
Performance Evaluation of Improved

Web Search Algorithms

Esteban Feuerstein1, Veronica Gil-Costa2, Michel Mizrahi1, Mauricio Marin3

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 Universidad Nacional de San Luis, San Luis, Argentina

3 Yahoo! Research Latin America, Santiago of Chile

Abstract. In this paper we propose an evaluation method for parallel
algorithms that can be used independently of the used parallel program-
ming library and architecture. We propose to predict the execution costs
using a simple but efficient framework that consists in modeling the
strategies via a BSP architecture, and estimating the real costs using
as input real query traces over real or stochastically generated data. In
particular we apply this method on a 2D inverted file index used to re-
solve web search queries. We present results for OR queries, for which
we compare different ranking and caching strategies, and show how our
framework works. In addition, we present and evaluate intelligent rank-
ing and caching algorithms for AND queries.

1 Introduction

Inverted files [1] are the most widely used index data structures to cope efficiently
with high traffic of queries upon huge text collections. An inverted file consists
of a vocabulary table which contains the set of relevant terms found in the text
collection, and a set of posting lists that contain the document identifiers where
each term appears in the collection along with additional data used for ranking
purposes. To answer a query, in a Web search engine context, a broker machine
sends the query to a set of search processors in order to get the set of documents
associated with the query terms. These processors perform a ranking of these
documents in order to select the top-K documents.

Many different methods for distributing the inverted file onto P processors or
computers and their respective query processing strategies have been proposed in
the literature [1]. The different ways of doing this splitting are mainly variations
of two basic dual approaches: document partition (a.k.a local index) and term
partition (a.k.a global index). Variants of these two basic schemes have been
proposed in [5] which focus on optimizing for particular situations.

In a previous paper [2] we introduced a novel distributed architecture for
indexing, named the 2D index, that consists in arranging a set of processors in
a two-dimensional array, applying term-partitioning at row level and document-
partitioning at column level. We showed in that paper that, for AND queries,
choosing the adequate number of rows (R) and columns (C) given the available
number of processors it is possible to obtain significant improvements in the

performance against the basic architectures of term and document partitioning
with the same number of processors.

In this paper we propose to use the bulk-synchronous model of parallel com-
puting (BSP) [8] as the cornerstone of a simple but efficient framework in which
we blend empiric analysis and theoretical tools to predict the cost of a real system
executions, which we apply to variations of the 2D index. In that framework, we
combine the usage of real input logs, average-cost analysis of certain operations
and stochastic generated values to compute realistic estimations of the cost of
the real system.

Our framework has two important features. The first is precisely the ability
to scale the system architecture obtaining reliable results without the need to
acquire additional resources, permitting for example to predict what happens
when there are thousands of processors with billions of documents. This is an
important issue as deploying and running algorithms on large clusters to deter-
mine their efficiency and performance is extremely expensive, and prohibitive
in many cases, as it is sometimes impossible to access the required resources.
Our methodology enables us to validate the feasibility and convenience of an
architecture or algorithm more easily than constructing a real system or build-
ing complex simulations involving the use of queuing theory, real-time managing
techniques and, not less involved, the real implementation of all the operations.

The second important characteristic is the possibility of applying this frame-
work to any kind of system, meaning synchronous or asynchronous, with dis-
tributed or centralized ranking. Besides, in this way we can ensure a fair com-
parison between algorithms independently of the hardware used to run the codes
and particular implementation details. The result is that our framework based
on the BSP model may be seen as a unifying setting to fairly compare different
algorithms and implementations, even other researchers’ proposals.

Apart from BSP, several general-purpose parallel models have been presented
in the literature, like LogP or QSM [8]. As it has been proved, the different models
can be reciprocally simulated efficiently, and we base our evaluation framework
on BSP, which has a well developed literature, libraries and other resources that
provide an efficient way of evaluating algorithms for a wide variety of problems.
We insist on the fact that we are not choosing one model over the others as a
real platform over which the algorithms would actually run, but choosing one of
them as the “computational model” that will be used to compare the behavior
of different strategies or configurations.

The rest of this paper is organized as follows: Section 2 presents generali-
ties about distributed search architectures and some improvements proposed to
speedup query response time. Some of these improvements were introduced in
previous papers, while those in Sections 2 and 2 are original contributions of
this paper. Section 3 presents our methodology using the BSP model. Section 4
shows the features of the query log and the parameters used in the experiments,
as well as the results of the experiments we conducted. Finally, Section 5 presents
our conclusions.

2 Search Architecture

Queries are introduced to the system via a receptionist machine named the bro-

ker. The broker is in charge of routing the queries to the clusters search proces-

sors and receiving the respective answers. It decides to which processor a given
query will be routed, normally by using a load balancing heuristic. The parallel
processing of queries consists in a series of operations that will be executed in
different processors, the results of which will be combined to get the final answer
to the query. These are the primitive operations of broadcast or communication,
list intersection, list merging, list ranking, etc. Each of these operations has a
cost depending on its actual parameters. The combination of these costs for all
the queries in an execution environment conforms the total cost of a sequence
of queries.

Several features may be added to the basic setting just described to further
speed up the search process or provide fault tolerance, as for example the already
mentioned partitioning schemes, replication, particular policies for routing the
queries among the processors, different ranking algorithms, and various types of
caches. In the following we describe some of these standard features as well as
some original ones that we introduce in this paper, and will be tested using our
evaluation framework.

Partitioning and Replications. We already mentioned in the introduction
the exploitation of parallelism over the text database that is achieved by differ-
ent variations or evolutions of the two “extreme” settings of document and term
partitioning, in particular the 2D scheme of [2]. Fault-tolerance is generally sup-
ported by means of replication. To this end, and assuming a P -processor parallel
search cluster, D copies for each of the P processors are introduced. This can
be seen as adding an extra dimension to whichever configuration was initially
chosen. Then the system can be seen as a P ×D matrix in which each processor
in the D dimension maintains an identical copy of the respective partition of
the index. Upon receipt of a query by the broker node in the cluster, the broker
sends it to all the processors that must evaluate it, and for each of them one
replica is selected. The processors hit by the query work on their part of the
solution to then merge all results to produce the final answer.

The basic model of concurrency in here is the distribution of the query search
among the distributed knowledge of the P principal nodes and also internally
to each of the D replicas, which contain the same data (global knowledge). The
question arises on how to utilize the available resources to best execute search
algorithms in the P × D arrangement of computers. A naive approach would
be to attempt a text data partitioning throughout the system and hope that
the multiplicity of computational resources can provide a speedup by virtue
of simultaneous computations. Another approach would be to share in a more
subtle way the resources of the D replicas. We explore these cases in this paper.

Caching. A typical way of reducing the number of processors involved in
each query processing is by using caching in several ways. First, the broker ma-
chine may have a results cache (RCache) of previous queries, to avoid repeatedly

computing the most frequent ones. The state of the art strategy for the results
cache is the SDC strategy [6], which keeps a static section to store the answer
for queries that are frequent along large periods of time and a dynamic part with
the objective of capturing queries that become very popular during short periods
of time. Additionally, we can reduce the number of processors participating on
each query by sending the query only to a selected group of them as in [7] or
[2]. The latter works propose to keep a compact location cache (LCache) at the
broker machine.

Processors may maintain also caches of posting lists to reduce secondary
memory accesses. Examples of these can be found in [6, 4, 3]. Alternatively there
is an intersection cache [4] which keeps in each search node the intersection of
the posting lists associated with pairs of terms frequently occurring in queries.
The intersection operation is useful to detect the documents that contain all of
the query terms, which is a typical requirement for the top-K results in major
search engines. Figure 1 shows the five caches defining a hierarchy which goes
from the most specific pre-computed data for queries (results cache) to the most
generic data required to solve queries (posting list cache). When a new query
arrives to the system, if the broker finds the new query in its RCache, the query
is answered with no further computation. If that is not the case, the broker
searches the query in its LCache to reduce the number of processors that will
be involved in its processing. Finally, the broker selects a processor to send the
query to. After that, the query is processed according to the partitioned index
approach and the ranking scheme.

Fig. 1. Query processing using a 2D index and a five level cache hierarchy.

Distributed vs. Centralized Ranking. There are basically two types of
rankings under distributed architectures: distributed or centralized ranking. For
clarity we explain the ranking schemes without considering caching at any level.
In the distributed ranking scheme, the broker sends the query to a manager-

merger processor. Then, this processor sends the query to each other processor
involved in the processing of the query (i.e. each processor owning terms of the
query if the term partition scheme is used, or all processors when we use the
document partition scheme). Then, these processors fetch the posting lists for
each term and computes their union. In the last phase, they rank the local results
and send the top-K documents identifier to the manager-merger processor which
merges the partial results in order to build the global top-K results that are sent
to the broker.

Using the centralized ranking strategy, there is one processor (named the
manager-ranker processor) that globally ranks the pieces of posting lists that are
sent to it by the processors involved in the processing of the query. In general it
is enough that each involved processor sends a small list to the manager-ranker
processor to allow him compute a barrier SMAX that document frequencies for
a certain term must surpass to qualify for the final result list. When posting
lists are kept sorted by frequency, this allows to directly skip whole list-tails
consisting of documents with frequencies smaller than the barrier.

To map these basic strategies to a 2D architecture we need first to describe
the main computational path that each query will follow. At column-level a union
(resp. intersection) is computed by sending the shortest list from the processor
that owns it to the processor owning the second shortest list, who computes
the union (resp. intersection) with its term (or terms) and sends the result to
the following one and so on, until the last processor is reached. When using the
distributed ranking scheme we perform a ranking over local data before sending
partial results to the next processor. This allows reducing the communication
cost. This mechanism requires that some processor, with the information of the
lengths of the posting lists at that column, prepares the route the query will
follow. Then the basic ranking strategies become:
Distributed Ranking for 2D index:

1. The broker machine sends the query to the manager-merger processor using
a hash function over the query terms.

2. The manager-merger sends the query to a random processor at each column
(which we call the manager-ranker).

3. The manager-ranker of each column prepares the route for the query and
sends it to the first processor of that route.

4. Each processor that receives the query fetches the postings lists of its term(s),
computes their union or intersection, makes the ranking and sends the result
to the following processor in the routing list.

5. The last processor of the routing list sends the results to the manager-ranker
of the column, which performs the final distributed ranking (in order to
obtain the top-K postings of the column).

6. The manager-merger receives the results of all the columns and merges them
to obtain the global top-K results.

Centralized Ranking for 2D index:

1. The broker machine sends the query to a manager-ranker processor.
2. The manager-ranker sends the query to a random processor at each column

(which we call the column manager).
3. The column manager of each column prepares the routing list for the query

and sends it to the first processor of that route.
4. Each processor that receives the query fetches the postings lists of its term(s),

makes the union or intersection with the partial list it receives from previ-
ous processors from the same column, and sends the result to the following
processor in the list.

5. The last processor sends the results to the column manager, who sends the
results to the manager-ranker.

6. The manager-ranker receives the results of all the columns and ranks them.

Clairvoyant Distributed Ranking for AND queries. The main advantage
of the centralized ranking approach with respect to the distributed one arises
from the possibility of excluding documents that would not do it to the top-K
results, by means of initially considering short prefixes of all the lists and then
updating the global barrier as needed. The price to be paid for that gain is the
extra communication and overhead due to the extra need of interaction among
the processors. This suggests that it would be very valuable to know a-priory how
many elements to consider of each list. In that case we could send exactly the
required postings and do the minimum work. Considering that each successive
intersection that is computed will further reduce the length of the resulting lists,
just limiting the number of elements of the first list that must be sent would
be useful to reduce the total computation and communication time. We can
exploit the information of the query logs to estimate the number of elements
of the shortest list that should be sent at the beginning of the computation
to ensure that the appropriate number of results will be found. Of course we
cannot be sure that that number will be effectively obtained, but we have two
possible solutions to that. First, we could choose the number of postings to send
so as the probability of having enough elements exceeds a certain threshold,
admitting the (rare) possibility of having less results than needed. A second idea
would be to choose that number and, in case of not having enough elements in
the intersection, behave as in the centralized case, i.e. asking for extra results to
the first processor and repeating the process. We implemented the first of these
ideas and compared it with the Distributed and Centralized strategies above.
Clairvoyant Distributed Ranking:

1. The manager-merger of the query sends it to a random processor at each
column, that will be the manager-ranker.

2. The manager-ranker of each column prepares the route for the query and
sends it to the first processor of that route.

3. Each processor that receives the query fetches a certain number of postings
of its term(s) according to the estimation, intersects them with the partial
list it receives and sends the result to the following processor in the list.

4. The last processor sends the results to the manager-ranker of the column,
which makes the ranking and sends the results to the manager-merger.

of terms # of postings sent

2 (K/C + 1000) ∗ 5
3 (K/C + 1000) ∗ 22
4 (K/C + 400) ∗ 50

Table 1. # of postings of the shortest list sent to ensure 90% of the queries have
enough results.

5. The manager-merger receives the results of all the columns and merges them.

We now explain how we did to compute the parameters of Clairvoyant Rank-
ing, i.e. the number of postings of the shortest list that need to be sent to ensure
that with high probability the top-K elements will be found. We used the same
data sets and query logs described in Section 4 to compute the average length
of the intersection for queries with different number of terms, and analyzed the
results as a function of the length of the shortest posting list involved in the inter-
section. Figure 2 shows the resulting values for 2-term queries. We then computed

Fig. 2. Average length of the intersection vs length of the shortest list, two-term queries

min-square approximations, and another linear function that is a lower-bound
to the average length for more than 90% of the queries. The inverse of the linear
lower bound acts as an upper bound to the average length of the resulting list,
so fetching that number of postings from the shortest list would, on average,
be enough for more than 90% of the queries. We decided to fetch twice that
number to cope with those intersections whose results are smaller than average.
The values needed to have top-K results in at least 90% of the queries are those
depicted in table 2. Those were the values used in the experiments described in
section 4. For queries with 4 or more terms, we used the same values as for 4
term intersections.

Re-using Intersections. Although as we mentioned before replication is
normally introduced to improve fault tolerance and throughput (due to the added
processing capacity), the D replicas of a processor may contain intersections
between pairs of terms that could be useful to solve new queries. It is then
pertinent to try to exploit this advantage by first making a sort of tour along
the replicas to “see” if there is something useful to solve a current query in the
column. That way, the caches of the replicas behave in some way as a common
shared resource. In the following we propose a strategy to achieve this goal.

Each processor will be responsible of a set of terms, given by a hashing
function H . This function H must be such that it distributes terms among pro-
cessors trying to cluster together terms frequently co-occurring in queries. H is
extended from terms to queries, in some reasonable way (for example, defining
H(q) = H(t), where t is the term of q with the longest individual posting list
among those forming q). Each processor p will have a cache of posting lists,
divided in two parts: a static part where it will hold the most useful posting
lists (according to the logs), among the terms t such that H(t) = p, and a
dynamic part, both for terms t such that H(t) = p and for terms t such that
H(t) <> p. Besides, each processor will maintain a dynamic cache of intersec-
tions (pair intersections), which will contain only queries or partial queries q
such that H(q) = p. Upon computing complex intersections, p will eventually
cache pair-intersections in it’s own cache and also may cache pair-intersections in
other processor’s intersection cache. Finally, each processor will have a results-
cache, where it will hold results of previous queries assigned to it. The following
algorithm shows the behavior of a processor upon receiving a query.

- Given a query q = t1, . . . , tr (abusing notation we denote by q also the set of terms {t1, . . . , tr})
- q is assigned to p = H(q)
- If p has q in its results cache then p updates the validity of q in cache and answers
- else
If p has q in it’s own intersection cache then p updates the validity of q in cache and answers
- else

- Let TY be the set of terms of q that appear already in an intersection with another term of q
in the intersection cache of p
- If TY = q (i.e. p has all the pairs needed to compute the answer in its own cache)

- p computes the answer, updates the validity of all the used pairs, caches q in the results
cache and answers

- else
- Let TN = q − TY

- Let T p

N
= TN ∩ H−1(p) (i.e. the set of terms that are not cached and must be looked

for in p)

- Let T p

N
= TN ∩ H−1(p) (i.e. the set of terms that are not cached and must be looked

for in other processors)

- p asks processors in H(T p

N
) for intersections or posting lists useful for computing q

- Each processor answers, and blocks the contents of the cache for a superstep

- Let T be the set if terms in T p

N
such that NO useful intersections are kept in the caches.

- p couples together all the terms in T p

N
(putting together pairs with maximum frequency or

maximum frequency × length of the posting lists), computes and caches their intersections.
- If |T p

N
| is odd, the uncoupled term is coupled with one term in T , p computes their

intersection and caches the result where it corresponds according to H.
- p couples together the rest of the terms in T (putting together pairs with maximum
frequency or with maximum frequency × length of the posting lists), computes the
intersection of each pair and caches each result where it corresponds according to H.
- p computes the query using the information already in the caches of the other processors
and its own cache
- p communicates to the other processor which information it has used, the other processors
update the validity of the information
- p caches q in the results-cache and answers

We must also say what a processor does in case another processor makes a
request: If I have a pair or a partial result useful for the query: (a) Answer to the
asking processor, (b) Block it during one superstep, (c) When the processor tells
me that it has used the provided pair or result, update the cache accordingly.

Finally, we must say what’s the meaning of “caches the result where it corre-
sponds according to H .” When a processor computes a pair that does not belong
to him accordingly, it will cache it in the owner’s cache. This means that upon

a request of caching, the other processor p’ must: (a) Receive the list, (b) Make
place in the cache according to the caching policy, and (c) Update the cache
with the new list.

3 A Cost Estimation Methodology

Our cost estimation framework is based on the bulk-synchronous model of par-
allel computing (BSP) [8], where computation is organized as a sequence of
supersteps, in each of which the processors may perform computations on local
data and/or send messages to other processors. The messages are available for
processing at their destinations by the next superstep, and each superstep is
ended with the barrier synchronization of the processors.

The total running cost of a BSP program is the cumulative sum of the costs
of its supersteps, and the cost of each superstep is the sum of three components:
computation, communication and barrier synchronization. Computation cost is
given by the maximum computation cost of a processor in the superstep, and
will be denoted by a quantity w. This will include also disk accesses, whose unit
cost will represented by a constant δ. Besides, we note that just for participating
in the processing of a query, a processor incurs a certain overhead β, which must
also be taken in consideration when accounting for the actual cost of the query.
Communication cost is given by the maximum number of word-length messages
sent or received by a processor during the superstep (denoted by h) times the
cost of communicating one word (γ). Hence this will be denoted by the product
h∗γ. Finally, we will use L for the synchronization cost. Parameters γ, L, β and
δ take into account the characteristics of the particular computer architecture
that is emulated.

The impact of uneven load balance in the cost is taken into account by
considering maximum cost among all the processors for each of the costs above.
Moreover, we can compute the load work and communication efficiency using
this model as follows: for any performance measure X , in each superstep we
compute its value for each processor, and define BSP efficiency for X as the
ratio average(X)/maximum(X) ≤ 1, over the P processors. This gives an idea
of how well we distribute the workload among processors.

We end this section with the list of the primitive components that together
conform the costs (computation and communication) that are charged to each
query:

– ti(x, y): Expected time employed by a processor to compute the intersection
of two lists of lengths x and y respectively.

– tm(x): Expected time employed by a processor to merge a set of lists of total
length x.

– tr(x): Expected time employed by a processor to rank a list of length x.
– I(x, y): Expected length of the intersection of two lists of length x and y.
– γ: time employed to transmit a unit of information from one processor to

another.
– δ: cost of accessing a unit of information in disk.

– β: overhead due to the participation of a processor in a query.
– L: time for the barrier synchronization at the end of each superstep.

4 Experimental setting

We did our experiments to estimate the cost of our algorithm using P=512
processors with different combinations of P = C×R. The number of rows ranged
from 1 (local index) to 512(global index). Queries where selected from a query
log with 36,389,567 queries submitted to the AOL Search service between March
1 and May 31, 2006. We preprocessed the query log following the rules applied in
[3] by removing stopwords and completely removing any query consisting only
of stopwords. We also erased duplicated terms and assumed that two queries
are identical if they contain the same words no matter the order. The resulting
query trace has 16,900,873 queries, where 6,614,176 are unique queries and the
vocabulary consists of 1,069,700 distinct query terms. 75% of these queries occur
only once, and 12% of them occur twice. The index was built using a 1.5TB
sample of the UK’s web obtained from Yahoo! searches.

We used caching in several ways as we mentioned before. For the experiments
we set the overall cache sizes so as to maintain information of at most 10% of
the processed queries. In all the cases the broker machine has a cache of results
of previous queries (RCache), and the processors maintain caches of posting lists
to reduce secondary memory accesses. In the experiments reported in Section 4
we considered an additional level of caching introduced in Section 2. For the
algorithms using replication, to improve the throughput and fault tolerance (see
for example [6]), we set the number of replications D = 4, so in these cases we
have P × D processors available to compute queries.

We defined particular costs for the different primitive functions and con-
stants, based on benchmarking runs we did on the same collection. The val-
ues are expressed relative to a base-line in terms of ranking time defined as
tr(x) = x. Merge operations require in average tm(x) = x/6. An intersec-
tion between two lists of lengths x, y can be done in time proportional to
min(x log y, x + y). However, the constants discovered in the benchmark make
us count ti(x, y) = min(x log y, x+ y)/6. For I, the random variable that models
the expected length of the intersection of lists, we used a power-law distribution,
with parameters varying according to the number of lists being intersected. The
actual values of these parameters were determined via sampling from real queries.
We also established that the communication cost for transmitting a query is, on
average, 1/4 of the time required to transmit a K-word list. For P = 512, the
communication time for one unit under a heavily loaded network was γ ≈ 0.453,
and the overhead constant β ≈ 1.5. The cost for the synchronization was L ≈ 8.

We give as example a succinct explanation of the costs charged to each pro-
cessor in the Distributed Ranking case for AND queries, the other cases are
analogous. For simplicity we omit the parameters of random variable I.
Distributed ranking costs:
1. Send the query to a processor at each column. Computation: β; Communi-

cation: K/4 × γ

0

5e+4

1e+5

1.5e+5

2e+5

2.5e+5

3e+5

0 50 100 150 200 250 300
#
 o

f
p
ar

ti
ci

p
at

in
g
 r

o
w

s

Number of columns

Fig. 3. Number of participating rows as a function of the number of columns

2. Send the query to the first processor in the route. Computation: β; Commu-
nication: K/4 × γ

3. Fetch and intersect.(At each participating processor) Computation: δ × K
for disk access + ti(I) + β; Communication: I × γ.

4. Rank. Computation: tr+ β; Communication: I × γ

5. Merge. Computation: tm+ β; Communication: K × γ

OR Queries with iterations. In this experiment we considered Centralized
and Distributed ranking for OR queries, with an additional restriction imposed
in order to balance communication, secondary memory recovery and computa-
tion costs among processors: we limit the number of operations of each type
a processor may execute in each superstep. Operations not performed in one
superstep due to that limitation, are delayed until the next one. Thus, the pro-
cessing of a query is separated in successive iterations. The estimation of the
costs is performed in each superstep, charging always the maximum cost for
each operation. We used the RCache at the broker and top-K cache plus posting
list cache at search processors’ side.

As the number of columns augments, the probability that the query terms are
located in fewer rows augments (see Figure 3), and therefore the communication
costs tends to decrease, while the computation overhead increases because each
query is processed by more columns. There must naturally exist a trade-off
between the two extremes of the 2D index. Figure 4[Left] shows the cost for
the centralized and distributed ranking algorithms when processing OR queries
with an asynchronous system for different P = R×C combinations. Results show
that when the index is working as a term partition (matrix size of 512× 1) both
ranking strategies tend to perform well, but a better configuration is 16× 32. A
document partition index has a higher cost due to the overhead of dealing with
every query in all processors. The centralized ranking has a lower cost in each
extreme of the matrix because it requires less iterations to finish the processing
of a query when using Persin filters.

Figure 4[Right] shows the average efficiency measured as
∑

(wpi
/Maxwp)/P

in each superstep, where wpi
is the computation performed by processor pi, and

Maxwp is the maximum computation performed in that superstep. Results show
that using a large number of rows improves both ranking’s efficiency, but when
working with 512 columns and one row per column, the distributed ranking
scheme reports a better efficiency than the centralized one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32 64 128 256 512

N
o

rm
al

iz
ed

 C
o

st

Number of Columns

Centralized
Distributed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32 64 128 256 512

E
ff

ic
ie

n
cy

Number of Columns

Centralized
Distributed

Fig. 4. OR queries [Left] Normalized costs. [Right] Computation efficiency.

OR Queries with complete lists. Figure 5 shows results for OR queries
when we accessed to the whole posting lists of each term to perform the ranking
operation, i.e. without the iterations defined in the previous experiment. The
same cache settings were used. As we may see, in this case the term partition
index with centralized ranking presents high costs due to the imbalance it has
both in communication (because it has to transmit complete posting lists from
the search processors to the manager) and in secondary memory access (when
retrieving the posting lists for each term). On the other extreme, the document
partition index is more balanced in both costs, but its overhead is clearly higher.
The Distributed ranking scheme presents more balanced communication with all
configurations (ranking is performed in each processor before sending results).
But the term partitioned index presents some imbalance in secondary memory
retrieval as ranking is performed over larger posting lists. Again, we see the
trade-off communication/overhead, with the optimal configuration realized by a
128 × 4 arrangement of the processors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32 64 128 256 512

N
o
rm

al
iz

ed
 C

o
st

Number of Columns

Centralized
Distributed

Fig. 5. Normalized costs for OR queries with complete lists.

Different ranking strategies for AND Queries. Figure 6 shows the
performance of Distributed, Centralized and Clairvoyant strategies with different
configurations. As we may see, the best configurations are those in which the 256
processors are arranged in 32 or 64 columns, depending on the ranking strategy,
the optimal combination being the clairvoyant strategy with 64 columns. Again,
as the number of columns augments, the probability that the query terms are
located in fewer rows augments (see Figure 3), and therefore the communication
costs tends to decrease, while the computation overhead increases because each
query is processed by more columns. There is naturally a trade-off between the
two extremes. Both the distributed and centralized approaches suffer from the
inconvenient that each time a new group of postings must be considered for
the intersection, they must be compared with all the previously fetched terms,
with a cost that is almost quadratic in the required number of iterations. The
clairvoyant strategy is free of that problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 50 100 150 200 250 300

C
o

st

Number of Columns

Centralized
Distributed
Clairvoyant

Fig. 6. Normalized costs vs. number of columns, for different ranking strategies

Intelligent Caching in a Replicated Local Index. In this section we
report the results of an experiment in which we compare the effects of different
caching protocols for AND queries in a 1×P ×D setting (i.e. a local index with
replication, D = 4, 8). The base-line was the architecture having all the caching
levels considered before, except the intersection cache (No Intersection). We then
considered adding the intersection cache, but without any particular strategy for
routing the queries and their corresponding caching decisions (Intersection). Fi-
nally, we considered the usage of intelligent distribution of the traffic among the
rows, using the hashing function H as described in Section 4.2.1 (Intersection-
h). Fig. 7(a) shows the throughput obtained by all three intersection algorithms.
This graphics shows the improvement (almost 30% with K=128 and more notori-
ous when with K=1024 is 60%) obtained when using a more intelligent algorithm
to reassign the intersections operations. Fig. 7(b) shows the disk and CPU cost
saving relative to an algorithm that uses no caching at all. As it may be seen, all
three algorithms obtain visible differences in both aspects with respect to that
base line. However, the use of intersection caches helps improve that in an extra
20%. The most significant savings are obtained for bigger values of D. In those

cases, the number of disk accesses needed by the best algorithm is about 1/4 of
the number needed without caching of intersections.

1.0

0

th
ro

u
g
h
p
u
t

strategies

D=4

D=8

K=128

K=1024

K=128

K=1024

Intersection-h
Intersection

No Intersection

100.0

90.0

80.0

70.0

60.0

50.0

40.0
DCBADCBA

co
st

 s
av

in
g
(%

)

parameters

Disk

Cpu

A-->D=4, K=128
B-->D=4, K=1024
C-->D=8, K=128
D-->D=8, K=1024

Intersection-h
Intersection

No Intersection Cache

(a) (b)

Fig. 7. Different caching strategies, AND (a) Throughput (b) Disk/CPU savings

5 Conclusions

We have presented a methodology for predicting the costs of different algorithms
and architectures for distributed indexes of different sizes. We provided results
for some interesting experiments regarding a novel two-dimensional architecture
and some new ranking and caching strategies. The results obtained allow us to
be optimistic on the further development and applications of the cost framework,
as for example putting together the different features we have tested separately,
like replication, caching, etc. The cost framework can be used for analyzing
and comparing our work with other authors when evaluating the scalability of
alternative strategies.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley., 1999.

2. E. Feuerstein, M. Maŕın, M. Mizrahi, V. Gil Costa, and R. A. Baeza-Yates. Two-
dimensional distributed inverted files. In SPIRE 2009, LNCS 5721.

3. Q. Gan and T. Suel. Improved techniques for result caching in web search engines.
In WWW, pages 431–440, 2009.

4. Xiaohui Long and Torsten Suel. Three-level caching for efficient query processing
in large web search engines. WWW, 9(4):369–395, 2006.

5. M. Marin and G.V. Costa. High-performance distributed inverted files. In CIKM

2007, pages 935–938, ACM, 2007.
6. M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New caching techniques for web

search engines. ACM HPDC, 2010.
7. Diego Puppin, Fabrizio Silvestri, Raffaele Perego, and Ricardo A. Baeza-Yates.

Tuning the capacity of search engines: Load-driven routing and incremental caching
to reduce and balance the load. To appear in TOIS, 2009.

8. V. Ramachandran, B. Grayson and M. Dahlin. Emulations between QSM, BSP
and LogP: a framework for general-purpose parallel algorithm design, J. Parallel

Distrib. Comput. 63 (2003) 11751192.

