
Parallel Multilevel Methods for Implicit Solution
of Shallow Water Equations with Nonsmooth

Topography on Cubed-sphere

Chao Yang1,2 and Xiao-Chuan Cai2

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 Department of Computer Science, University of Colorado at Boulder, Boulder, CO

80309, USA

Abstract. High resolution algorithms for the shallow water equations
(SWE) on the sphere are very important for the modeling of the global
climate. In this work, we introduce and study some highly scalable mul-
tilevel domain decomposition methods for the fully implicit (FI) solution
of the nonlinear SWE discretized with a high order well-balanced finite
volume method on the cubed-sphere. With the FI approach, the time
step size is no longer limited by the stability condition, and with the
multilevel preconditioners, good scalabilities are obtained on computers
with a large number of processors.

1 Introduction

Numerical simulation of the shallow water equations (SWE) in spherical geom-
etry lies at the root in the development of numerical algorithms for atmospheric
circulation models. Spectral transform methods on latitude-longitude grid, pro-
viding high order accuracy, have been widely adopted for the spatial discretiza-
tion of SWE in the last several decades. However, the high computational costs
and communication overhead of the spectral transform methods become more
and more severe for parallel supercomputers with distributed memories. The
non-uniformity of the latitude-longitude grid results in load-imbalance in par-
allel simulations, especially when the grid is gradually refined. Besides, the sin-
gularities of latitude-longitude grid at the poles lead to substantial numerical
difficulties in long-term calculations. Several efforts have been made on using
numerical discretizations other than spectral method on composite grids instead
of latitude-longitude grid. The composite grid is consisted of several pathes con-
nected or overlapped together to cover the whole sphere, e.g., the icosahedron
geodesic mesh ([1, 2]), the cubed-sphere mesh ([3]), the Yin-Yang mesh ([4]),
among others. Although the cubed-sphere grid was proposed in early days ([3]),
few work was done until it was revisited in 1990s ([5, 6]) and then drew increasing
attentions thereafter ([7–18]).

For explicit or semi-implicit methods, due to stability limitations, the number
of time steps increases as the grid is refined, which is unfavorable in terms of
weak scalability. Ideal weak scalability only become possible when FI method is



used, since the dependency between the time step size and the grid resolution is
successfully removed. However, the price to pay using FI method is that a large
sparse nonlinear algebraic system has to be solved at each time step. To solve
the nonlinear systems efficiently, one often uses an inexact-Newton’s method,
within which Krylov-based iterative methods are used to solve Jacobian systems
in the inner loop of each inexact-Newton’s step. However, the increase of Krylov
iterations, directly resulting in simulation time increase, neutralizes the benefits
from the unconstrained FI time step size as the grid is refined ([19]). The only
possible way to keep constant simulation time is to use a preconditioner which is
not only inexpensive to apply but also capable to reduce the increased number
of Krylov iterations to a reasonable level. Therefore, development of an effective
and efficient preconditioner is crucial for a scalable FI solver, which is the goal
of this study.

A one-level domain decomposition method was studied in [16] in precondi-
tioning the linear systems arising from inexact-Newton’s iterations to solve the
nonlinear systems resulted from FI time integration of SWE on the cubed-sphere.
The numerical results in [16] demonstrated that when a first-order finite volume
scheme is used in spatial discretization, the parallel Schwarz preconditioner is
robust both in terms of total linear iterations and computing time. However, for
one-level Schwarz preconditioning, the number of linear iterations suffers as the
time step size increases. The situation becomes even worse when higher order
discretization is used, due to the fact that the resulting Jacobian system is even
ill-conditioned. Besides, when topographic terms are included, the smoothness
requirements for the nonlinear function in Newton’s method are heavily violated
and the convergence is unknown. In this paper we study an inexact Newton’s
method for the case with nonsmooth topography. The method is based on a
semi-smooth technique to freeze multiple-valued points in the calculation of Ja-
cobian matrices. Multi-level overlapping Schwarz methods based on low order
Jacobian matrices are then used as preconditioners in solving the linear systems
inside each inexact-Newton loop. We show by several benchmark cases that the
FI solver offers good results in terms of both strong and weak scalabilities on
machines with thousands of processors.
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