
Improving Memory Affinity of Geophysics
Applications on NUMA platforms Using Minas

Christiane Pousa Ribeiro1 and Márcio Bastos Castro1 and Jean-François
Méhaut1 and Alexandre Carissimi2

1 University of Grenoble - LIG Laboratory
INRIA Mescal Research Team

Grenoble, France
(pousa, bastosca, Jean-Francois.Mehaut)@imag.fr

2 Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

asc@inf.ufrgs.br

Abstract. On numerical scientific High Performance Computing (HPC),
Non-Uniform Memory Access (NUMA) platforms are now commonplace.
On such platforms, the memory affinity management remains an impor-
tant concern in order to overcome the memory wall problem. Prior solu-
tions have presented some drawbacks such as machine dependency and a
limited set of memory policies. This paper introduces Minas, a framework
which provides either explicit or automatic memory affinity management
with architecture abstraction for ccNUMAs. We evaluate our solution on
two ccNUMA platforms using two geophysics parallel applications. The
results show some performance improvements in comparison with other
solutions available for Linux.

1 Introduction

The increasing number of cores per processor and the efforts to overcome the
hardware limitations of classical Symmetric Multiprocessors (SMP) parallel sys-
tems remain a problem. Due to this, Non-Uniform Memory Access (NUMA)
platforms are becoming very common computing resources for numerical scien-
tific High Performance Computing (HPC). A NUMA platform is a large scale
multi-processed system in which the processing elements are served by a shared
memory that is physically distributed into several memory banks interconnected
by a network. Thus, memory access costs may vary depending on the distance
between cpus and memory banks. The effects of this asymmetry can be reduced
by optimizing memory affinity [1, 2].

Memory affinity is assured when a compromise between threads and data is
achieved by reducing either the number of remote accesses (latency optimization)
or the memory contention (bandwidth optimization). In the past, researches have
led to many different solutions on user and kernel space. However, such solutions
present some drawbacks, such as: platform dependency (developers must have
prior knowledge of the target architecture), they do not address different memory

accesses and they do not include optimizations for numerical scientific data (i.e.,
array data structures) [1–3].

To overcome these issues, our research have led to a new solution named
Minas: an efficient and portable framework for managing memory affinity on
cache-coherent NUMA (ccNUMA) platforms. Minas enables explicit and auto-
matic control mechanisms for numerical scientific HPC applications. Beyond the
architecture abstraction, this framework also provides several memory policies
allowing better memory access control. In this paper, we evaluate its portabil-
ity and efficiency by performing experiments with two Geophysics applications
on two ccNUMA platforms. The results are compared with Linux solutions for
ccNUMAs (first-touch, numactl and libnuma).

This paper is organized as follows: first, we discuss the related work (Section
2). After presenting the Minas design, its characteristics and implementation
details (Section 3), we will show its performance evaluation (Section 4). We will
then give a brief conclusion and present our future work (Section 5).

2 Related Work

In order to guarantee memory affinity and thus achieve better performance,
developers usually spend significant time optimizing data allocation and place-
ment on applications and ccNUMA platforms. As a consequence, research groups
have studied different ways to simplify memory affinity management on such
platforms using Linux [2]. Two approaches have been proposed for the Linux
operating system, the explicit approach (libraries, interfaces and tools) and the
automatic approach (memory policies in user or kernel spaces) [3–6].

On the Linux operating system, the explicit approach is a basic support
to manage memory affinity on ccNUMAs which is composed of three parts:
kernel/system calls, a library (libnuma) and a tool (numactl). The kernel part
defines three system calls (mbind(), set mempolicy() and get mempolicy()) that
allow the programmer to set a memory policy (bind, interleave, preferred or
default) for a memory range. A memory policy is responsible for placing memory
pages on physical memory banks of the machine. The use of such system calls
is a complex task, since developers must deal with pointers, memory pages, sets
of bytes and bit masks. The second part of this support is a library named
libnuma, which is a wrapper layer over the kernel system calls. The limited
set of memory policies provided by libnuma is the same as the one provided
by the system calls. The last part, the numactl tool, allows the user to set a
memory policy for an application without changing the source code. However,
the chosen policy is applied over all application data (it is not possible to either
express different access patterns or change the policy during the execution [3]).
Additionally, providing a list of nodes (memory banks and cpus/cores), that are
platform-dependent parameters, is mandatory when using this tool.

The automatic approach is based on the use of memory policies and it is the
simplest way to deal with memory affinity, since developers do not have to take
into consideration the memory management. In this approach, the operating

system is responsible for optimizing all memory allocation and placement. First-
touch is the default policy in the Linux operating system to manage memory
affinity on ccNUMAs. This policy places data on the node that first accesses it
[2]. To assure memory affinity using this policy, it is necessary to either execute
a parallel initialization of all shared application data allocated by the master
thread or allocate its data on each thread. However, this strategy will only
present performance gains if it is applied on applications that have a regular data
access pattern and if threads are not frequently scheduled to different cores/cpus.
In case of irregular applications (threads do not always access the same data),
first-touch will result in a high number of remote accesses.

Currently, there are some proposals concerning new memory policies for
Linux. For instance, in [4–6], the authors have designed and have implemented
the on-next-touch memory policy. This policy allows more local accesses, since
each time a thread touches a data, the data migrates when needed. Its perfor-
mance evaluation has shown good performance gains only for applications that
have a single level of parallelism and large amount of data (e.g., matrices which
size are higher than 8K x 8K). In case of multiple levels of parallelism (nested
parallelism), each thread may create other threads. When these threads share
a significant amount of data, several data migration can be performed, since
each thread may be in a different machine node. These data migrations have
presented an important overhead and they usually have lowered the application
performance gains. Moreover, for small amount of data, on-next-touch policy
have also not presented a good performance since the overhead with migrations
is more expensive than the cost of remote accesses.

3 Minas

Minas [7] is an efficient and portable framework that allows developers to man-
age memory affinity in an explicit or automatic way on large scale ccNUMA
platforms. In this work, efficiency means fine control of memory accesses for
each application variable and similar performance on different ccNUMA plat-
forms. As portability, we mean architecture and compiler abstraction and none
or minimal source code modifications.

This framework is composed of three main modules: Minas-MAi, Minas-
MApp and numarch. Minas-MAi, which is a high level interface, is responsible for
implementing the explicit NUMA-aware application tuning mechanism whereas
the Minas-MApp preprocessor implements an automatic mechanism. The last
module, numarch, is responsible for extracting several information about the
target platform. This module can be used by the developer to consult some
important information about the architecture and it is also used by Minas-MAi
and Minas-MApp mechanisms.

Minas differs from other memory affinity solutions [2, 3] in at least four as-
pects. First of all, Minas offers code portability. Since numarch provides architec-
ture abstraction, the developer do not have to specify nodes that will be used by
Minas to place data. Secondly, Minas is a flexible framework since it supports two

different mechanisms to control memory affinity (explicit and automatic tuning).
Thirdly, Minas is designed for array oriented applications, since this data struc-
ture usually represents the most important variables in kernels/computations.
Finally, Minas implements several memory policies to deal with both regular ap-
plications (threads always access the same data set) and irregular applications
(threads access different data during the computations).

NUMA-Aware
Source Code

Minas

Application
Source Code

Numarch

MApp

Automatic Tuning

Explicit Tuning

Symbols

MAi
 - mai_alloc(...)
- mai_bind(...)

!
"

#

Fig. 1. Overview of Minas.

Figure 1 shows a schema of Minas mechanisms to assure memory affinity.
The original application source code can be modified by either using the explicit
mechanism (gray arrows) or the automatic one (black arrows). The decision be-
tween automatic and explicit mechanisms depends on the developer’s knowledge
about the target application. One possible approach is to first use the automatic
tuning mechanism and to verify whether the performance improvements are
considered sufficient or not. If the gains are not sufficient, developers can then
explicitly modify (manual tuning) the application source code using Minas-MAi.

Depending on the mechanism, numarch is used to retrieve different infor-
mation. In explicit mechanism, Minas-MAi retrieves from numarch the number
of nodes and cpus/cores as well as theirs physical identifiers in order to ap-
ply memory policies (dashed arrow 1). Differently, in the automatic mechanism,
Minas-MApp gets from numarch the machine’s NUMA factor, interconnection
bandwidth, cache subsystem information and the amount of free memory of each
node. These information are then used by the heuristic function to determine
a suitable memory policy (dashed arrow 2). The chosen memory policy will be
applied by using Minas-MAi memory policy functions (dashed arrow 3).

The current version of Minas is implemented in C. Minas has been tested on
different ccNUMA architectures (Intel, AMD and SGI) with Linux as operating
system. Minas supports C/C++ and Fortran and the following compilers: Intel,
GNU and Portland.

3.1 MAi: Memory Affinity interface

MAi (Memory Affinity interface) is an API (Application Programming Interface)
that provides a simple way of controling memory affinity [8]. It simplifies memory
affinity management issues, since it provides simple and high level functions that
can be called in the application source code to deal with data allocation and
placement. All MAi functions are array-oriented, since MAi was designed for
numerical scientific HPC applications.

The most important group of functions on MAi is the memory policies group,
since it is responsible for assuring memory affinity. The interface implements
eight memory policies that have as their memory affinity unit an array. The
memory policies of MAi can be divided in three groups: bind, cyclic and random.
Bind memory policies optimize latency, by placing data and threads as close
as possible. Both, random and cyclic groups optimize bandwidth of ccNUMA
platforms, since they minimize interconnect and memory contention.

Bind group has two memory policies, bind block and bind all. In bind block
memory policy, data is divided into blocks depending on the number of threads
that will be used and on their placement within the machine. In bind all memory
policy, data is placed in one or a set of restrict nodes. Cyclic group is composed
by cyclic, skew mapp and prime mapp memory policies. In cyclic, data is placed
according to a linear round-robin distribution, using one memory page per round.
In the skew mapp memory policy, a page i is allocated on the node (i+ bi/Mc+
1) mod M , where M is the number of memory banks. The prime mapp policy
uses a two-phase strategy. In the first phase, the policy places data using cyclic
policy on (P) virtual memory banks, where P is a prime greater or equal to
M (real number of memory banks). In the second phase, the memory pages
previously placed on virtual memory banks are reordered and placed on real
memory banks also using the cyclic policy. In random policy, memory pages are
placed randomly on CC-NUMA nodes, using a random uniform distribution.

The data distribution over the machines nodes can be performed using the
entire array or an array tile (blocks distribution). A tile is a sub array which
size can be specified by the user or automatically chosen by MAi. Such memory
policies allows developers to express different memory access operations, such as
write-only, read-only or read/write.

MAi also allows the developer to change the memory policy applied to an
array during the application execution, allowing to express different patterns.
Finally, any incorrect memory placement can be optimized through the use of
MAi memory migration functions. The unit used for migration can be a set
memory pages (automatically defined by MAi) or a set of rows/columns of an
array (specified by the user).

3.2 MApp: Memory Affinity preprocessor

MApp (Memory Affinity preprocessor) is a preprocessor that provides a trans-
parent control of memory affinity for numerical scientific HPC applications over
ccNUMA platforms. MApp performs optimizations in the application source

code considering the application variables and platform characteristics at compile
time. Its main characteristics are its simplicity of use (automatic NUMA-aware
tuning, no manual modifications) and its platform/compiler independence.

NUMA-Aware
Source Code

Application
Source Code Parser Heuristic

Code
Transform.

App.
Info.

MApp

Fig. 2. Overview of MApp code transformation process.

The code transformation process is divided into four steps (Figure 2). Firstly,
it scans the application source code to obtain information about variables (App
Info.). During the scanning process, MApp searches for shared static arrays that
are considered large by Minas (eligible arrays). An eligible array is considered
large if its size is equal or greater than the size of the highest level cache of the
platform. Secondly, it fetches the platform characteristics, retrieving information
from the numarch module (NUMA factor, nodes, cpus/cores, interconnection
network and memory subsystem). During the third step, it chooses a suitable
memory policy for each array. Finally, the code transformation is performed by
including Minas-MAi specific functions for allocation and data placement.

Original Source Code
NUMA-Aware Source Code

#define X 516
#define Y 128
#define Xv 1000
#define LIMRX 32
#define LIMRY 16

int nrom[X], vel[Xv][Y];
double tem[X][Y];

int main() {
 int i, j;
 int xux[LIMRX][LIMRY], vxy[LIMRX][Xv];

#pragma omp parallel for private(j)
 for(i=1; i<LIMRX; i++)
 for(j=1; j<LIMRY; j++)
 vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
 for(i=X-1; i>=0; i--)
 for(j=Y-1; j>=0; j--)
 vel[i][j] = comp(tem[i][j]);
 ...
}

int nrom[516], **vel;
double **tem;

int main() {
 int i, j;
 int xux[32][16], **vxy;

 mai_init(((void *)0));
 vel = mai_alloc_2D(1000, 128, sizeof(int), 4);
 mai_cyclic(vel);
 tem = mai_alloc_2D(516, 128, sizeof(double), 8);
 mai_cyclic(tem);
 vxy = mai_alloc_2D(32, 1000, sizeof(int), 4);
 mai_cyclic(vxy);

#pragma omp parallel for private(j)
 for(i=1; i<32; i++)
 for(j=1; j<16; j++)
 vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
 for(i=516-1; i>=0; i--)
 for(j=128-1; j>=0; j--)
 vel[i][j] = comp(tem[i][j]);
 ...
}

'vel' ARRAY 'int' 2 1000 128 'global' 'example.c'
'tem' ARRAY 'double' 2 516 128 'global' 'example.c'
'vxy' ARRAY 'int' 2 32 1000 'main' 'example.c'

MApp

Fig. 3. Example of MApp source code transformation.

The most important step of MApp automatic tuning process is the strategy
used to decide which memory policy will be applied for each array. Based on
empirical data from our previous works and experiments [8–10], we have designed
an heuristic responsible for deciding which memory policy would be the most
effective considering the underlying ccNUMA characteristics. On platforms with
a high number of interconnections between nodes and small NUMA factor (ratio
between remote latency and local latency to access data), the heuristic will
apply cyclic memory policies. On the contrary, on platforms with low number
of interconnections and high NUMA factor, the heuristic will opt for bind block
memory policies. Figure 3 shows a simple example of a code transformation
generated by MApp. This example is a parallel code (C with openMP) that
performs some operations in four arrays. However, as we can observe, MApp
only applied memory policies for three of them (eligible arrays). Small variables
such as integers i,j and xux will probably fit in cache so MApp will not interfere
on compiler decisions (allocation and placement of variables). In this example,
we suppose that the target ccNUMA platform has a small NUMA factor (remote
latency is low) and a bandwidth problem for interconnection among nodes. Thus,
on such a platform, optimizing memory accesses considering bandwidth instead
of latency is important. Due to this, MApp has decided to spread memory pages
of vel, vxy and tem with cyclic memory policy in order to optimize bandwidth.

3.3 Numarch: NUMA Architecture Module

The numarch module has an important role for Minas, since it retrieves the ma-
chine information that are necessary to place data on memory banks. This mod-
ule extracts information about the interconnection network (number of links and
bandwidth), memory access costs (NUMA factor and latency) and architecture
characteristics (number of nodes, cpus/cores and cache subsystem). To retrieve
such information, numarch parses the /sys/devices/ file system of the operating
system. The retrieved information is stored in temporary files on the /tmp/ of
the operating system. Using such information Minas-MApp places data among
the machine nodes reducing latency costs (less remote accesses) and optimizing
bandwidth (interconnect contention and memory contention).

This module can also be used as a library, since it provides some high level
functions that can be called on the application source code to get some informa-
tion of the target NUMA machine. The library is composed by a set of functions
to retrieve information such as number of nodes, cache size, total of free memory
on each node, number of cores per processor, the node of a core/cpu and cores
and cpus on a node. Such information can be used by the developer to better
understand the machine topology and characteristics.

4 Performance Evaluation

In this section, we present the performance evaluation of Minas and compare
its results with other three memory affinity solutions for Linux based platforms.

We first describe the two ccNUMA platforms used in our experiments. Then, we
describe the two numerical scientific applications (ICTM [10] and Ondes 3D [9])
and their main characteristics. Finally, we present the results and their analysis.

4.1 Cache-Coherent NUMA Platforms

The first platform is an eight dual core AMD Opteron 2.2 GHz. It is organized in
eight nodes of two processors with 2 MB of shared cache memory for each node.
It has a total of 32 GB of main memory (4 GB of local memory). The NUMA
factor for this platform varies from 1.2 to 1.5. The compiler that has been used
was the GCC (version 4.3). A schematic representation of this machine is given
in Figure 4 (a). We have chosen to use the name Opteron for this platform.

Node 6

M6

Node 7

M7

Node 4

M4

Node 5

M5

Node 2

M2

Node 3

C6 C7M3

Node 0

M0

Node 1

M1

C12 C13 C14 C15

C8 C9 C10 C11

C4 C5

C0 C1 C2 C3

C_BRICK

C_BRICK

C_BRICK

R
_B

R
IC

K

R
_B

R
IC

K

Node 4

M4

Node 5

M5P8 P9 P10 P11

Node 2

M2

Node 3

P6 P7M3P4 P5

Node 0

M0

Node 1

M1P0 P1 P2 P3

(a) (b)

Fig. 4. NUMA Platforms: (a) Opteron (b) SGI.

The second ccNUMA platform is a SGI Altix 350 with twelve Itanium 2 pro-
cessors of 1.5 GHz and 4 MB of shared cache memory each. It is organized in six
nodes of two processors with a total of 24 GB of main memory (4 GB of local
memory). The NUMA factor for this platform varies from 1.2 to 1.3. The com-
piler that has been used was the ICC (version 9.0). A schematic representation
of this machine is given in Figure 4 (b). We have chosen to use the name SGI
to make reference to this platform. The operating system that has been used for
both platforms is Linux 64-bits version with support for NUMA architecture.

4.2 Numerical Scientific Parallel Applications

In this section, we present applications Interval Categorizer Tessellation Model
(ICTM) [10] and Simulation of Seismic Wave Propagation (Ondes 3D)[9]. Such
applications represent important memory-bound numerical scientific problems.
The applications have been implemented in C with OpenMP.

ICTM: Interval Categorizer Tessellation Model. ICTM is a multi-layered
tessellation model for the categorization of geographic regions considering sev-
eral different characteristics (relief, vegetation, climate, etc.). The number of
characteristics that should be studied determines the number of layers of the
model. In each layer, a different analysis of the region is performed. The in-
put data is extracted from satellite images, in which the information is given
in certain points referenced by their latitude and longitude coordinates. The
geographic region is represented by a initial 2-D matrix of the total area into
sufficiently small rectangular subareas. In order to categorize the regions of each
layer, ICTM executes sequential phases. Each phase accesses specific matrices
that have previously been computed and generates a new 2-D matrix as a result
of the computation. Depending on the phase, the access pattern to other matri-
ces can either be regular or irregular. Since the categorization of extremely large
regions has a high computational cost, a parallel solution for ccNUMA platforms
has been proposed in [10]. In this paper, we have carried out experiments us-
ing 6700x6700 matrices (2 Gbytes of data) and a radius of size 40 (number of
neighbors to be analysed by status matrix phase). As shown in Figure 5 (a),
the algorithm basically uses nested loops with short and long distance memory
accesses (Figure 5 (b)) during the computation phases.

ICTM Access patterns
short distance

long distance

Ondes3D

x

y

z

x

x

y

x

y

x

y

x

y

x

y

function init():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 mat_interval[i][j] ← read(i, j)

function compute_interval_matrices():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 mat_interval[i][j] ← compute(i±1, j±1)

function compute_status_matrices():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 while r is inside radius do
 mat_status[i][j] ← compute(i±r, j±r)

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← read(i, j, k)

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← compute_velocity()

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← compute_stress()

(a) (b) (c)

Fig. 5. Access patterns: ICTM and Ondes 3D.

Ondes 3D: Simulation of Seismic Wave Propagation. Ondes 3D is an
application that simulates seismic wave propagation in three dimensional geo-
logical media based on finite-difference discretization. It has been developed by
the French Geological Survey (BRGM - www.brgm.fr) and it is mainly used for
strong motion analysis and seismic risk assessment. The particularity of this
simulation is to consider a finite computing domain even though the physical
domain is unbounded. Therefore, the user must define special numerical bound-
ary conditions in order to absorb the outgoing energy. Ondes 3D has three main
steps: data allocation, data initialization and propagation calculus (composed by

two calculus loops). During the first two steps, the three dimensional arrays are
dynamically allocated and initialized (400x400x400, approximately 4.6 Gbytes
of memory). During the last step, the two calculus loops compute velocity and
stress of the seismic wave propagation. In all three steps, the three dimensional
arrays are accessed in a regular way (same data access pattern) [9]. Figure 5 (c)
presents a schema of the application with its three steps. On contrary to ICTM,
Ondes 3D has only short distance memory accesses, as presented in Figure 5 (b).

4.3 Experimental Results

In this section we present results that have been obtained for each application
and platform. We have carried out series of experiments using Minas and three
Linux solutions (first-touch policy, numactl and libnuma).

The results have been obtained through the average of several executions
varying the number of threads from 2 to the maximum number of cpus/cores
of each platform. Our results are organized by application (ICTM and Ondes
3D). For each application, we have divided the results into two groups according
to the memory affinity management (automatic: First-Touch and Minas-MApp;
explicit: Minas-MAi, numactl and libnuma).

Regarding the explicit memory affinity solutions, we have changed applica-
tions source codes (Minas-MAi and libnuma) or their executions parameters (nu-
mactl). In order to use Minas-MAi and libnuma, the developer must add specific
data management functions. The results with Minas-MAi have been obtained
by applying the most suited memory policy for each array of the application.

Depending on the application and platform, we have chosen one of the follow-
ing memory policies (cyclic, prime mapp and bind block). The first two memory
policies are ideal for irregular applications (ICTM) over ccNUMA platforms that
have a small NUMA factor, since they spread data among nodes. The latter mem-
ory policy is suitable for regular applications where threads always access the
same data set (Ondes 3D). Since libnuma has a limited set of memory policies, we
have used two strategies. The interleave policy (similar behavior of Minas-MAi
cyclic policy) has been applied for ICTM whereas the numa tonode memory()
function has been used for Ondes 3D. The last explicit solution, numactl, does
not require source code modifications. However, we had to change the execution
command line of all applications to specify which memory policy should have
been applied as well as the nodes and cpus lists.

Figure 6 shows the speedups for ICTM on Opteron and SGI platforms with
the automatic (Figure 6 (a) and (b)) and the explicit (Figure 6 (c) and (d))
memory affinity solutions. As it can be observed, Minas has outperformed all
other memory affinity solutions on both platforms.

Considering the automatic solutions applied to ICTM, Minas-MApp has pre-
sented satisfactory results on both platforms (Figure 6 (a) and (b)). Minas-MApp
heuristic has chosen cyclic memory policy to control data allocation and place-
ment on both platforms. The chosen policy has resulted in better performance
gains than first touch (on average, 10% Opteron and 8% on SGI). After a careful

A
ut
om
at
ic

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Opteron

First-Touch
Minas-MApp

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

ICTM - SGI

First-Touch
Minas-MApp

(a) (b)

(c) (d)

Ex
pl
ic
it

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Opteron

numactl
libnuma

Minas-MAi

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

ICTM - SGI

numactl
libnuma

Minas-MAi

Fig. 6. Performance of ICTM on Opteron and SGI platforms.

analysis of these results and application characteristics, we have concluded that
first touch policy has generated more remote accesses.

The explicit solutions have presented different behaviors depending on the
platform (Figure 6 (c) and (d)). On Opteron, the Minas-MAi cyclic memory pol-
icy has presented the best results. However, there is not a significant difference
between Minas-MAi and other explicit solutions (libnuma and numactl). It can
be explained by the fact that libnuma and numactl also offer a similar policy,
named interleave. It seems that the slight performance gains of Minas-MAi are
due to the array optimizations (specialized allocation functions and false shar-
ing reduction). On SGI, Minas-MAi has also presented a better performance
thanks to the array optimization included in allocation functions and memory
policies. In the case of Minas-MAi, different cyclic memory policies (cyclic and
prime mapp) have presented equivalent performance gains. The network inter-
connection characteristics (short distance between memory banks) and the small
NUMA factor of the platform can explain this insignificant difference. In this fig-
ure, we can also observe that Minas-MAi was the most scalable solution on both
platforms in comparison to libnuma and numactl.

In Figure 7, we show the speedups for Ondes 3D application on Opteron
and SGI platforms with the automatic (Figure 7 (a) and (b)) and the explicit

A
ut
om
at
ic

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

Ondes 3D - SGI

First-Touch
Minas-MApp

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

Ondes 3D - Opteron

First-Touch
Minas-MApp

(a) (b)

(c) (d)

Ex
pl
ic
it

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

Ondes 3D - Opteron

numactl
libnuma

Minas-MAi

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

Ondes 3D - SGI

numactl
libnuma

Minas-MAi

Fig. 7. Performance of Ondes 3D on Opteron and SGI platforms.

(Figure 7 (c) and (d)) memory affinity solutions. On both platforms, Ondes 3D
application with Minas has presented better performance gains than the other
solutions for memory affinity control.

The results obtained with automatic solutions in Ondes 3D have shown that
first touch and Minas-MApp had similar performance gains. The Minas-MApp
heuristic has chosen cyclic as the best policy according to the platform charac-
teristics. However, as discussed before, the best policy for this application on
such platforms is Minas-MAi bind block. Since, first touch and bind block have
similar behavior, their results are expected to be equivalent or superior to the
Minas-MApp choice.

Finally, the results with explicit solutions in Ondes 3D (Figure 7 (c) and (d))
have shown that libnuma and numactl have had a worse performance than Minas-
MAi. Since this application has a regular memory access, it is important to keep
both thread and their data as close as possible. In order to do so, data should be
divided among NUMA nodes and threads should be fixed on cores/cpus of such
nodes. This strategy can be achieved by either Minas-MAi or libnuma. However,
libnuma demands considerable codification efforts, since developers must imple-
ment all data distribution algorithm and thread scheduling. Additionally, the
same solution may not work on platforms with different architecture character-

istics. In contrast with libnuma, Minas-MAi provides a specific policy for this
purpose which is called bind block. This policy automatically fixes threads and
distributes data among the NUMA nodes (architecture abstraction). Thus, no
source changes are needed when the same solution is applied on different plat-
forms. Numactl is the less flexible of all explicit solutions and it does not provide
such data distribution strategy (in this case we have used the interleave policy).

Table 1. Impact of Minas automatic tuning (Minas-MApp) mechanism.

ICTM Ondes 3D

Opteron [0%; 0%] [0%; 3%]

SGI [0%; 0%] [10%; 13%]

In Table 1, we present the minimum and maximum performance losses of
Minas automatic tuning mechanism (Minas-MApp) in comparison with Minas
explicit tuning mechanism (Minas-MAi) for each application and platform. We
can notice that in some cases, Minas-MApp had an insignificant impact in terms
of performance in relation with Minas-MAi (ICTM on both platforms and Ondes
3D on Opteron). However, according to our experiments, the performance loss
may be important (up to 13%). Considering all the experiments and results, we
can conclude that Minas-MApp can be a viable solution when developers do not
choose to explicitly modify the application source code.

5 Conclusion and Future Work

In this paper we have focused our work on Minas, a memory affinity management
framework to deal with memory placement on ccNUMA platforms for numerical
scientific HPC applications. We have carried out some experiments over two
ccNUMAs to evaluate the efficiency of Minas when used to guarantee memory
affinity of two Geophysics applications. Such experiments have shown that Minas
has improved the overall performance of applications in comparison with other
solutions available on Linux. We have observed that the automatic mechanism
of Minas (Minas-MApp) have presented improvements when compared with the
Linux native first touch policy. Considering the explicit mechanisms, Minas-MAi
has shown better results than other explicit solutions (numactl and libnuma).

Our future work on Minas includes providing dynamic memory policies, pro-
viding a NUMA aware allocator for dynamic data structures [7] as tcmalloc [11],
support of memory policies created by developers on Minas-MApp as well as a
support for other runtime systems (e.g., Charm++ [12] and TBB [13]) .

Acknowledgment

This research was supported by the French ANR under grant NUMASIS ANR-
05-CIGC and CAPES (Brazil) under grant 4874-06-4.

References

1. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating system sup-
port for improving data locality on CC-NUMA compute servers,” in ASPLOS-
VII: Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996, pp. 279–289.

2. A. Joseph, J. Pete, and R. Alistair, “Exploring Thread and Memory Place-
ment on NUMA Architectures: Solaris and Linux, UltraSPARC/FirePlane and
Opteron/HyperTransport,” in 13th IEEE International Conference on High Per-
formance Computing, Lecture Notes in Computer Science, 2006, pp. 338–352.

3. A. Kleen, “A NUMA API for Linux,” Tech. Rep. Novell-4621437, 2005. [Online].
Available: http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00. htm

4. H. Löf and S. Holmgren, “Affinity-on-next-touch: Increasing the Perfor-
mance of an Industrial PDE Solver on a cc-NUMA System,” in ICS ’05:
Proceedings of the 19th Annual International Conference on Supercomput-
ing. New York, NY, USA: ACM, 2005, pp. 387–392. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1088149.1088201

5. C. Terboven, D. A. Mey, D. Schmidl, H. Jin, and T. Reichstein, “Data and Thread
Affinity in OpenMP Programs,” in MAW ’08: Proceedings of the 2008 workshop
on Memory access on future processors. New York, NY, USA: ACM, 2008, pp.
377–384. [Online]. Available: http://dx.doi.org/10.1145/1366219.1366222

6. B. Goglin and N. Furmento, “Enabling High-Performance Memory Migration for
Multithreaded Applications on Linux,” in MTAAP’09: Workshop on Multithreaded
Architectures and Applications, held in conjunction with IPDPS 2009, IEEE, Ed.,
Rome Italie, 2009. [Online]. Available: http://hal.inria.fr/inria-00358172/en/

7. C. P. Ribeiro and J.-F. Méhaut, “Minas Project - Mem-
ory affInity maNAgement System,” 2009. [Online]. Available:
http://pousa.christiane.googlepages.com/Minas

8. C. P. Ribeiro, M. Castro, L. G. Fernandes, A. Carissimi, and J.-F. Méhaut, “Mem-
ory Affinity for Hierarchical Shared Memory Multiprocessors,” in 21st Interna-
tional Symposium on Computer Architecture and High Performance Computing -
SBAC-PAD. São Paulo, Brazil: IEEE, 2009.

9. F. Dupros, C. Pousa, A. Carissimi, and J.-F. Méhaut, “Parallel Simulations of
Seismic Wave Propagation on NUMA Architectures,” in ParCo’09: International
Conference on Parallel Computing, Lyon, France, 2009.

10. M. Castro, L. G. Fernandes, C. P. Ribeiro, J.-F. Méhaut, and M. S. de Aguiar,
“NUMA-ICTM: A Parallel Version of ICTM Exploiting Memory Placement Strate-
gies for NUMA Machines,” PDSEC ’09: Parallel and Distributed Processing Sym-
posium, International, pp. 1–8, 2009.

11. Google, “Google-perftools: Fast, multi-threaded malloc() and nifty performance
analysis tools,” 2009. [Online]. Available: http://code.google.com/p/google-
perftools/

12. A. Gürsoy and L. V. Kale, “Performance and modularity benefits of message-driven
execution,” J. Parallel Distrib. Comput., vol. 64, no. 4, pp. 461–480, 2004.

13. Intel, “Intel Threading Building Blocks,” 2010. [Online]. Available:
http://www.threadingbuildingblocks.org/

