
On the Vectorization of Engineering Codes
Using Multimedia Instructions

Manoel Cunha1 and Alvaro Coutinho and J.C.F. Telles2

1 Federal University of Paraná, Curitiba PR, Brazil
2 Federal University of Rio de Janeiro, Rio de Janeiro RJ, Brazil

Abstract. After years dominating high performance computing, expen-
sive vector computers were gradually replaced by more affordable so-
lutions and the use of vectorization techniques once applied to many
scientific codes also faded. This paper addresses the vectorization of en-
gineering codes using Streaming SIMD Extensions (SSE) also known
as multimedia instructions. This particular kind of vectorization differs
from the old vectorization techniques in the sense that it relies on hard-
ware features and instruction sets only present on modern processors.
Evolving from Intel MMX, SSE is the fifth generation of an established
technology highly suited to handle computing intensive tasks like en-
cryption/decryption, audio and video compression, also including digital
signal processing but not so well explored for scientific computing, spe-
cially among engineering programmers. To demonstrate the benefits of
vector/SIMD computing and its implementation on existing scalar al-
gorithms, the authors present this technique applied to an engineering
program for the solution of two dimensional elastostatic problems with
the boundary element method. Taking an application from a well-know
reference on the area, the paper focus on the programming techniques
and addresses common tasks used in many other codes, like Gauss inte-
gration and equations system assembling. Thus, the vectorization guide-
lines provided here may also be extended to solve many other types of
problems, using other numerical methods as well as other multimedia
instruction set extensions. Numerical experiments show the effectiveness
of the proposed approach.

1 Introduction

Over decades, since the invention of the first computers, hardware and software
resources have been created or modified to follow the increasing complexity of
engineering and scientific problems. During many years, vector computers domi-
nated high performance computing but its technologies have been recently super-
seded by more affordable architectures. In the current world of off-the-shelf-built
clusters and multi-core blades, only two major manufacturers, NEC and Cray,
still offer expensive solutions. Nowadays, vector computers share less than 1%
of the high performance computer market.3

3 www.top500.org

Despite the fading use of such computers the benefits of vector computing
were not forgotten by hardware engineers who brought the old technology into
the new processors present on today’s clusters, servers, desktops and notebooks.
The first step in this direction came in the late 90’s with instructions sets such
as Intel MMX, AMD 3D-Now and Apple Altivec. Originally developed for multi-
media applications, these Single-Instruction-Multiple-Data (SIMD) instructions
quickly evolved into powerful extensions highly suited to applications process-
ing data streams such as encryption/decryption, audio and video compression,
digital image and signal processing, among others. Today, Streaming SIMD Ex-
tensions (SSE) represent an established technology with significant impact in
processor performance.

Unfortunately, developers of engineering codes still do not take full advan-
tage of the resources offered by modern processors and compilers, such as auto-
vectorization or explicit language instructions. This fact has called the attention
of the present authors that address this work to engineering programmers willing
to speed their applications with the use of multimedia instructions. Here, this
vectorization technique is applied to a well known boundary element application
to solve two-dimensional elastostatic problems, although the concepts can also
be implemented to other kind of problems and alternative numerical methods.

The present text is organized as follows: the next section presents an outline
of the boundary element theory and the following section describes the selected
application. Section 4 introduces the Streaming SIMD Extensions while Section
5 details the SSE implementation of the code. In Section 6 a performance analysis
is presented. The paper ends with a summary of the main conclusions.

2 Outline of the Boundary Element Method

The boundary element method (BEM) [1] is a technique for the numerical solu-
tion of partial differential equations with initial and boundary conditions.

Using a weighted residual formulation, Green’s third identity, Betty’s recip-
rocal theorem or some other procedure, an equivalent integral equation can be
obtained and converted to a form that involves only surface integrals performed
over the boundary. The bounding surface is then divided into elements and the
original integrals over the boundary are simply the sum of the integrations over
each element, resulting in a reduced dense and non-symmetric system of linear
algebraic equations.

The discretization process involves selecting nodes on the boundary, where
unknown values are considered. Interpolation functions relate such nodes to the
approximated displacements and tractions distributions on the respective bound-
ary elements. For linear 2-D elements, nodes are placed at, or near, the end of the
elements and the interpolation function is a linear combination of the two nodal
values. High-order elements, quadratic or cubic, can be used to better represent
curved boundaries using three and four nodes, respectively.

Once the boundary solution has been obtained, interior point results can be
computed directly from the basic integral equation in a post-processing routine.

2.1 Differential Equation

Elastostatic problems are governed by the well-known Navier equilibrium equa-
tion. Using the so-called Cartesian tensor notation, may be written for a domain

 in the form :

G uj,kk +
G

1− 2 �
uk,kj + bj = 0 in
 (1)

subject to the boundary conditions :

u = ū on �1 and

p = p̄ on �2 (2)

where u are displacements, p are surface tractions, ū and p̄ are prescribed values
and the total boundary of the body is � = �1 +�2. G is the shear modulus, � is
Poisson’s ratio and bj is the body force component. Notice that the subdivision
of � into two parts is conceptual, i.e., the same physical point of � can have the
two types of boundary conditions in different directions.

2.2 Integral Equation

An integral equation, equivalent to Eqs. (1) and (2), can be obtained through a
weighted residual formulation or Betty’s reciprocal theorem. This equation, also
known as Somigliana’s identity for displacements, can be written as :

ui(�) =

∫
�

u∗ij(�, x) pj(x) d� (x)−
∫
�

p∗ij(�, x) uj(x) d� (x) (3)

where bi = 0 was assumed for simplicity and the starred tensors, u∗ij and p∗ij ,
represent the displacement and traction components in the direction j at the
field point x due a unit point load applied at the source point � in i direction.

In order to obtain an integral equation involving only variables on the bound-
ary, one can take the limit of Eq. (3) as the point � tends to the boundary � .
This limit has to be carefully taken since the boundary integrals become singular
at �. The resulting equation is :

cij(�) uj(�) +

∫
�

p∗ij(�, x) uj(x) d� (x) =

∫
�

u∗ij(�, x) pj(x) d� (x) (4)

where the coefficient cij is a function of the geometry of � at the point � and
the integral on the left is to be computed in a Cauchy principal value sense.

2.3 Discretization

Assuming that the boundary � is discretized in N elements, Eq. (4) can be
written in the form :

cij uj +

N∑
k=1

∫
�k

p∗ij uj d� =

N∑
k=1

∫
�k

u∗ij pj d� (5)

The substitution of displacements and tractions by element approximated inter-
polation functions in Eq. (5) leads to :

ci ui +

N∑
k=1

h u =

N∑
k=1

g p (6)

which can be rearranged in a simpler matrix form :

H u = G p (7)

By applying the prescribed boundary conditions, the problem unknowns can
be grouped on the left-hand side of Eq. (7) to obtain a system of equations ready
to be solved by standard methods.

This system of linear equations can be written as :

A x = f (8)

where A is a dense square matrix, vector x contains the unknown tractions
and displacements nodal values and vector f is formed by the product of the
prescribed boundary conditions by the corresponding columns of matrices H
and G. Note that Eq. (8) can be assembled directly from the elements h and g
without need to generate first Eq. (7).

2.4 Internal Points

Since Somigliana’s identity provides a continuous representation of displacements
at any point � ∈
, it can also be used to generate the internal stresses. The dis-
cretization process, described above, can also be applied now in a post-processing
routine.

3 The Application

The program reviewed here is a well-known code presented by Telles [1] for
the solution of two dimensional elastostatic problems using linear boundary el-
ements.

The INPUT routine reads the program data, MATRX routine computes matrix
A and the right hand side vector f , stored in array XM, while the OUTPT routine
prints the boundary solution, computes and prints boundary stresses and internal
displacements and stresses. The original SLNPD routine is here replaced by the
LAPACK solver SGESV [2].

Routine MATRX generates the system of equations by assembling directly ma-
trix A without creating the global H and G matrices. This is done by considering
the prescribed boundary conditions for the node under consideration before as-
sembling. The leading diagonal submatrices corresponding to H are calculated
using rigid body translations. Consequently, when the boundary is unbounded
a different type of rigid body consideration needs to be applied.

The element influence coefficients are computed calling subroutine FUNC. This
subroutine computes all the element integrals required for the system of equa-
tions, internal displacements and internal stresses. Numerical integrals are per-
formed over non-singular elements by using Gauss integration. For elements with
the singularity at one of its extremities the required integrals are computed an-
alytically to obtain more accurate results.

The boundary stresses are evaluated using subroutine FENC that employs
the interpolated displacements and tractions to this end. Here, the contribution
of adjacent elements to the common boundary nodes is automatically averaged
for non-double nodes. The internal displacements and stresses are obtained by
integrating over the boundary elements using subroutine FUNC.

The solver is usually the most time consuming routine in BEM programs and
various studies have been published on this matter. However, the generation of
the equations system as well as the computing of internal points together can
take the most part of the processing time [10] and demand special care. While
many high-performance solvers are available from standard libraries (LAPACK,
PETSc, etc), those two procedures are usually implemented by the researchers
and greatly limit the speedup if not properly optimized. Hence, the vectoriza-
tion programming techniques are here applied to the generation of the system
of equations and the evaluation of internal point results since they can be im-
plemented following the same techniques.

4 The Streaming SIMD Extensions

Computers have been originally classified by Flynn’s taxonomy [7] according to
instructions and data streams as Single-Instruction-Single-Data (SISD), Single-
Instruction-Multiple-Data (SIMD), Multiple-Instruction-Single-Data (MISD) and
Multiple-Instruction-Multiple-Data (MIMD).

As the name suggests, the SIMD model applies to systems where a single
instruction processes a vector data set, instead of scalar operands.

One of the first SIMD implementations was the MMX technology introduced
with Pentium computers intended to enhance the performance of multimedia
applications. The 57 MMX instructions can process simultaneously 64-bit data
sets of integer type.

With the release of the Pentium III processor an instruction set called Stream-
ing SIMD Extensions (SSE) was added to Intel 32-bit architecture. SIMD ex-
tension comprises 70 instructions, 12 for integer operations and 50 for single-
precision floating-point operations. The remaining 8 instructions are for cache
control and data prefetch.

SSE features eight 128-bit dedicated registers used by SIMD floating-point
instructions to process four single-precision (32 bit) values simultaneously. Unlike
MMX, where vector registers are mapped onto FP registers, SSE and FP registers
can be used at the same time. Hence, SSE and FP/MMX instructions can be
simultaneously used.

While MMX operates on integers and SSE are essentially single-precision
floating-point instructions, the SSE2 set introduced with Pentium 4 added sup-
port for double-precision (64-bits) floating-point operations and extended MMX
integer instructions from 64 to 128 bits. The 144 instructions implemented by
SSE2 were followed by 13 SSE3 instructions, that also support complex floating-
points operations.

4.1 Auto-vectorization Compilers

The first and quickest way to implement Streaming SIMD Extensions is auto-
vectorization, a feature present on most recent compilers such as Intel Fortran
and C/C++.

Compilers used by scientific and engineering programmers have always in-
cluded optimizing options to enhance performance. The SSE technology is now
also incorporated by Fortran and C/C++ compilers, which offer compiler op-
tions to generate vectorized SSE code automatically. Once SSE compiler options
are set, the compiler will search the code for vectorization opportunities, auto-
matically replacing scalar operations by vector instructions whenever possible.

Unfortunately, like other optimization procedures, the compiler ability to
generate vector code automatically is restrained by a number of factors such
as problem complexity and bad programming techniques, among others. Even
simple pieces of code may not be addressed correctly by auto-vectorization com-
pilers.

For example, consider the following sample :

do i = 1,2 ! @ line 445
do j = 1,4

G(i,j) = 0.
H(i,j) = 0.

enddo
enddo

Compiling the sample code with -arch SSE -vec-report3 options, the Intel
Fortran Compiler produces the following warnings :

sample.f90(445) : (col. 6) remark: loop was not vectorized: not inner loop.
sample.f90(446) : (col. 8) remark: loop was not vectorized: low trip count.

These messages generated in the compilation process state that the i loop in
line 445 cannot be vectorized because it is an outer loop while the j loop in line
446 cannot be automatically vectorized due to its reduced number of iterations.

The nested loops can be replaced by equivalent Fortran matrix expressions :

G = 0. ! @ line 445
H = 0.

resulting in the following compiling messages :

sample.f90(445) : (col. 6) remark: loop was not vectorized:
vectorization possible but seems inefficient.
sample.f90(446) : (col. 6) remark: loop was not vectorized:
vectorization possible but seems inefficient.

The compiler is still not able to automatically vectorize that portion of code.
It can be expected that more complex codes will pose greater restrictions for
auto-vectorization and this example clearly shows that auto-vectorization is not
just a matter of recompiling old codes with new compiler options. Programmers
must rewrite their codes in order to minimize compiler limitations to generate
vector executables.

While vectorization works well for long loops, nested loops with few itera-
tions and many other common constructions usually found in engineering and
scientific codes are not vectorized automatically. However, basic modifications
can be applied to existing codes, helping compilers to vectorize short trip counts
with SSE instructions. The implementation of such techniques in the application
here considered was the object of a previous work [11] and is not discussed here.

4.2 Compiler Intrinsics

Auto-vectorization options are available in Fortran as well as in C/C++ com-
pilers. While Fortran users must rely on the compiler ability to generate SSE
executables, the C/C++ language alternatively allows to insert explicit vector
functions in the code, giving programmers more control to the vectorization
process.

C/C++ compiler intrinsics provide the user with new data types and a set of
vector functions. Thus, one benefit of SSE intrinsics is the use of C/C++ syntax
of function calls and variables instead of assembly instructions and hardware
registers. Intrinsics are expanded inline to eliminate call overhead.

Vector addition, subtraction, multiplication and division can be performed
using the intrinsic functions mm add ps, mm sub ps, mm mul ps and mm div ps,
respectively. These functions perform one operation on two sets of four floating-
point single-precision values, simultaneously, as illustrated in Fig. 1.

Fig. 1. SSE Packed Addition

? ? ? ?

? ? ? ?

a4 a3 a2 a1

b4 b3 b2 b1

a4 + b4 a3 + b3 a2 + b2 a1 + b1 xmm3

xmm1

xmm0

xmm3 = mm add ps(xmm0,xmm1)

SSE provides a large set of vector operations. For a full description of all
SSE instruction set the reader is referred to Bik [3, 4]. A more extensive C/C++
vector implementation of the original Fortran code with SSE compiler intrinsics
will be addressed in the next section.

5 An SSE Implementation

In the application under study, an equation system is generated in routine MATRX
with its influence coefficients computed by subroutine FUNC. This routine evalu-
ates all the non-singular element integrals using Gauss integration.

For elements with the singularity at one of its extremities the required inte-
grals are computed analytically. In the first case, a set of small matrix operations
are initially computed, as follows :[

UL11 UL12

UL21 UL22

]
= −C1

[
C2 logR

[
1 0
0 1

]
−

[
DR11 DR12

DR21 DR22

]]
Due to its particular dimensions, these 2x2 matrices can be replaced by small

vectors of size 4 and the matrix computation above can be performed with vector
operations. Specially suited for SSE, these operations can be executed by SSE
intrinsic functions as follows :

float tmp = C2 * log(R);

__declspec(align(16)) float work[4],ul[4];

__m128 xmm0,xmm1,xmm2,xmm3;

work[0] = DR[1] * DR[1];

work[1] = DR[1] * DR[2];

work[2] = DR[2] * DR[1];

work[3] = DR[2] * DR[2];

xmm1 = _mm_load_ps(work); // DR

xmm2 = _mm_set_ps(1.,0.,0.,1); // D

xmm3 = _mm_set_ps1(-C1); // -C1

xmm0 = _mm_set_ps1(tmp); // C2 * log R

xmm0 = _mm_mul_ps(xmm0,xmm2); // C2 * log(R) * D

xmm0 = _mm_sub_ps(xmm0,xmm1); // C2 * log(R) * D - DR

xmm0 = _mm_mul_ps(xmm0,xmm3); // -C1 * (C2 * log(R) * D - DR)

_mm_store_ps(ul,xmm0);

SSE define the new data type m128 to allocate 128-bit blocks of memory
that cannot be accessed directly. Intrinsic functions must be used to initialize
SSE data and move it from and to floating-point arrays. These arrays are required
to be aligned in 16-byte boundaries.

In the example above, the array work is used to store four single-precision
floating-point (FP) values. Another four small arrays xmm0, xmm1, xmm2 and xmm3

of type m128 can also hold the same number and type of data. While the
elements of work can be assigned and used in FP operations, as usual, this kind
of array cannot be used as argument for intrinsic functions in vector operations.
Here, function mm load ps is used to copy to xmm1 the values stored in work and
mm store ps is used to move data from xmm0 to work at the end of computations.

Arrays xmm2, xmm3 and xmm0 are initialized with the function mm set ps.

In the code sample just presented, basic SSE intrinsics perform vector addi-
tion, subtraction, multiplication and division. As shown, these functions perform
one operation on two sets of four floating-point single-precision values, simulta-
neously. The result of a vector operation on two vectors can be stored in any of
these vector as well as in a third vector.

As shown, 2x2 matrices can be converted into vectors of size 4 and matrix op-
erations can be performed with vector instructions. Thus, a very simple approach
is to use SSE to evaluate those matrices leaving some intermediate operations
to be executed with scalar instructions.

In the original algorithm, those matrices are computed from 2 to 6 times,
accordingly to the number of Gauss integration points defined by an empiric
formula. Alternatively, a fully vector implementation of the matrix computation
above can be achieved by using 4 Gauss integration points and evaluating all
four values of each coefficient at once, including the intermediate values.

In the application under observation, for each integration point i, the matrix
coefficients can be computed as follows :

XMXIi = CTEi ∗DXY 1 +XXS

YMY Ii = CTEi ∗DXY 2 + Y Y S

Ri =
√
XMXIi ∗XMXIi + YMY Ii ∗XMXIi

DR1i = XMXIi / Ri

DR2i = YMY Ii / Ri

UL11i = DR1i ∗DR1i − C2 ∗ logRi
UL22i = DR2i ∗DR2i − C2 ∗ logRi
UL12i = DR1i ∗DR2i

Initially, using two dimensional arrays and executed with scalar instructions,
the computations presented above - including the intermediate operations - can
be performed on vectors so that four values are evaluated during each operation.
A possible SSE implementation of the vector computation discussed is presented
in Listing 1.

Most of the operations in the vector implementation shown in Listing ??
can be performed with basic memory and arithmetic SSE instructions, already
discussed in the previous section. However, SSE does not include instructions to
evaluate sines, cosines, logarithms and other trigonometric functions. To bypass
this limitation, vector implementations make calls to the Short Vector Math Li-
brary (SVML), an Intel library intended for use by the Intel compiler vectorizer.4

For each integration point i, UL and PL are used to compute another matrix,
G, as follows :

[
G11 G12 G13 G14

G21 G22 G23 G24

]
=

[
G11 G12 G23 G24

G21 G22 G23 G24

]
+

[[
ULi11 UL

i
12

ULi21 UL
i
22

]
∗ Bi1

[
ULi11 UL

i
12

ULi21 UL
i
22

]
∗ Bi2

]
∗W i

The 2x4 matrix above can be splitted into two 2x2 matrices, as follows :[
G11 G12

G21 G22

]
=

[
G11 G12

G21 G22

]
+

[
ULi11 UL

i
12

ULi21 UL
i
22

]
∗ Bi1 ∗W

i

4 http://softwarecommunity.intel.com/articles/eng/3527.htm

Listing 1. An SSE implementation

xmm0 = _mm_set_ps1(DXY[0]); // DXY1
xmm1 = _mm_set_ps1(DXY[1]); // DXY2
xmm2 = _mm_load_ps(CTEv4); // .5 * (XI + 1)
xmm0 = _mm_mul_ps(xmm0,xmm2); // .5 * (XI + 1) * DXY1
xmm1 = _mm_mul_ps(xmm1,xmm2); // .5 * (XI + 1) * DXY2
xmm3 = _mm_set_ps1(X[II]-XS); // X[II] - XS
xmm4 = _mm_set_ps1(Y[II]-YS); // Y[II] - YS
xmm0 = _mm_add_ps(xmm0,xmm3); // XMXY = .5 * (XI + 1) * DXY1 + X[II] - XS
xmm1 = _mm_add_ps(xmm1,xmm4); // YMYI = .5 * (XI + 1) * DXY2 + Y[II] - YS
xmm2 = _mm_mul_ps(xmm0,xmm0); // XMXIˆ2
xmm3 = _mm_mul_ps(xmm1,xmm1); // YMYIˆ2
xmm2 = _mm_add_ps(xmm2,xmm3); // XMXIˆ2 + YMYIˆ2
xmm2 = _mm_sqrt_ps(xmm2); // R = sqrt(XMXIˆ2 + YMYIˆ2)
xmm0 = _mm_div_ps(xmm0,xmm2); // DR1 = XMXI / R
xmm1 = _mm_div_ps(xmm1,xmm2); // DR2 = YMYI / R
xmm6 = _mm_set_ps1(BN[0]); // BN1
xmm7 = _mm_set_ps1(BN[1]); // BN2
xmm3 = _mm_mul_ps(xmm0,xmm6); // DR1 * BN1
xmm4 = _mm_mul_ps(xmm1,xmm7); // DR2 * BN2
xmm5 = _mm_mul_ps(xmm0,xmm1); // UL12 = DR1 * DR2
xmm3 = _mm_add_ps(xmm3,xmm4); // DRDN = DR1 * BN1 + DR2 * BN2
xmm6 = _mm_mul_ps(xmm6,xmm1); // DR2 * BN1
xmm7 = _mm_mul_ps(xmm7,xmm0); // DR1 * BN2
_mm_store_ps(ul12v4,xmm5);
xmm0 = _mm_mul_ps(xmm0,xmm0); // DR1 * DR1
xmm1 = _mm_mul_ps(xmm1,xmm1); // DR2 * DR2
xmm5 = _mm_add_ps(xmm5,xmm5); // 2 * DR1 * DR2
xmm7 = _mm_sub_ps(xmm7,xmm6); // DR1 * BN2 - DR2 * BN1
xmm4 = vmlsLn4(xmm2); // log R
xmm5 = _mm_mul_ps(xmm5,xmm3); // 2 * DR1 * DR2 * DRDN
_mm_store_ps(ul11v4,xmm0);
_mm_store_ps(ul22v4,xmm1);

Using 4 integrations points, one can easily find that :

G11 = UL
1
11 ∗ B

1
1 ∗W

1
+ UL

2
11 ∗ B

2
1 ∗W

2
+ UL

3
11 ∗ B

3
1 ∗W

3
+ UL

4
11 ∗ B

4
1 ∗W

4

G21 = UL
1
21 ∗ B

1
1 ∗W

1
+ UL

2
21 ∗ B

2
1 ∗W

2
+ UL

3
21 ∗ B

3
1 ∗W

3
+ UL

4
21 ∗ B

4
1 ∗W

4

G12 = UL
1
12 ∗ B

1
1 ∗W

1
+ UL

2
12 ∗ B

2
1 ∗W

2
+ UL

3
12 ∗ B

3
1 ∗W

3
+ UL

4
12 ∗ B

4
1 ∗W

4

G22 = UL
1
22 ∗ B

1
1 ∗W

1
+ UL

2
22 ∗ B

2
1 ∗W

2
+ UL

3
22 ∗ B

3
1 ∗W

3
+ UL

4
22 ∗ B

4
1 ∗W

4

Since all values of UL are stored in vectors, it is quite simple to perform the
multiplications of each value by the respective four values stored in B1 and W .
However, there is no SSE instruction to perform the sum of the elements of a
vector needed in the computation of G.

Using the SSE unpack and move instructions, the values stored on four vec-
tors can be reordered to obtain the same effect of a matrix transposition, al-
though here the operations are performed on vectors. The mm unpackhi ps and
mm unpacklo ps instructions select and interleave respectively the upper (hi)

or lower (lo) two values from two vectors a and b. The mm move hl instruction
moves the upper two elements of b to the lower values (hl) while mm move lh ps

moves the lower two elements of b to the upper values (lh) of the target vector.
Listing 2 shows how the SSE unpack and move instructions can be used in

the computation of the first half of matrix G.

Listing 2. SSE matrix transposition

// computing G1
xmm7 = _mm_set_ps1(C);
xmm6 = _mm_set_ps1(C1);
xmm6 = _mm_mul_ps(xmm6,xmm7);
xmm5 = _mm_load_ps(B1Wv4);
xmm5 = _mm_mul_ps(xmm5,xmm6);
xmm0 = _mm_load_ps(ul11v4);
xmm1 = _mm_load_ps(ul22v4);
xmm2 = _mm_load_ps(ul12v4);
xmm3 = _mm_load_ps(ul12v4);
xmm0 = _mm_mul_ps(xmm0,xmm5);
xmm1 = _mm_mul_ps(xmm1,xmm5);
xmm2 = _mm_mul_ps(xmm2,xmm5);
xmm3 = _mm_mul_ps(xmm3,xmm5);
xmm4 = _mm_unpackhi_ps(xmm0,xmm1);
xmm5 = _mm_unpackhi_ps(xmm2,xmm3);
xmm6 = _mm_unpacklo_ps(xmm0,xmm1);
xmm7 = _mm_unpacklo_ps(xmm2,xmm3);
xmm0 = _mm_movelh_ps(xmm6,xmm7);
xmm1 = _mm_movehl_ps(xmm7,xmm6);
xmm2 = _mm_movelh_ps(xmm4,xmm5);
xmm3 = _mm_movehl_ps(xmm5,xmm4);
xmm0 = _mm_add_ps(xmm0,xmm2);
xmm1 = _mm_add_ps(xmm1,xmm3);
xmm0 = _mm_add_ps(xmm0,xmm1);
_mm_store_ps(v4G1,xmm0);

Most of the matrix operations performed by the application can be vectorized
with compiler intrinsics. However, due to the limited number of SSE registers,

the vectorization of the code demands special care since several implementations
of an algorithm are possible. The most efficient SSE algorithm can only be
determined with the use of specialized tools and profiling procedures.

The most recent processors allow the parallel execution of up to three SSE
instructions. Hence, an efficient implementation also depends of the optimal use
of the vector functional units. The user should rely on the optimization routines
available in the compiler to find a good implementations for an algorithm.

Finally, well-known optimization techniques, usually applied to scalar codes,
can also be used in the implementation of vector algorithms in order to replace
long latency instructions and to reduce data dependence. Data dependence is
the major obstacle to automatic or manual vectorization of any algorithm. Even
well-written programs enclose data dependencies due to the nature of the appli-
cations. High performance techniques are presented by the authors in previous
works [8, 9] and will not be addressed here.

6 Results Summary

The Fortran and C/C++ implementations evaluated here runs on a SGI Altix
XE 1200 cluster with 11 nodes, comprising 8 Quad-Core Xeon 2.66GHz (X5355)
processors and 8 GB memory per node. The operating system is Linux SLES
10.1, ProPack 5 SP3 and the Intel Fortran 10 and Intel C/C++ 10 compilers
are used.

The first case study corresponds to a square plate under biaxial load, as
found in [1], with nodes distributed along the boundary. A second example is
also taken from Telles [1] and refers to the problem of a cylindrical cavity under
internal pressure. The schematic description of both problems is shown in figures
2 and 3, respectively.

Figure 2. A square plate under biaxial load

b b b b b

b b b b b

b

b

b

b

b

b

△d d d d

d d d d d

1 2 3 4 5

15 14 13 12 11

6

7

8

9

20

19

18

17

16 10

�

�

�

�

�

-

-

-

-

-
−px px

E

�L

L

� -

6

?

Figure 3. A cylindrical cavity under internal pressure
........................

.........................
..................

.......

..............
..........

............
...........

..........
..........
...

..........
..........
....

.........
.........
.......

.........
.........
.......

.........
.........
.......

........

........

........

........

........

........

.........
.........
.......

.........
.........
.......

.........
.........
.......

..........
..........
....

..........
..........
...

............
...........

..............
..........

..................
.......

...
.........................

.........................

........................

.......................

.......................

........................

.........................

.........................

.........................

........................

........................

.........................

.........................

.........................

........................

.......................

.......................

........................

.........................
.........................

......................... b b
b

b

b

b

b

b

b

b

b
bbb

b

b

b

b

b

b

b

b

b
b

1 2
3

4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

21

22

23
24

-�

6

?

���

@@R��	

@@I

�

E

� x� -

Table 1. Square plate - 10000 nodes

time (s) Original Autovectorization SSE Intrinsics

real 45.822 32.918 12.880
user 1.184 0.956 1.160
sys 0.47 0.33 0.14

Table 2. Cylindrical cavity - 10000 nodes

time (s) Original Autovectorization SSE Intrinsics

real 42.958 32.478 12.028
user 1.100 0.900 1.002
sys 0.44 0.33 0.10

The first column of tables 1 and 2 indicates the processing time of the original
version of the code, with no vectorization. The second column refers to the
autovectorized implementation while the third column shows the wall-clock time
of the code vectorization with SSE intrinsics.

7 Conclusions

This paper introduces the Streaming SIMD Extensions (SSE), also known as
multimedia instructions, and its application to engineering codes. The SSE in-
struction set enhances the Intel architectures with instructions that handle a
set of floating-point values stored in vectors, simultaneously, instead of scalar
variables. These vector operations can enhance the performance of modern pro-
cessors significantly.

In the first part of the work [11] auto-vectorization techniques were presented.
Here, explicit vector/SIMD instructions or compiler intrinsics are addressed in
some detail and its use is demonstrated in a numerical application to solve two-
dimensional elastostatic problems. The proposed implementation illustrates the
basic concepts underlying SSE and provides guidelines to generate vector exe-
cutables with C/C++ compiler intrinsics. The techniques presented are applied
to a boundary element code but other methods can equally be addressed with
the same techniques.

The results show a reduction in the runtime of 30% using auto-vectorization
techniques while the implementation with SSE intrinsics yields a reduction of
over 70% when compared to the original code.

SIMD extensions are currently found in most current processors, hence the
knowledge of SIMD programming appears to be a decisive factor in the future
of high performance computing [5, 6]. The implementation of boundary element
codes on the STI Cell Broadband Engine processor using SIMD instructions has
been presented in a previous work [12].

Intel microarchitectures, includes the SSE4 and the new AVX instruction set.
The Intel Advanced Vector Extensions provide wider vector registers allowing
more simultaneous floating point operations. Thus, the procedures introduced
here arise as an additional and important optimization tool for numerical appli-
cations on today’s and future processor architectures.

References

1. Brebbia CA, Telles JCF, Wrobel LC. Boundary elements techniques : theory and
applications in engineering. Berlin: Springer Verlag; 1984.

2. Dongarra J et al. LAPACK users guide. 3rd ed. SIAM; 1999.
3. Bik AJC. Software vectorization handbook. Intelpress; 2004.
4. Gerber R, Bik AJC, Smith KB, Tian X. The software optimization cookbook. 2nd

ed. Intel Press; 2006.
5. Patterson DA, Hennessy JL. Computer organization and design: the hard-

ware/software interface, 3rd ed. revised. Elsevier-Morgan Kaufmann; 2007.

6. Hennessy JL, Patterson DA. Computer arquitecture: a quantitative approach, 4th
ed. Elsevier-Morgan Kaufmann; 2007.

7. Flynn MJ. Very high-speed computing systems. Proc. IEEE. 1966. 54/12:1901-
1909.

8. Cunha MTF, Telles JCF, Coutinho ALGA. On the parallelization of boundary
element codes using standard and portable libraries. Engineering Analysis with
Boundary Elements. 2004. 28/7:893-902. doi: 10.1016/j.enganabound.2004.02.002

9. Cunha MTF, Telles JCF, Coutinho ALGA. A portable implementation of
a boundary element elastostatic code for Shared and Distributed Mem-
ory Systems. Advances in Engineering Software. 2004. 37/7:893-902. doi:
10.1016/j.advengsoft.2004.05.007

10. Cunha MTF, Telles JCF, Coutinho ALGA. Parallel boundary elements : a portable
3-D elastostatic implementation for shared memory systems. Lecture Notes in
Computer Science. 2005. 3402:514-526.

11. Cunha MTF, Telles JCF, Ribeiro FLB. Streaming SIMD extensions applied
to boundary element codes. Advances in Engineering Software. 2008. doi:
10.1016/j.advengsoft.2008.01.003

12. Cunha MTF, Telles JCF, Coutinho ALGA. On the implementation of boundary
element engineering codes on the Cell Broadband Engine. Proceedings of the 8th
International Meeting High Performance Computing for Computational Science.
VECPAR 2008.

