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Abstract. With the introduction of the Globus Toolkit 4 (GT4), the
service-oriented paradigm fully entered the Grid Computing arena. Since
then, Grid services have turned into a suitable technology for building
loosely coupled components for Grid deployments. Grid services require
developers to consider fault tolerance and high availability as critical de-
sign factors to ensure successful long-term stability. This paper describes
the integration of a library that allows to automatically replicate GT4-
based Grid Services with a Cloud Computing back-end. Using an Infras-
tructure as a Service approach, the Cloud can provision GT4-based pre-
configured virtual machines which are properly contextualized at boot
time to deploy new Grid service replicas. This scheme allows replicated
Grid Services to gain on demand scalability and increased fault tolerance.

Topics Parallel and Distributed Computing.

1 Introduction

The Globus Toolkit 4 (GT4) [1] allows developers to produce service-oriented
components for the Grid via its implementation of the WSRF (Web Services
Resource Framework) [2]. These loosely coupled Grid Services, as any distributed
system, require fault-tolerant techniques to provide users with high availability.
This way, replication stands out as a suitable approach to guarantee service
provision via multiple coherent instances of the same Grid Service.

In a previous work [3] we described a library that manages the automatic
replication of WSRF-based Grid Services. We also described the integration of
the replication library into a service-oriented job metascheduler in order to en-
hance fault-tolerance and to guarantee service availability. This library allows
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the automatic creation of groups of replicated Grid services, that is, the same
Grid service replicated in different GT4 containers. It provides the services with
operations to achieve coherent state replication so that all the replicas share the
same state. In addition, the library exposes operations for group management,
so that new replicas can join and leave the group, a feature specially important
to replace the failed ones. However, this library required the user intervention
for a new Grid service replica to join the replication group, since this involved
the deployment of a new GT4 container as well as the replicated Grid service.

With the advent of Cloud Computing technologies, virtualization has become
an ideal technology to deploy virtual machines that can be properly contextu-
alized at boot time in order to fit almost any possible scenario. The usage of a
Cloud infrastructure to automatically deploy virtual appliances hosting a GT4
container opens up a new scenario for on demand scalable replication of Grid
services. However, this approach introduces new problems. First of all, virtual
machines have to be properly configured so that they act as a new GT4-based
replica. This involves a process commonly denoted as contextualization, that
is, obtaining a fully configured virtual appliance from a base virtual machine.
Secondly, the dynamic provision of virtual appliances benefits from relying on
virtual machine managers, which manage most of the life cycle of virtual ma-
chines (deployment, monitoring, migration, termination, etc.). Finally, with the
introduction of a virtualized layer, it is important to measure the penalties in-
troduced by this approach, specially when the provision of new replicas aims
at replacing the failed ones to maintain service availability. This paper reflects
experiences on these three major topics.

The idea of service provision from Cloud infrastructures is not a new one. In
[4], the authors describe the dynamic provision of computing resources from a
Nimbus [5] cloud deployment. This way, they are able to increase a Grid infras-
tructure by including new worker nodes on demand. In [6], the authors address
the issue of automatic infrastructure provision in order to create dynamic virtual
clusters configured with a required software execution environment. They apply
their approach into a metascheduler able to dynamically deploy Grid compo-
nents. An architecture for resource virtualization based on Service Level Agree-
ments is presented in [7], where users specify their resource requirements and
brokers enact on demand service provision by means of virtual appliances.

As opposed to previous works, our approach does not focus on enlarging
a computational infrastructure but rather on WSRF-based service provision.
Notice that it is possible to have several spare machines with GT4 containers
ready to be employed in case new replicas are requested. However, this approach
requires dedicate computing resources which results in an overall underutilization
of the machines considered in the infrastructure. Instead, using Cloud computing
allows provisioning these resources on demand, whenever they are requested. In
this paper we describe the integration of the Grid services replication library with
a Cloud computing-based infrastructure. This way, new Grid service replicas can
be deployed on demand to guarantee service provision.



The remainder of the paper is structured as follows. First, Section 2 describes
the replication library. Next, section 3 covers the Cloud computing technologies
employed. Section 4 addresses the process of contextualization, in order to create
Virtual Appliances from base virtual machines. Then, section 5 describes the
integration of the replication library with the Cloud back-end. Later, section
6 discusses the main overheads introduced by this approach. Finally, section 7
summarizes the paper and points to future work.

2 The WSRF-based Grid Service Replication Library

GT4 provides the implementation of a set of Grid services that are, basically,
stateful Web services. WSRF specifies the way these Web services hold a state.
This is achieved by coupling a data container, which stores the stateful data, to
a Web service, thus obtaining a WS-Resource.
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Fig. 1. Main functionality of the replication library, using a ring topology

The replication library, whose functionality is fully described in the paper by
Molté et al. [3], provides an existing WSRF-based Grid service with automatic
replication of its WS-Resources in a transparent way to the users, integrated
with its GSI-based security mechanisms. The library operates in a multi-primary
passive replication scheme, that is, any replica can process a request and the
state of the modified WS-Resource is transferred to the other replicas. A good
introduction to WSRF and WS-Resources, as well as the Factory /Instance design
pattern used in the replication library can be found in the book by Sotomayor
et al. [8].

Figure 1 summarizes the main functionality of the replication library, where
the replicas are configured in a ring topology. The topology affects the order in



which the state is propagated from the replica whose state is changed. The figure
shows the same Grid service, which includes the functionality of the replication
library, deployed on different GT4 containers. These containers are typically
hosted by different machines, but this is not a requirement of the replication
library, since different GT4 containers could be running within the same machine
but listening on different ports.

According to the figure, first of all the user chooses any Grid service replica
and registers the other replicas (step 1). Each replica can be uniquely identified
by its URI (Uniform Resource Identifier). Next, the user requests this replica
to create a WS-Resource (step 2), which stores the state of the Grid service.
This WS-Resource is then created on the other replicas with exactly the same
key and the same ownership (step 3). This requires credential delegation among
the replicas and an appropriate configuration of client-side stubs to satisfy the
GSI-based security of the Grid services. Sharing the same identifier simplifies the
client-side access to the different replicas. In addition, all the replicas agree on
a common topology, which in the case depicted is a ring topology. At the end of
this process, the same WS-Resource exists on the different container instances.
Therefore, the replication of the Grid service is achieved by a replication of its
state, which is stored in its WS-Resources.

When an user invokes a method that results in a state modification (step 4),
synchronization protocols among the replicas are required to maintain a consis-
tent state. To ensure coordinated access to the state of any WS-Resource, the
library implements a lock-based approach, via Grid services, called GS-Lock.
Initially, all the replicas agree on the one with the largest index to be the GS-
Lock controller. Before a Grid service executes an operation that modifies the
WS-Resource, it must acquire the GS-Lock. This is a blocking operation that
returns immediately if the GS-Lock is available but it hangs the caller until it
becomes available and access is granted to it (step 5). This may result in a small
client-side delay, but the client is completely unaware of the synchronization
and replication process. This approach ensures sequential consistency, that is,
the guarantee that all the replicas traverse the same state changes in the same
order.

Once the GS-Lock has been acquired, the operation that modifies the state of
the WS-Resource proceeds. When a state modification is detected, the replication
library propagates the state update to the other replicas using a coordinated
distributed algorithm that depends on the topology (step 7). Once all the replicas
have been successfully updated, the GS-Lock is released (step 8) and the result of
the method is returned to the user (step 9). This allows another operation to gain
access to the GS-Lock and proceed with the WS-Resource state modification.

The replication library can use a ring-based topology, as depicted in the left
side of Fig. 2. Whenever the user performs an operation on a replica that af-
fects its state (i.e. the WS-Resource), the modified replica starts a distributed
algorithm for state updating through all the ring. However, as the number of
replicas grow, the amount of time dedicated to state propagation (the time re-
quired since a replica is modified until all the replicas share the same state)



(1) State
Modification

(1) State
Modification

Grid
Service
ReplicaQ

Grid Service
Replica 0

Parallel State
Update

Notification

\
N Grid Service
Replica 2

Ring Topology Leaf-to-Root Complete Binary Tree Topology
Fig. 2. Interaction diagram of the Grid service replication library. The left-hand side
depicts a ring-based topology while the right-hand side shows a Leaf-to-Root Complete
Binary Tree Topology.

increases linearly. This may impose serious limitations for replicated Grid ser-
vices with a large number of replicas. In order to reduce this time, the replication
library can use a Leaf-to-Root Complete Binary Tree topology, as depicted in
the right side of Fig. 2. A Complete Binary Tree is a binary tree in which every
level, except possibly the last, is filled, and the nodes in the last level are all to
the left. This topology allows concurrent parallel update streams through the
branches of the tree. Since a Complete Binary Tree is always perfectly balanced,
this state update process requires a time in the order of 6(log2(N)) for a tree with
N replicas, thus resulting in a significantly faster approach. Furthermore, since
these kind of trees can be fully represented using an array, this allows design-
ing very efficient distributed algorithms for state update. See [3] for the details
about the distributed algorithms employed, the protocols for joining a group,
the fault-tolerant capabilities of the library and its performance evaluation.

The usage of distributed machines allows to cope with failures in the Grid
services while maintaining service availability. However, including new replicas
requires configuring additional machines with the Globus Toolkit 4 and deploying
the specific Grid Service to be replicated and its configuration. Requiring human
intervention imposes a clear limitation on the scalability of this approach when
many replicas fail. Enabling the replication library to automatically resize the
group of replicas paves the way to dynamic on demand scalability of Grid ser-
vices. Notice that there are several scenarios that require the dynamic provision
of new Grid service replicas. On the one hand, maintaining service provision
requires that new replicas substitute the failed ones, avoiding service disruption.
On the other hand, it might be necessary to temporarily increase the number of
replicas for Grid services experimenting a huge amount of queries by the users.
This would be specially useful for Grid services exposing information, such as
catalogs and information systems.



This is precisely the aim of this work, to integrate the replication library with
a Cloud infrastructure to automatically deploy and configure Virtual Machines
able to act as new Grid service replicas.

3 Cloud Computing Technologies Employed

Software as a Service Google Office
(SaaS) Docs Live

&

Platform as a Service Google Ap Mlcrosoft
(PaaS) Developers Englne Azure

Infrastructure as a Service Amazon
Eucalyptus OpenNebula
(laas)

Fig. 3. A classification of Cloud-based approaches, with their target user community
and samples.

Cloud approaches currently embrace a broad scope of technologies and ap-
plications. Figure 3 describes one of the classifications of systems denoted by the
Cloud term. On the top level we have Software as a Service (or SaaS), where end
users are provided with applications that are hosted online, such as Google Docs
or Office Live. This way, application management no longer relies on the user,
who can benefit from applications, and the required resources, on a pay-per-use
basis (depending on the service). In the middle level, Platform as a Service (or
PaaS) appears, which provides developers with a programming environment and
APIs for creating Cloud-based applications that typically consume the computa-
tional resources of the platform. Examples of this approach are the Google App
Engine [9] and Microsoft Azure [10]. Finally, the lowest level includes Infrastruc-
ture as a Service (or TaaS), where the usage of Virtual Machine Managers turn a
physical computing infrastructure into an elastic computing platform based on
Virtual Machines. Notice the interaction among the different levels, since a SaaS
application can be developed using the framework provided by a PaaS, which in
turn might harvest the computing power from an IaaS cloud.

In this particular work we focus on IaaS approaches which allow the dynamic
deployment and management of Virtual Machines (VMs). This provides the
foundations from which to contextualize the VMs into the required GT4-based
Virtual Appliances (VAs) to be used as Grid service replicas.



3.1 Virtualization Technologies

Running a VM (with its guest OS) on top of a physical hardware (with its host
OS) requires the usage of virtualization and hypervisor technologies installed
on the host machine. There are currently different open source virtualization
approaches. Xen [11] provides open source software for paravirtualization. With
this approach, the guest operating system runs a modified operating system.
Xen also supports full virtualization, which is the approach performed by KVM.
KVM (Kernel-based Virtual Machine) [12] is a full virtualization solution for
Linux that requires the CPU to support virtualization extensions (Intel VT
or AMD-V). Under this approach, each VM within the same host runs as an
independent process which has its own virtualized hardware. One of the benefits
of full virtualization is to run virtual machines with an unmodified version of
the guest operating system. With this approach, the hypervisor is responsible
for giving the VM an illusion of a dedicate hardware machine.

We have relied on the KVM hypervisor. This software is gaining momen-
tum as it is included in the Linux kernel since version 2.6.20. As we use an
infrastructure based on recent Blade servers, with the required virtualization
extensions, KVM is provided with the appropriate environment to deliver good
performances.

3.2 Virtual Machine Managers

Virtual Machine Managers (VMMSs) are responsible for allocating and monitor-
ing the VMs into the existing hardware infrastructure. They typically take the
VM definition along with its disk image and perform the required actions to get
the VM up and running on top of a hypervisor.

There are currently different software and approaches for Virtual Machine
Management. Eucalyptus [13] is an open source software for implementing cloud
computing using the hardware infrastructure of organizations. It was designed to
provide the functionality and APIs of Amazon EC2 [14], but for private clouds.
It currently exists both as an open source projects and a commercial application.
Nimbus [5] is an open source toolkit that allows to turn a cluster into an IaaS
cloud. It was built using Grid services based on the Globus Toolkit 4. In addi-
tion, it can be integrated with schedulers like PBS or SGE and allows to deploy
a group of VMs to create clusters on demand. It currently provides APIs based
both on Amazon EC2 and on WSRF (Grid services). OpenNebula [15] is an open
source virtual infrastructure manager which manages the storage, network and
virtualization technologies to enable the dynamic placement of virtual machines
on a Cloud infrastructure. It also allows the migration of VMs among the differ-
ent resources of the infrastructure. AbiCloud [16] is the open source software for
managing a Cloud infrastructure from the Abiquo enterprise. It offers the users
a GUI to manage their VMs and supports the principal hypervisors. In addition,
it supports industry standards such as the Open Virtualization Format [17].

For this particular work we have relied on OpenNebula. This software stands
out for its ability to provide a gateway in order to supply application-dependent



contextualization information into the VM. This is achieved by allowing the
users to specify the files that are required to be available inside the VM in a
declarative manner. When a request is submitted to start an instance of the
VM, OpenNebula creates a virtual disk that is attached to the VM at boot
time. This way, the VM can access these files which can be used to properly
contextualize the VM with application-dependent information.

4 Contextualization: From Applications to Scientific
Virtual Appliances

The usage of VMMs allows the dynamic deployment of virtual machines on
top of physical computational resources, supporting the generation of Cloud
computing infrastructures. However, the execution of scientific applications in
this kind of computational infrastructures requires the development of Virtual
Appliances (VA). A VA consists of a VM that includes the application and the
entire required environment for its execution (numerical libraries, databases,
runtime environments, etc.). With this approach, the hardware infrastructure
is decoupled from the applications, which are completely encapsulated and self-
contained, thus guaranteeing a successful execution.

The process of configuring a VM to obtain a VA is referred to as contextu-
alization. An application with a reduced number of external dependencies can
be perfectly contextualized at the time the VM is deployed by the VMM. This
way, it is possible to start from a base VM, that only includes the operating
system and common use libraries, and to perform the application deployment
and contextualization when the VM boots, before executing the application.

However, other applications have a large number of dependencies on external
software components (such as libraries, data base management systems, etc.),
and it is not feasible to perform the contextualization at the time of deployment.
This is because, in some cases, the time needed for contextualization could exceed
the time of running the application itself. Additionally, in most cases, performing
automatic contextualization requires considerable complexity from a technical
point of view. For these cases, a possible approach is performing the installing of
the most complex software components by the user, in order to produce a pool
of partially contextualized VMs. These VMs would then be completely contex-
tualized at boot time in order to create the appropriate environment required
for the execution of the scientific application.

4.1 Contextualizing Scientific Virtual Appliances

We are working on a tool that enables to deploy scientific applications with mini-
mal user intervention [18]. The main idea is to automatically perform the typical
steps required when deploying a scientific application (packaging, configuration,
compilation, execution). This way, instead of manually configuring the VM we
favor application inoculation into the VM with minimal user intervention.



With the proposed approach, the users just expose in a declarative man-
ner the deployment requirements of their applications, using an XML high-level
based declarative language. Then, the tool is in charge of automatically perform-
ing the typical steps involved in the deployment of a scientific application:

1. Install the required packages. Resolve dependencies with other software com-
ponents and install those dependencies first.

2. Configuration. Enables the user to express the configuration process of the
software package. This is achieved by common actions such as, copy files,
change properties in configuration files, declare environment variables, etc.

3. Build. Compile the software package using the appropriate build system
(Configure + Make, Apache Ant, SCons, etc.)

4. Execution. If required, start the application. This step might require invoking
a shell script, performing a parallel execution, delegating the execution into
a Grid system, etc.

The contextualization tool offers a plugins-based approach so that applica-
tion developers can declare the installation approaches required by their pack-
ages. This way, it is possible to chain different software installation descriptions
in order to perform complex installations. Other software configuration tools ex-
ist such as Chef [19], but our approach requires an XML declarative description
instead of writing Ruby code. In addition, it focuses on the specific workflow re-
quired for the deployment of scientific applications. Notice that, in general, once
the VM is properly contextualized for a given application, it can be stored for
later use. Therefore, depending on the application, the contextualization process
might only be performed once and later reuse the VM for subsequent executions.
Nevertheless, as different Cloud infrastructures might use different hypervisors,
reusing VMs across different platforms is not currently a straightforward process.

5 A Cloud back-end for the Grid Service Replication
Library

This section describes how the replication library has been modified to include
OpenNebula’s capabilities to deploy new virtual machines and its coupling with
the contextualization software in order to configure the VMs into new Grid
service replicas based on GT4.

Concerning the creation of the Virtual Appliance (VA) we might start from
a plain VM with just an OS and perform the contextualization at boot time in
order to install GT4 and the Grid services of both the replication library and the
specific Grid service to be replicated. However, the installation of GT4 requires
several minutes and, therefore, it is unfeasible to do it at boot time.

Thus, we created a VA based on Ubuntu JeOS 8.04 to be used for the KVM
hypervisor. A vanilla installation offers a small footprint (380 MBytes of disk
space). Performing the installation of the full Globus Toolkit 4.0.8 inside the
VM enlarges the disk image size up to 3.3 Gbytes. This size matters, as VMMs



typically copy this file into the physical resources in order to run separate in-
stances of the VM. Therefore, in order to reduce this size, we created a cloned
VM in which we performed the installation of the GT4, and later transferred
the result of the compilation into a vanilla Ubuntu JeOS. This results in a 1.1
GBytes disk image size. We specially configured the VM so that the Grid services
container automatically started at boot time. This results in a pre-contextualized
VM that only requires the deployment of the specific Grid service and security
configuration at boot time to be used as a new Grid service replica.
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Fig. 4. Integration of the Grid service replication library and the Cloud computing
back-end.

Figure 4 summarizes the main interaction diagram of the replication library
when combined with the Cloud computing infrastructure. Notice that the figure
is logically split in two sections. The left hand side only involves Grid technolo-
gies, i.e., the Globus Toolkit, WSRF-based Grid Services, X.509 proxies, certifi-
cates, etc. The right hand side focuses on Cloud technologies, i.e., virtualiza-
tion (KVM), infrastructure management (OpenNebula) and Virtual Appliances
which, by the way, internally use Grid technologies.

As depicted in Fig. 4, the user performs an operation on any WSRF-based
Grid Service replica that modifies its WS-Resource state (step 1). This triggers
a state update process that traverses the topology (a ring topology is shown for
simplicity). When the replica 1 detects that replica 2 is unreachable (step 3) it
decides that a new replica should be spawned (step 4).



To create a new Grid service replica, the appliance repository is queried for
a valid Virtual Appliance (step 4.1). This repository is currently a Web service
that enables the users to catalog their VMs and tag them so that they can be
indexed and searched. In this particular case, we query for the availability of a
VA based on Linux and with the Globus Toolkit 4.0.X installed to satisfy the
requirements of the replication library. Next, OpenNebula deploys the VA on
the best candidate host node, according to its internal scheduling policy. The
description of the VA includes a template file which specifies the disk image, its
memory and network requirements and the contextualization information. This
includes a copy of the .gar files required to deploy the Grid service, the host
certificate, and the contextualization tool required to perform the appropriate
configuration of the virtual machine. All these files are packed into an ISO image
which is attached as a disk into the VM by OpenNebula. This way, when the
VM boots, the contextualization tool is started to deploy the Grid service and
the required configuration.

Once the VM is up and running, OpenNebula can be queried to obtain in-
formation about the new instance. To programmatically use OpenNebula from
the replication library, we take advantage of the XML-RPC interface offered by
the OpenNebula server, which exposes almost a one-to-one mapping of all the
functionality available via the command-line. This way, the replication library
knows the IP of the new Grid service replica (step 5) and the topology recon-
figuration process provided by the replication library can proceed (step 6). The
final result is a new Grid service replica that was deployed on demand and which
substitutes the failed one so that the group of replicas can maintain the work
load. The state of the new replica is supplied by the replica that detected the
failed one (see [3] for details).

For this proof-of-concept implementation, we currently assume that all the
Grid service replicas have access to the contextualization information, just in
case they have to trigger the creation of a new replica. However, we plan to
introduce a contextualization service that centralizes the information concerning
the different plugins employed to contextualize the applications.

6 Discussion and Deployment Time of Replicas

In order to test the described approach, we have recreated some replication
scenarios in a Blade server composed of four dual-processor Intel Xeon Quad-
Core with 16 GBytes of RAM. The machine is configured as a cluster and,
therefore, one of the nodes acts as the frontend and does not receive the allocation
of VMs. OpenNebula 1.4 is installed and specially configured to use the NFS
transfer driver. This way, when a new virtual machine is deployed, OpenNebula
performs a copy of the base image into the destination node (via NFS) and boots
it.

Deploying a new replica on demand on the Cloud Computing infrastructure
introduces the following overheads:
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Fig. 5. Comparison of the deployment time for a number of replicas. The dotted line
represents a round-robin allocation of virtual machines into three different computing
nodes. The solid line represents all the replicas allocated to a single node.

1. Querying the Appliance Repository. We currently hold the Virtual Appli-
ances Repository in the same machine where the OpenNebula server resides.
At the moment, this operation represents a negligible cost.

2. Deployment of the Virtual Appliance. OpenNebula performs the copy of the
VA image disk file into the host node so that different instances of the same
VA behave as independent copies. Notice that this approach naturally fits
with a cluster-based infrastructure where the front-end stores the VAs and
the internal nodes provide computing support to run the VAs.

3. Contextualization of the VA. This requires deploying at boot time of the
VA the latest version of the Grid service and required certificates. This step
requires 5-6 seconds on average.

Therefore, since the contextualization time is very low, the size of the Virtual
Appliance is crucial to reduce the overhead in deploying a new replica. Figure
5 summarizes the result of a comparison of the deployment time, in seconds, of
a different number of replicas using just one node and three nodes of the Blade
in order to achieve workload distribution. The deployment phase includes the
time required since a request to the Virtual Machine Manager (OpenNebula)
is performed until the VM is up and running. This comparison allows to know
the minimum time required to obtain new Grid service replicas. The solid line
shows the deployment time where all the virtual machines are allocated to a
single node of the Blade server. The dotted line shows the results of a round-
robin allocation of virtual machines in the three nodes of the Blade, in order



to distribute the virtualization overhead time among different machines. Since
the VM image resides in the frontend, a copy must be performed into each node
before booting. This introduces a bottleneck since all the nodes must perform this
data transfer, although the influence of the cache of the NFS protocol can help
reducing the transfer cost. Once each node has its own copy of the disk image,
the booting and contextualization in each node performs concurrently without
sharing resources with other nodes. Therefore, as it is expected, a workload
distribution provides a reduced deployment time. To investigate the impact of
this approach into the replication library, it is important to focus on the total
replication time. According to the figure, it is possible to concurrently deploy 4
new replicas in slightly over a minute using three nodes.

It is important to point out that achieving high availability requires both
replication and distribution. This proof-of-concept tests have been performed
in a single infrastructure, what allows to measure the impact of using Cloud-
based technologies. Therefore, the usage of separate Cloud infrastructures would
be the ideal situation to distribute the different service replicas. In this situa-
tion, the data transfer cost of the pre-contextualized VM image would certainly
be preponderant. For that, distribution of the disk image among the different
providers, as close as possible to the computational infrastructure, would cer-
tainly be required to reduce the overall impact of the deployment time of new
replicas.

7 Conclusions and Future Work

This paper has described the usage of a Cloud computing infrastructure by a
WSRF-based Grid Service replication library in order to automatically deploy
new replicas in the case of failure. For that, we have coupled the functionality of
a Virtual Machine Manager for the dynamic allocation and monitoring of virtual
machines, with a contextualization tool that eases the deployment of scientific
applications into virtual machines. This approach allows to guarantee service
provision by the automatic replacement of failed replicas.

Future works include the development of a software module into the repli-
cation library in order to dynamically scale the number of replicas required to
provide appropriate service provision without involving excessive resource con-
sumptions (deploying more replicas than the required ones). This would require
the definition of upper and lower boundaries to the number of replicas, what
is certainly application-dependent. In addition, we plan to extend our approach
into large scale Cloud infrastructures in order to couple replication with distri-
bution for increased high availability.
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