
Numerical library reuse in parallel and
distributed platforms?

Nahid Emad1, Olivier Delannoy1, Makarem Dandouna1

PRiSM Laboratory, University of Versailles
45, avenue des États-unis, 78035 Versailles cedex, France

Keywords: large scale distributed systems, numerical library, code reusability,
design model

Abstract. In the context of parallel and distributed computation, the
currently existing numerical libraries do not allow code reuse. Besides,
they are not able to exploit the multi-level parallelism offered by many
numerical methods. A few linear algebra numerical libraries make use of
object oriented approach allowing modularity and extensibility. Never-
theless, those which offer modularity together with sequential and par-
allel code reuse are almost non-existent. We analyze the lacks in existing
libraries and propose a design model based on a component approach
and the strict separation between computation operations, data defini-
tion and communication control of applications. We present then an im-
plementation of this design using YML scientific workflow environment
jointly with the object oriented LAKe (Linear Algebra Kernel) library.
Some numerical experiments on GRID5000 platform validate our ap-
proach and show its efficiency.

1 Introduction

To solve linear algebra problems on large scale distributed systems an application
can rely on existing libraries such as LAPACK[1] which provides a set of routines
that can be used to create solvers. Parallel solvers for distributed memory archi-
tectures can be built on top of the services provided by sequential libraries. The
approach consists in building the parallel version by using distributed versions
of the basic operations used in the library. For example in LAPACK the par-
allelization is done by the parallelization of BLAS. Nevertheless, these libraries
allow neither data type abstraction nor code reuse between the parallel and se-
quential versions of the applications. That means the subroutines of the solvers
are not able to adapt their behaviors depending on the data types. Those sub-
routines must be defined once for use in sequential and once again in parallel.
The component approach used in libraries such as PETSc (Portable, Extensible
Toolkit for Scientific Computation)[2] or Trilinos [6] increased drastically the
modularity, interoperability and reusability of high level components within the
libraries as well as in the user applications. It increases the ease of use, code reuse,
and maintainability of libraries. Nevertheless, it doesn’t allow sequential/parallel

? Candidate to the Best Student Paper Award



code reusability. The Linear Algebra Kernel (LAKe)[9] is an object oriented li-
brary in C++ which makes use of MPI. It introduces code reuse between the
sequential and the parallel versions of an application. However LAKe doesn’t
allow to use concurrently the parallel and sequential versions of a code inside
the same application. This feature is required to build hybrid numerical meth-
ods in the context of distributed computing. These methods are defined by a set
of collaborating classical iterative methods called co-methods. Each co-method
aims at decreasing the number of iterations required by the method to compute
its results. An extended version of LAKe proposed in [4] allows it to support the
hybrid methods. Nevertheless, the scalability of the reusability offered by this
extension is limited.

In this paper, we propose a design model for numerical libraries allowing
their reuse on parallel and distributed systems. Our approach is based on three
levels of abstraction concerning computation aspect, data definition and com-
munication control of an application. The simultaneous reusability between the
sequential and the parallel codes is possible thanks to this abstraction. We show
that our design can be mapped on some scientific workflow environments. We
present then the implementation of our approach using YML scientific workflow
environment (http://yml.prism.uvsq.fr/) jointly with LAKe library. We will see
that the approach makes possible to exploit the hybrid methods in the context of
large scale distributed systems. Finally, we give the results of some experiments
in order to validate our solution.

2 Linear Algebra Libraries

2.1 Imperative numerical libaries

In order to implement numerical solvers, one can use libraries such as LAPACK
[1] and ARPACK[7] written in FORTRAN using a traditional imperative pro-
gramming style. They consist in a set of routines which provides the individual
steps of the iterative methods. Parallel solvers for distributed memory archi-
tectures can be built on top of the services provided by the aforementioned
libraries. This approach has been used to build libraries such as ScaLAPACK[3]
and P ARPACK[8]. The parallel solvers exploit intra co-method parallelism.
Nevertheless, these libraries allow neither data type abstraction nor code reuse
between the parallel and sequential versions of the applications. That means the
subroutines of the solvers are not able to adapt their behaviors depending on
the data types. Consequently, those subroutines must be defined once for use in
sequential and once again in parallel and then the application code is different
if using the parallel or sequential library.

2.2 Object oriented numerical libraries

The object oriented approach used in libraries such as PETSc [2] or Trilinos
[6] enforced drastically the modularity, interoperability and reusability of high



level components within the libraries as well as in the user applications. Using
PETCs or Trilinos, the application specifies the building blocks of the solver.
However the solver is provided by the library. The application code no more
contains the logic of the method. It provides parallel and sequential solvers and
allows to make use of one and/or the other in the same application. However
these parallel and sequential solvers still use different application codes. This is
also true for the implementation of the library.

LAKe is an object oriented library written in C++. It defines a framework
to implement iterative solvers. The design approach of this library is based on a
strict separation between the computation part, which is composed by numerical
algorithms and services, and the data management and communication part of
the application code. The latter are used to represent both sequential and parallel
data type used by LAKe computation part. Using the object oriented approach
and template based generic programming provided by C++, LAKe allows the
computation part to be common to both sequential and parallel versions of the
application. The computation part of the library is identical in the case of a se-
quential data set or distributed data set. The parallel version of LAKe makes use
of the message passing interface (MPI) standard version 1 [5] for communication
between the various involved computation processes. However the use of MPI is
completely transparent to the user. He/she can switch from a sequential solver
to a parallel one by changing the type of the matrix representing the data. LAKe
achieves code reuse between sequential and parallel versions thanks to a strict
separation between the computation and the data/comunication management
aspects of applications.

The intra-method communication of the parallel version of LAKe increases
the time performance when handling huge matrices. However LAKe is not suit-
able to implement hybrid methods. For hybrid methods we need two levels of
parallelism. Using MPI means we need local communication at the co-method
level and global communication between the co-methods composing the hybrid
method. LAKe provides no access to the MPI communicator to client applica-
tions nor to the computation part of the library.

An extension of LAKe has been proposed to support hybrid methods. It
makes possible the use of sequential and parallel co-method processes concur-
rently within the same application. This extension described in [4] discusses a
solution that matches the architecture design of LAKe. The user of the library
must explicitly define the number of processors allocated to each process repre-
senting a co-method. However, its use is not easy due to the configuration of the
communicators (with MPI standard version 1). This limits the scalability of the
solution proposed to only a few number of co-method processes. Experiments
have been done up to three concurrent co-methods.

3 A reusable numerical library design model

Most of previously mentioned libraries suffer from many problems. Imperative
numerical libraries lack portability, modularity, interoperability. Despite mod-



ularity and reusability of their high level components, object oriented libraries
such as PETSc, Trilinos or LAKe do not allow the simultaneous reusability of
components between the sequential and the parallel versions of an application.
Extended LAKe allows this kind of reusability but it is not scalable. We notice
that all these libraries lack an additional level of abstraction which is necessary
to achieve such a kind of reusability.

Fig. 1. Reusable numerical libraries design

To remedy to these problems, we propose a library design model based on
three levels of abstraction. That means, a model which separates strictly the
computation aspect, the data definition and the communication actions of ap-
plications (see figure 1). The data definition includes data types abstraction. The
computation aspect represents all computation components. These two compo-
nents communicate through the communication actions. Our main goal is to
achieve the simultaneous reusability between sequential and parallel components,
so in data definition part we encapsulate the parallelism in a common generic
object which has the same interface in parallel and in serial. Then, parallel ob-
jects can be used polymorphically. Components of the computation part will
be clients of these objects. We want to allow the code to be the same between
the sequential and parallel versions of an application. Thereby every function
is implemented once and used either in sequential or in parallel. Additionally,
the maintainability of the library implemented according to this model would
be simplified using this approach.



3.1 Library integration in scientific workflow environment

A scientific workflow environment describes an application along three aspects:
a set of services, the control flow and the data flow of the application. Based
on these informations, it orchestrates the execution of the application. A service
is a public interface associated to an implementation. The public interface de-
scribes how a service interacts with clients. Each service defines a set of input
and output parameters also known as communication channels. A service can
be stateless or not depending on the underlying middleware capabilities in that
respect. The control flow consists in describing the order of execution of the
services involved in the application. It does not contain the computation code,
only the order of computation. It is a coarse grained description of the applica-
tion where computation is handled by services as defined above. The data flow
consists in describing the exchange of data between the services. Some workflow
environment mixes the data flow and control flow together. Data migration from
data repositories are managed transparently by the workflow environment. To
provide a solution independently from the underlying middleware, that services
have to be supposed stateless.

We target a scientific workflow environment which model is defined by three
main layers: a layer to interact with end users. A second layer which includes
workflow manager and an integrator of services such as databases and compu-
tation codes. Finally, there is a layer to interact with middleware. In the envi-
ronments, based on this model, the user can make use of large scale distributed
architectures transparently and independently from the deployed middleware.
The computation and data components in the model are represented by some
services. The communication between these services would be done by the mad-
deware. Note that the strict separation between computation aspect, data defi-
nition and communication actions required by our library design model matches
easily with environments realized according to aforementioned model.

YML is a scientific workflow environment based on the above model [10].
It permits to represent computation and data definitions of our library design
model by the corresponding YML components. Besides, it confides the commu-
nication actions of our model to the middelware. The activities graph which
defines a solver will then be described by YML workflow langage. As a conse-
quence, the solvers are independent from the communication mechanisms used
by the middelware (MPI or others). In order to achieve our objective of simul-
taneous serial and parallel code reusability, we integrate the computation and
data components of LAKe library in YML. This solution allows to exploit the
multi level parallelism of hybrid methods on parallel and distributed systems.

4 Experiments

For our experiments, we selected two matrices from the MatrixMarket collection.
The used matrices are summarized in the table 1. NNZ corresponds to the
number of non zero elements of the matrix, we also added the Froebenius norm
which impacts on the convergence criterion. In order to validate our approach, we



Matrix name Size NNZ Froebenius
norm

pde490000 490000 2447200 10+3

pde1000000 1000000 4996000 10+3

Table 1. List of matrices used for experiments

evaluated YML/LAKe on the Grid’5000 platform. Grid’5000 is a French national
testbed dedicated to large scale distributed system experiments. We make use of
computing resources of the Grid Explorer cluster of Grid’5000. We demonstrate
the validity of our approach (a) by presenting the feasibility, (b) by decreasing
the number of iterations needed to converge when the number of co-methods
increases and (c) by showing the scalability of the solution in regards of the
matrix sizes and of the number of co-methods used to solve a large eigenproblem
with MERAM (multiply explicitly restarted Arnoldi method).

MERAM is a hybrid method composed of several instances of the same itera-
tive method ERAM. In other words, this method is based on a set of p instances
of ERAM. The latter is an iterative method which computes a few eigenvalues
and eigenvectors of a large sparse non-Hermitian matrix. The instances of ERAM
work on the same problem but they are initialized with different subspace size
mi, i ∈ [1, k]. MERAM defines a set of parameters, the most significant ones are
the matrix A, n the size of this matrix, r the number of desired eigenelements,
m1, ..,mp the subspace sizes of the co-methods ERAM composing MERAM also
noted MERAM(m1, ...,mp) and tol denoting the tolerance expected for the re-
sults. An horizontal line denotes the tolerance or the error allowed on the re-
sults. The vertical axis represents the estimated error of the solution obtained
at each iterations. The horizontal axis represents the number of iterations. In
figure 2, we present two executions of MERAM for the matrix pde490000. The
two executions differ in the number of involved co-methods. In the first execu-
tion, MERAM(10,30,50) requires 98 iterations to converge while MERAM(10,
20, 30, 50) requires 91 iterations. In other words, the increase in the number
of co-methods decreases the iteration count of the hybrid method. We notice
that by making use of YML/LAKe we are able to overcome the limitation in
the number of co-methods composing a hybrid method. One of the motivation
of YML/LAKe is the scalability issue in regards of the number of co-methods
composing an hybrid one and the size of the problems to be solved. Figure 3
illustrates the progresses made in that regards. Using YML/LAKe we have been
able to solve eigenproblems with one million-order matrices. Our approach is
based onto the fragmentation in blocks of the matrix of the problem and its
distribution during the projection step of the iterative method. The second scal-
ability issue relates to the number of co-methods used to solve an eigenproblem.
Extended LAKe allows to test the hybrid methods composing by only a small
number of co-methods (up to 3). Using YML/LAKe we have been able to test
effortlessly with ten co-methods and it is possible to increase this number.



Fig. 2. Convergence of MERAM for matrix 490000 with different number of co-methods

Fig. 3. Scalability of the solution: number of co-methods/size of A



5 Conclusion

Hybrid methods and some of linear algebra applications are well adapted to
parallel and distributed systems as well as large scale distributed memory archi-
tectures such as GRID and peer to peer systems. Such methods require several
levels of parallelism in the same application organized in a tree. Existing nu-
merical libraries are not able to exploit all these levels of parallelism. Their use
on distributed systems is still difficult and complex. Their design doesn’t allow
the simultaneous reusability between the sequential and the parallel versions
of an application. Moreover, they do not manage effectively communications in
these complex environments; they combine communication with the definition
of data and computations. We have presented a model to design reusable nu-
merical libraries for parallel and distributed systems. Our approach is based on
three levels of abstraction consisting of the computation, the data definition and
the communication actions of applications. We involve in our solution the use
of scientific workflow environments. These environments provide tools to orches-
trate the execution on a set of distributed services and they allow the use of
middleware transparently to end users. To solve simultaneous serial and parallel
reuse, we proposed to map our library design model on such a scientific work-
flow environment. We realized this solution by the integration of LAKe library
in YML framework.

We validated our approach with experiments using YML/LAKe. Future works
will include the application of our approach to some existing libraries such as
PETSc or certain components of Trilinos. This is possible by including some
interfaces in the library source code and its integration on a scientific workflow
environment such as YML. According to this approach, we can obtain a set of
numerical libraries which can cooperate together for the resolution of a problem.
Applications developers can use these libraries more easily in the context of large
scale distributed systems through the workflow environment.

6 Acknowledgment

Experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, an initiative from the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https://www.grid5000.fr/)

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

2. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
Efficient management of parallelism in object oriented numerical software libraries.



In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

3. J. J. Dongarra, S. Hammarling, and A. Petitet. Case studies on the development
of ScaLAPACK and the NAG numerical PVM library. pages 236–248, 1997.

4. Nahid Emad and Ani Sedrakian. Toward the reusability for iterative linear algebra
software in distributed environment. Parallel Comput., 32(3):251–266, 2006.

5. Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

6. Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tumi-
naro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An overview
of the trilinos project. ACM Trans. Math. Softw., 31(3):397–423, 2005.

7. R. Lehoucq, D. Sorensen, and C. Yang. Arpack users’ guide: Solution of large scale
eigenvalue problems with implicitly restarted arnoldi methods, 1997.

8. K. J. Maschhoff and D. C. Sorensen. P ARPACK: An efficient portable large scale
eigenvalue package for distributed memory parallel architectures. In PARA, pages
478–486, 1996.

9. E. Noulard and N. Emad. A key for reusable parallel linear algebra software.
Parallel Computing Journal, Elsevier Science, 27(10):1299–1319, 2001.

10. N. Emad O. Delannoy and S. Petiton. Workflow global computing with YML.
In The 7th IEEE/ACM International Conference on Grid Computing, Barcelona,
Spain, September 28th-29th 2006.


