in providing a discovery mechanism over a mutable environment. Note that,
in a P2P computing environment, the shared resources change its disponibility
over the time. So, it is necessary to check periodically the resources for better
scheduling pourposes.
Other works related to Grid environments, [14, 15] proposes a distributed super-
peer model for handling membership management and resource discovery service
in large-scale Grids and exploit centralized/hierarchical information service pro-
vided by the Grid infrastructure of the local PO (Physical Organization). The
related work describes that a Grid is viewed as a network interconnecting small-
scale Grids, referred as PO’s. For each PO, a subset of powerful nodes having
high availability properties are used as super-peers. These nodes are responsible
for the communications with the other POs and maintain metadata about all
the nodes of the local PO. An structured P2P topology of super-peers imple-
ments the join and departure of Grid nodes and the resource discovery service.
The super-peer model is similar to the manager’s peer role used in our proposal,
which controls a set of peers, named Areas, and stores information about discov-
ery services. However, its organization is different because each peer of an area
can be the manager of the inmediate lower level area, whereas in a super-peer
model, each PO is considered as a leaf node.
In this paper, we propose a new structured computing resource discovery mech-
anism, which provides exact and range query facilities and scalability features
with a low algorithmic cost. Our approach is oriented to the CoDiP2P (P2P
Distributed Computing) system developed by our group in previous works [4].
Following the CoDiP2P architecture, the proposed lookup mechanism follows an
structured architecture. It is based on a balanced multi-way tree structure capa-
ble of supporting both exact and range queries efficiently. In addition, this paper
proposes a rebalancing algorithm, which allows the tree to be maintained totally
balanced and re-link any isolated area. Thus, CoDiP2P exploits efficiently the
well known characteristics of a tree topology (θ(log|Area|(Ntree)) lookup length,
where Ntree is the total number of peers, and constant linkage cost) to manage
the mutability of resources. We have analyzed the performance of our proposals
by means of simulation in relation to the Chord algorithm by the case of exact
queries, and the BATON algorithm by the case of range queries. In both cases,
the obtained results reveal the competitiveness of our proposals.

The outline of this paper is as follows; Section 2 revises the CoDiP2P archi-
tecture. Section 3 presents the discovery mechanism used by CoDiP2P for exact
and range queries. The rebalancing mechanism used for CoDiP2P system is de-
scribed in Section 4. The efficiency measurements of our proposals are performed
in Section 5. Finally, the main conclusions are explained in Section 6.

2 CoDiP2P Architecture

We present a review of the CoDiP2P architecture, explained in detail in [4]. In
order to describe these, some previous concepts must be introduced:

– Area Ai is a logical space made up of a set of workers.
– Manager Mi manages an area and schedules tasks over the workers.
– Worker Wi is responsible for executing tasks scheduled by its manager.
– Replicated managers RMi: Each area Ai maintains a set of Replicated

Managers. Each RMi maintains a copy of the same information kept by Mi.
Thus, if Mi fails, then the oldest RMi of the same area will replace it.

Fig. 1 shows the linked structure of peers in CoDiP2P based on a tree topol-
ogy with an areas size of 3 peers. Note that this type of structure allows a
manager Mi of an area located at level i to be a worker Wj in an area located at
level i+ 1 at the same time. In addition, this same node can be also a RMi.The
main functionalities of CoDiP2P system are insertion and departure of peers,
updating system information and the scheduling mechanism to launch a parallel
job from any peer in the system. These three algorithms are explained in detail
in [4].

In order to understand better the searching and rebalancing algorithms ex-
plained later in this paper, some highlights of the updating and departure algo-
rithms are needed.

2.1 Updating Algorithm

The main aim of the updating algorithm consists of maintaining the information
about the computational resources available in the system.This is divided in two
parts: the manager updating and the worker updating.

By means of the manager updating, every manager Mi sends, every T sec-
onds, a message to all the workers belonging to the same area Ai to notify that
it is alive, together with the List of its Top Managers (LTM). The LTM is a
list that contains the addresses of the managers located over the manager Mi in
direction towards the root manager (M1). For instance, the LTM of the manager
M8 shown in Fig. 1 would be M4, M2, M1.

Whenever a Peeri receives a messageupd from its manager Mi, it launches
the worker updating function. Each Peeri, depending also on its role, sends
to its manager Mi statistical information (SttInfj) about its locally available
computational resources or the available computational resources managed by
such a peer (if Peeri is the manager of a lower area). Note that the information

Fig. 1. Tree topology of peers in CoDiP2P.

SttInfj is only sent when it differs from the previous one sent SttInfj−1. The
cost of the algorithm is θ(|Area|), where |Area| is the number of peers in one
area.

2.2 Departure of peers

Whenever a peer leaves from the Tree, voluntarily or involuntarily, the manager
of the disconnected peer detects the broken link in the updating algorithm,
explained in Sec. 2.1. Whenever this happens, the manager checks if the peer is
a worker node or a manager in the immediate lower level:

– In the worker case, there is no problem in restructuring the system because
it is a final node, and no more work must be performed.

– In the manager case, the restructuring operation, described in Alg. 1, is
applied by the replicated manager RMi of the current area Ai. After T
seconds, this detects that there is no answer from the faulting manager Mi

and executes the mechanism.

Note that the algorithm selects the oldest replicated manager, by issues of peers
reliability. Thus, the oldest peers, which the system considers more reliable, are
in the upper levels of the tree, compared with the youngest peers, which are
considered more irregular and are in the lower levels.
The cost of Alg. 1 is determined by the number of peers affected by the fall of the

peer. The worst scenario happens when the replicated manager RMi, selected
to replace an output manager is also the manager of a lower level. The cost of
the algorithm is θ(log|Area|(Ntree)−1), where Ntree is the total number of peers
in the CoDiP2P system and |Area| is the size of the areas.

procedure RMi.Manage Departure in Tree()
Input: RMi,Ai

begin
if |Ai −RMi| 6= 0 then

Mi := RMi ∈ Ai;
RMi notifies ∀workers ∈ Ai that it will be manager;
if RMi is also manager of a lower area Aj then

RMi selects the oldest RMj ∈ Aj ;
RMi notifies RMj that it will be manager of Aj ;
if RMj is manager of lower level then

RMj .Manage Departure in Tree();
end

end

else
RMi becomes worker of upper area of Ai;

end

end

Algorithm 1: Departure of peers in CoDiP2P.

3 Searching Algorithms

We have added a new resource discovery mechanism to the CoDiP2P service
layer to provide two different kinds of searching, one based on exact queries and
the other one based on range queries. Both algorithms look up the addresses of
peers throughtout the tree that have the desired CPU power available, although
they can be used for looking up any kind of computing resources.

3.1 Exact Query Searching Algorithm

The searching mechanism is designed to take advantage of the topology and roles
of peers. This algorithm is based on looking through the local database (DB)
stored by each peer, which contains the computing resources characteristics of
the peers located below it throughout the tree branch.

According to the Alg. 2, whenever a Peeri requests a CPU query, firstly it
checks on its own DB if there is a peer with the required CPU power. In the
case of a search failure, Peeri forwards the searching query to its manager Mi.
If the search fails again, the next manager located on the branch continues the
same search in a recursive way until it reaches the zero level (M1). Finally, if
the searching is successful then the CPU owners peer address is returned to the

function Peeri.Search EQuery(CPU query)
Result: Peer Address
begin

foreach register ε DB.CPU Table do
if register.CPU = CPU query then

Peer Address := register.address;
end

end
if Peer Address = NULL then

if Peeri 6= M1 then
Peer Address := Mi.Search EQuery(CPU query);

else
Peer Address := NULL;

end

end
return Peer Address;

end

Algorithm 2: Exact Query Searching Algorithm.

Peeri. Note that the cost of this algorithm is θ(log|Area|(Ntree)).
Note that one important problem related to the tree topology is the traffic
congestion produced by the routing messages of the searching algorithm and
the updating algorithm. Regarding to the searching traffic, only those searches
which requested peers are located in another subtree of Level 1 arrives to the
root peer. So, the updating algorithm can cause even more bottleneck in the
root peer than the searching one. The searching congestion is measured in the
Experimental Results Section (5.1). In addition, it is worth pointing out that
the updating traffic is characterized by small messages sent each T period. Thus,
we must fix the value of T by balancing the congestion and the updating of
information.

3.2 Range Query Searching Algorithm

The Alg. 3 shows the range query searching algorithm, to which three parameters
are passed: the low and high limits of the searched CPU range values and the
number of items that the algorithm has to catch. Compared with the Exact
Query algorithm, Alg. 3 differs in two points. The first point is that it returns
a List of Peer Addresses (LPA), which contains the desired CPU power inside
the requested range. The second one is that the algorithm does not finish until
it has filled the LPA up with nr items or it has reached level zero (M1). Note
that the cost of this algorithm is also θ(log|Area|(Ntree)).

4 Rebalancing Mechanism

The churn of peers in a P2P environment can unbalance the tree topology. As
a consequence and as we can see in Fig. 2(left), one tree branch can be much

function Peeri.Search RQuery(low CPU, high CPU, nr items)
Result: LPA(=List Peer Addresses)
begin

foreach register ε DB.CPU Table do
if register.CPU ≥ low CPU ∧ register.CPU ≤
high CPU ∧ LPA.size < nr items then

LPA.add(register.Address);
end

end
if LPA.size < nr items ∧ Peeri 6= M1 then

LPA+ = Mi.Search RQuery(low cpu, high cpu, nr items−LPA.size);
end
return LPA

end

Algorithm 3: Range Query Searching Algorithm.

longer than another (Case 1 and 2) or one area can remain isolated from the
root manager (Case 3). Obviously, the unbalancing of the tree will decrease the
performance of the search mechanisms explained above.

M1

M2
M3 M4

Peer_max Peer_min

CASE 3

CASE 1 CASE 2

Peer_max

M5

W8

W10

M1

M2
M3 M4

Peer_max Peer_min

CASE 3 CASE 1 CASE 2

Peer_max

M5

W8

W10

Fig. 2. Tree without rebalancing (left) and with rebalancing (right).

In order to solve this problem, a rebalancing mechanism oriented to a tree
topology is proposed. Alg. 4 allows areas to be moved from one site to another
or lost links to be restored.

Periodically, each Peeri of the tree launches the rebalancing algorithm. As
we can see in Alg. 4, firstly the algorithm tests if any of the three cases shown in
the Fig. 2(left) happens. Whenever it happens, Alg. 4 works as follows in each
case:

– Case 1: Whenever Peeri is also a manager Mi and the area Ai is full, Mi

checks from the List of its Children (LC) which are their sons with the max-

imum (Peermax) and minimum (Peermin) number of levels hanging down
from it. If the difference between both values is greater than one level then
the tree is considered to be unbalanced and as a consequence the rebal-
ancing levels procedure is called. This procedure moves the branch hanging
down from the Peermax son with more levels to the Peermin. As we can see
in the Case 1 of Fig. 2(left), M3 executes the rebalancing mechanism and as
a consequence the Peer W8 hanging down from the son of Peermax is linked
to Peermin. The result is shown in Fig. 2(right). Note as the example of Fig.
2 assumes an areas size of 4.

– Case 2: This case happens whenever Peermax has levels hanging down from
it and the area Ai is not full. This situation means that the tree is unbalanced
due to the fact that the capacity of the area is not fulled up. In this case,
the half levels below Peermax, denoted as rlevels in Alg. 4, are linked to
Peeri by means of the same rebalancing levels procedure explained above.
As we can see in Case 2 of Fig. 2, W10 is linked to M4 after applying the
rebalancing mechanism.

– Case 3: The third and the last part of the Alg. 4 is activated whenever an
area Ai is isolated from its above manager. According to this goal, Peeri
checks if there is an above manager (Mi) and if there is not then Peeri looks
for a manager from their List of Top Managers (LTM). If the searching is
success then Peeri is linked to the new manager. As we can see in Case 3 in
Fig. 2, M5 is linked to M2 after applying the rebalancing mechanism.

Note that all searching operations, whose peers are affected by one of the three
rebalancing cases, will be aborted. They will be resumed when the rebalancing
procedure was finished.
The cost of this is θ(log|Area|(Ntree)− 1) because the maximum number of hops
is equal to the length of a branch from the root manager M1 to a leaf node Wi.

5 Experimentation

The performance of our proposals was tested by means of GridSim [8] and Sim-
Java [9] simulators. In order to simulate our P2P platform with GridSim, peers
were modelled as user entities by means of threads. All entities (peers) were
connected by network links, whose bandwidth and latency can be specified at
the start time. SimJava features provide the management of events and the
mechanism for discovering peers.

All tests were performed with 10,000 peers and a total of 125,000 searches,
which follows a Poisson distribution with a mean frequency of 125 searches/s by
default. According results obtained previously in [4], the updating procedure is
continuously executed in periods of 20 seconds. A summary of the experimental
results is shown in next section.

5.1 Experimental Results

First of all, we tested the influence of the rebalancing algorithm over the search-
ing algorithms. Likewise, the impact of the number of replicated managers (RM)

procedure Peeri.rebalancing()
Data: Mi(=Manager of Peeri), Ai(=Area of Mi), LC(=List of Childs),

LTM(=List of Top Managers)
begin

if Peeri = Mi then
{Peermax, P eermin}:= Peeri.max min child peers(LC);;
// Case 1

if Peermax.levels below − Peermin.levels below > 1 ∧ Ai.isfull()
then

rlevels := b(Peermax.levels below − Peermin.levels below)/2c;
Peermax.rebalancing levels(rlevels, Peermin);

end
// Case 2

if Peermax.levels below ≥ 1 ∧ not Ai.isfull() then
rlevels := bPeermax.levels below/2c;
Peermax.rebalancing levels(rlevels, Peeri);

end

end
// Case 3

if 6 ∃Mi then
for j := 0 to LTM.size do

Peerj := LTM.get(j);
if ∃Peerj then

new Peeri −→ Peerj ;
break;

end

end

end

end
procedure Peeri.rebalancing levels(rlevels, Peerj) begin

if Peeri.levels below ≥ rlevels then

Peerk := Peer ∈ LC | MAX
|LC|
k=1 (LC.get(k).levels below);

Peerk.rebalancing levels(rlevels, Peerj);
else

new Peeri −→ Peerj
end

end

Algorithm 4: Rebalancing Algorithm

was also evaluated for both cases, with and without rebalancing. Fig. 3 shows
the percentage of unsuccessful searches in relation to the percentage of failed
peers for 1 an 3 RMs. In the non-rebalancing case, we can see as the failures
scaled well and the results ranged up to 40% with only 1 RM and 25% with 3
RMs. When we applied rebalancing, the results were very satisfactory with a
rate of unsuccessful searches below 5% for both cases, 1 and 3 RMs. In this case,
the number of RMs practically does not affect the behavior of the searches and
the influence of the percentage of faulting peers on the system is imperceptible.
Therefore, these results prove the well performance of our rebalancing algorithm.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 U

ns
uc

ce
ss

fu
l S

ea
rc

he
s

% Failed Peers

CoDiP2P 1 RM (With Rebal.)
CoDiP2P 3 RM (With Rebal.)

CoDiP2P 1 RM (No Rebal.)
CoDiP2P 3 RM (No Rebal.)

Fig. 3. Comparative of unsuccessful searches in terms of failed peers with and without
Rebalancing Algorithm.

Next, we evaluated the impact of the searching frequency on the exact query
case. The performance achieved by our proposals, denoted as CoDiP2P, was com-
pared with Chord. Samples were collected for CoDiP2P with 1 and 3 Replicated
Managers (RM) and 1 and 3 successors in the Chord algorithm.

Fig. 4(left) and (right) show the results of the exact query search with a high
(12500 searches/sec) and low (125 searches/sec) searching frequencies, respec-
tively. In general, both plots showed that CoDiP2P obtained better results than
Chord, specially when the frequency was high. On the other hand, we saw how
the influence of the successors in the Chord case was higher than the use of repli-
cated managers in CoDiP2P. This was because the Chord’s successors are active
elements in the searching process, whereas in the case of CoDiP2P, the repli-
cated managers do not play such an important role in the searching algorithm.
Focusing on the influence of the searching frequency, we saw that the CoDiP2P
and Chord results ranged up to 40% and 80% with a high frequency (see Fig.
4(left)), whereas they ranged from 15% to 5% with low frequency respectively
(see Fig. 4(right)). This behavior is due to the fact that a low searching frequency
gives both systems enough time to recompose system tables and links. However,
CoDiP2P continues giving better results than Chord because the system has

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 U

n
s
u
c
c
e
s
s
fu

l
S

e
a
rc

h
e
s

% Failed Peers

CoDiP2P 1 RM (Exact Query)
CoDiP2P 3 RM (Exact Query)

Chord 1 succ. (Exact Query)
Chord 3 succ. (Exact Query)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
%

 U
n
s
u
c
c
e
s
s
fu

l
S

e
a
rc

h
e
s

% Failed Peers

CoDiP2P 1 RM (Exact Query)
CoDiP2P 3 RM (Exact Query)

Chord 1 succ. (Exact Query)
Chord 3 succ. (Exact Query)

Fig. 4. Exact queries searching Algorithm versus Chord with a Freq =
12500 searches/sec (left) and Freq = 125 searches/sec (right).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 U

n
s
u
c
c
e
s
s
fu

l
S

e
a
rc

h
e
s

% Failed Peers

CoDiP2P 1 RM (Range Query)
CoDiP2P 3 RM (Range Query)

BATON (Range Query)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 U

n
s
u
c
c
e
s
s
fu

l
S

e
a
rc

h
e
s

% Failed Peers

CoDiP2P 1 RM (Range Query)
CoDiP2P 3 RM (Range Query)

BATON (Range Query)

Fig. 5. Range queries searching Algorithm versus Baton with a Freq =
12500 searches/sec (left) and Freq = 125 searches/sec (right).

enough time to rebalance the system completly and thus better performance is
obtained. This is due to the maintaining cost of the overall system in CoDiP2P
is θ(|Area| · log|Area|Ntree) whereas the maintaining cost of Chord is higher,

θ(N · log2N). In general, we conclude that in any case, the CoDiP2P rebalancing
algorithm performs better than the restructuring of the Chord DHT structure.
Our next evaluation was to compare the performance of our range query ap-
proach in relation to the BATON algorithm, following the same methodology
described above. Fig. 5 shows the percentage of unsuccessful searches in relation
to the percentage of failed peers for high (Fig. 5(left)) and low (Fig. 5(right))
searching frequencies. As we can see in both figures, our approach improves
the BATON results. This improvement is very signicant for the case of high
frequency, achieving a maximum difference around 70% (see Fig. 5(left)). This
difference is due to the fact that each peer on the BATON system has stored less
keys than CoDiP2P and as a consequence BATON needs to do more hops than
CoDiP2P for searching a specific set of values. In addition, BATON has a major
dependency of the neighbourhood and by this reason the drop of a neighbour
has a high repercussion on the searching process.
Next, we compared the response time of CoDiP2P for both cases, exact and range
query, in relation to the Chord algorithm. The discovery mechanism needed a
minimum interval, called “response time”, to update the system completely after
a peer fault. According to our aim, we obtained the percentage of unsuccessful
searches for an hypothetical massive drop of 50% of the total peers at the same
time. Thus, we could compare the robustness of both approaches, CoDiP2P and
Chord. From Fig. 6 (left), we can see that CoDiP2P took 255 units of time to re-
cover the parts of the system affected by the faulting peers in both cases, whereas
Chord needed more than 800 units of time. This is because Chord updates one
entry of its finger table in each updating step and as a consequence, it needs
more time to update the tota1 of 160 entries in its finger tables. In contrast,
CoDiP2P only needs a number of jumps equal to the number of levels of the tree
to update the network completely after a massive drop of peers. In general, we
can conclude that CoDiP2P has a response time approximately 3 times faster
than Chord.
Finally, Fig. 6 (right) shows the congestion (percentage of messages) achieved
throughout the levels of the tree topology for different areas sizes, when the
searching mechanism is applied. Level 0 represents the root of the tree. We can
see as the congestion increases with the areas size. As it was expected, congestion
is critical in the root and decreases when ascending levels. With an areas size
of 21 peers, congestion is around 100%, causing a bottleneck in the root node.
In order to reduce this congestion, the trees level and the areas size should be
limited below a specific threshold. Therefore, in order to maintain the scalability
of the system, we should group the peers according to its characteristics in a set
of different small trees, which would be connected by a second level topology
with good scalability properties. This will be the main goal of future work.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

%
 U

n
s
u
c
c
e
s
s
fu

l
S

e
a
rc

h
e
s

Seconds

Chord 1 succ. (Exact Query)
CoDiP2P 1 RM (Exact Query)

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

%
 L

o
a
d

Level

Area 3
Area 6

Area 11
Area 16
Area 21

Fig. 6. CoDiP2P and Chord comparative of system time response due to a 50% of
Failed Peers (left) and Tree topology congestion (right)

6 Conclusions and Future Work

In this paper, a computing resource discovery mechanism oriented to the CoDiP2P
system is presented. Following the CoDiP2P architecture, the lookup mechanism
is based on a balanced multi-way tree structure capable of supporting both exact
and range queries efficiently. A rebalancing algorithm is also proposed.

The exact query proposal was compared with another exact query algorithm
widely used in the literature, Chord. Given that Chord does not implement
range queries, we also compared our range query proposal with a binary-tree
structure, named BATON. In general, our results show that CoDiP2P performs
much better than the other approaches, specially for high frequencies. In this
case, CoDiP2P achieves half the rate of unsuccessful searches as the others.
Likewise, the results obtained reveal the good performance of our rebalancing
algorithm, improving the unsuccessful searches rate by 50%. Robustness was
another goal of our work. In doing so, the response time to update the system
completely after a massive drop of peers was measured. Our results show that
CoDiP2P has a response time approximately 4 times faster than Chord.

The future trend is directed towards extending the tree topology with a
second level topology, which will allow to increase the scalability of the platform.
Each tree would group a set of peers according to any common characteristic (i.e.
locality, computational resources, etc.), whereas the second level would connect
the set of trees by means of a Bruijn graph[10], which is characterized by its high
scalability and low congestion. Thus, we maintain the effectiveness of the tree
topology for searching and overcome its main drawback, the congestion of the
root levels for huge systems. Another important trend is testing and monitoring
the topology and algorithms under real conditions and network. This will allow
to measure the real traffic congestion and bottlenecks caused by the updating

algorithm, the communication times taken by the departure algorithm and the
effectiveness and overhead messages of the rebalancing algorithm.

References

[1] I. Foster and A. Iamnitchi. “On death, taxes and the convergence of peer-to-peer
and grid computing”, 2nd. Int’l Workshop on P2PSystems, 2003.

[2] R. Gupta, V. Sekhri and A. Somani. “CompuP2P: An Architecture for Internet
Computing Using Peer-to-Peer Networks”, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 17, No.11, 2006.

[3] N. Kotivalainen, M. Weber, M. Vapa and J. Vuery. “‘Mobile Chedar - A Peer-to-
Peer Middleware for Mobile Devices”, 3rd Intl Conf. on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2005.

[4] D.Castellà, J.Rius, I.Barri, F. Giné and F. Solsona “CoDiP2P: a New P2P Ar-
chitecture for Distributed Computing”, Conference on Parallel, Distributed and
Network-based Processing (PDP 2009), pp. 323-329, 2009.

[5] E. Meshkova, J. Riihijrvi, M. Petrova and P. Mhnen. “ A Survey on Resource
Discovery Mechanisms, Peer-to-Peer and Service Discovery Frameworks”, Journal
of Computer Networks, Vol. 52, pp. 2097-2128, 2008.

[6] D. Karger, F. Kaashoek, I. Stoica, R. Morris and H. Balakrishnan. “Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications”, In 2001 ACM SIG-
COMM Conference, pp. 149-160, 2001.

[7] H. Jagadish, Beng Chin Ooi and Quang Hieu Vu. “BATON: A Balanced Tree
Strcuture for Peer-to-Peer Networks”, In the 31st Int’l Conference on Very Large
Data Bases (VLDB) Conference, 2005.

[8] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing”, Con-
currency and Computation: Practice and Experience (CCPE), Vol. 14, Issue 13-15,
pp.1175-1220, 2002.

[9] SimJava, http://www.dcs.ed.ac.uk/home/hase/simjava/, 1998.
[10] D. Loguinov, A. Kumar, V. Rai and S. Ganesh. “Graph-theoretic analysis of struc-

tured peer-to-peer systems: routing distances and fault resilience”, In Conference on
Applications, Technologies, Architectures, and Protocols For Computer Communi-
cations, 2003.

[11] E. Caron, F. Desprez and C. Tedeschi. “A Dynamic Prefix Tree for the Service
Discovery Within Large Scale Grids”. In the sixth IEEE International Conference
on Peer-to-Peer Computing (P2P2006), 2006.

[12] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker and I. Stoica. “Complex
Queries in DHT-Based Peer-to-Peer Networks”. In the first International Workshop
on P2P Systems (IPTPS’02), 2002.

[13] C. Schmidt and M. Parashar. “Squid: Enabling Search in DHT-Based Systems”.
Journal of Parallel and Distributed Computing, Vol. 68, N 7, pp. 962-975, 2008.

[14] C. Mastroianni, D. Talia and O. Verta. “A super-peer model for resource discovery
services in large-scale Grids”, Future Generation Computer Systems, Vol. 21, pp.
1235-1248, Elsevier Science, 2005.

[15] C. Mastroianni, D. Talia and O. Verta. “Designing an information system for
Grids: Comparing hierarchical, decentralized P2P and super-peer models”, Parallel
Computing, Vol. 34, Issue 10, pp. 593-611, 2008.

