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Abstract. A hybrid linear solver based on the Schur complement method
has great potential to be a general purpose solver scalable on tens of
thousands of processors. It is imperative to exploit two levels of par-
allelism; namely, solving independent subdomains in parallel and using
multiple processors per subdomain. This hierarchical parallelism can lead
to a scalable implementation which maintains numerical stability at the
same time. In this framework, load imbalance and excessive communi-
cation, which can lead to performance bottlenecks, occur at two levels:
in an intra-processor group assigned to the same subdomain and among
inter-processor groups assigned to different subdomains. We developed
several techniques to address these issues, such as taking advantage of
the sparsity of right-hand-side columns during sparse triangular solu-
tions with interfaces, load balancing sparse matrix-matrix multiplication
to form update matrices, and designing an effective asynchronous point-
to-point communication of the update matrices. We present numerical
results to demonstrate that with the help of these techniques, our hybrid
solver can efficiently solve large-scale highly-indefinite linear systems on
thousands of processors.

1 The Schur complement method and parallelization

Modern numerical simulations give rise to large-scale sparse linear systems of
equations that are difficult to solve using standard techniques. Matrices that
can be directly factorized are limited in size due to large memory requirements.
Preconditioned iterative solvers require less memory, but often suffer from slow
convergence. To mitigate these problems, several parallel hybrid solvers have
been developed based on a non-overlapping domain decomposition idea called
the Schur complement method [5, 7].

In the Schur complement method, the original linear system is first reordered
into a 2 × 2 block system of the following form:

(
A11 A12

A21 A22

) (
x1

x2

)
=

(
b1

b2

)
, (1)

where A11 and A22 respectively represent interior subdomains and separators,
and A12 and A21 are the interfaces between A11 and A22. By eliminating the
unknowns associated with the interior subdomains A11, we obtain

(
A11 A12

0 S

) (
x1

x2

)
=

(
b1

b̂2

)
, (2)



where S is the Schur complement defined as

S = A22 − A21A
−1
11 A12, (3)

and b̂2 = b2 −A21A
−1
11 b1. Subsequently, the solution of the linear system (1) can

be computed by first solving the Schur complement system

Sx2 = b̂2, (4)

and then solving the interior system

A11x1 = b1 − A12x2. (5)

For a detailed discussion of the Schur complement method, see [13] and the
references therein.

The inverse of the interior subdomains A11 is needed to form the Schur
complement S of (3) and to compute the correspoinding parts of the solution
vector by the backward substitution (5). The existing parallel hybrid solvers use
a direct method to factorize these interior subdomains, while a preconditioned
iterative method is used to solve the Schur complement system (4), where most
of the fill occurs. These solvers often exhibit great parallel performance since
the interior subdomains can be factorized independently from one other, and
a direct method is effective for factorizing these relatively small subdomains.
Furthermore, for a symmetric positive definite system, the Schur complement
has a smaller condition number than the original matrix [13, Section 4.2], and
fewer iterations are often needed to solve the Schur complement system. General
purpose parallel preconditioners for the Schur complement system have been
developed, and their effectiveness has been shown for some applications [5, 7].
Unfortunately, for highly-indefinite systems, we found that these solvers still
suffer from slow convergence.

In this paper, we present some of the challenges encountered in the develop-
ment of a robust and efficient general purpose hybrid solver targeted for thou-
sands of processors and our approaches to resolving these issues. Our parallel
implementation consists of the following three phases:

1) Extracting and factorizing the interior subdomains. We use a parallel
nested disection algorithm implemented in PT-SCOTCH [8] to extract inte-
rior subdomains. For an unsymmetric matrix A, PT-SCOTCH is applied to the
graph of |A|+ |A|T . Then, these interior subdomains are factorized using a direct
method.

There are two approaches to assigning processors to factorize subdomains.
One approach is to assign a single processor to factorize one or more interior
subdomains, which we refer to as a one-level parallel approach. An advantage of
this approach is that multiple subdomains can be assigned to a processor such
that the workload is balanced among the processors. A serious drawback of this
approach, however, is that many subdomains must be generated in order to use
large numbers of processors. This increases the size of the Schur complement, and
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Fig. 1. (a): distribution of the coefficient matrix. Each group gℓ contains two processors
per subdomain, and the group gS contains three processors. (b): subdomain Dℓ stored
in a 2D block-cyclic format using a 2 × 3 process grid, and its corresponding right-
hand-side (RHS) vectors Eℓ with a block size of six. An “x” in Eℓ represents the first
nonzero in an individual column of the supernodal block, and a horizontal dotted line
represents the first nonzero in the entire block.

often leads to slow or even no convergence. An alternative is to assign multiple
processors to each interior subdomain, which allows us to increase the processor
count without increasing the number of subdomains or the size of the Schur
complement. This approach is refered to as a two-level parallel approach and is
the focus of our study in this paper.

Specifically, when k interior subdomains are extracted, the coefficient matrix
of Eq. (1) has the following block-structure:

(
A11 A12

A21 A22

)
=




D1 E1

D2 E2

. . .
...

Dk Ek

F1 F2 . . . Fk A22




, (6)

where Dℓ is the ℓ-th subdomain, and Eℓ and Fℓ are the interfaces between Dℓ and
A22. In our implementation, each processor is assigned to a processor groups gℓ

that factorizes the subdomain Dℓ. Then, the rows of Dℓ and Eℓ, and the columns
of Fℓ are distributed among the processors in the processor group gℓ. The nonze-
ros of Dℓ and Fℓ are stored in the Compressed Row Storage (CRS) format, while
those of Eℓ are stored in the Compressed Column Storage (CCS) format [3]. An-
other processor group gS is created, which consists of a subset of avaliable pro-
cessors and will be used to solve the Schur complement system. The rows of A22

are distributed among the processors in this processor group gS. The selection of
processors to be assigned to gS will be discussed in Section 2.3. Fig. 1(a) shows
an example of a matrix distribution using our two-level approach. Finally, the
parallel direct solver SuperLU DIST [10] is used to factorize each subdomain.



2) Computing an approximate Schur complement. This is the most challeng-
ing phase of the parallel algorithm, especially in a two-level parallel framework.
We need to deal with the load imbalance and communication not only within
an intra-processor group assigned to the same subdomain, but also among the
inter-processor groups assigned to different subdomains. We have developed a
number of techniques to enhance performance of our hybrid solver to compute
the approximate Schur complement S̃. These techniques are the focus of our
paper and will be discussed in Section 2.

3) Computing the solution. A preconditioned Krylov method of PETSc [11]
is used to solve the Schur complement system (4), where the preconditioner is

the exact LU factors of an approximate Schur complement S̃. SuperLU DIST is
used to compute the preconditioner. At each iteration, the matrix-vector mul-
tiplication with S is computed by applying a sequence of the sparse matrix
operations (3) on the vector, and hence, S is not stored explicitly. To improve
the load balance of the matrix-vector multiplication, the matrices Dℓ, Eℓ, and
Fℓ are distributed among the processors in the processor group gℓ such that
they each own a similar number of nonzeros. Recall that SuperLU DIST uses
a 2D block-cyclic format internally (see Fig. 1(b)). Hence, the performance of
SuperLU DIST to compute the LU factorization of Dℓ and to solve the corre-
sponding linear system is not affected by the initial distribution of the coefficient
matrix Dℓ and the RHS columns Eℓ and Fℓ. The final solution is computed by
solving the interior system (5) with the already-computed LU factors.

2 Efficient computation of an approximate Schur

complement

In this section, we describe the techniques to enhance the performance of our
hybrid solver to compute an approximate Schur complement S̃. To demonstrate
the effectiveness of these techniques, we use the numerical results of a highly-
indefinite matrix from the numerical simulation of an accelerator cavity design [1,
9]; namely, tdr455k of dimension 2, 738, 556 with 112, 756, 352 nonzeros. For the
numerical experiments, we extracted 16 subdomains Dℓ using PT-SCOTCH. All
the experiments were conducted on the Cray XT4 machine at NERSC.

Given an LU factorization Dℓ = LℓUℓ,
1 the Schur complement S of (3) is

computed as follows:

1 The matrix Dℓ is scaled and permuted to enhance numerical stability and preseve
the sparsity of Lℓ and Uℓ. For clarity, the scaling and permutation are not shown in
the expression.



S = A22 −

k∑

ℓ=1

FℓD
−1
ℓ Eℓ (7)

= A22 −
k∑

ℓ=1

(U−T
ℓ FT

ℓ )T (L−1
ℓ Eℓ) (8)

= A22 −

np∑

p=1

W (p)G(p), (9)

where np is the number of processors used to solve the entire system, and the
matrices G(p) and W (p) are given by

G(p) = G(jp : (jp+1 − 1), :), W (p) = W (:, jp : (jp+1 − 1)), (10)

such that the p-th processor owns the jp-th through (jp+1 − 1)-th rows of G =
L−1

11 A12 and the corresponding columns of W = (U−T
11 AT

21)
T , where the LU fac-

torization A11 = L11U11 is given by Lℓ and Uℓ. Once the matrices G(p) and W (p)

are computed, the p-th processor computes its update matrix T (p) = W (p)G(p).
To efficiently manage the required memory, the memory for storing each row
of W (p) is freed as soon as the corresponding row of T (p) is computed. After
T (p) is computed, the rows of T (p) are sent to the q-th processor which owns the
corresponding rows of A22, and the q-th processor computes the corresponding
rows of the Schur complement S.

Large amounts of fill may occur in G(p) and W (p). To reduce the memory and
computational costs, their approximations G̃(p) and W̃ (p) are computed by dis-
carding nonzeros with magnitudes less than a prescribed drop tolerance, and an
approximate update matrix T̃ (p) is computed by T̃ (p) = W̃ (p)G̃(p). Then, if the p-
th processor belongs to the processor group gS, to compute its local portion of an
approximate Schur complement, it gathers the corresponding rows of T̃ (q) from

all the processors and explicitly computes Ŝ(p) = A
(p)
22 −

∑
q T̃ (q)(ip : (ip+1−1), :),

where the p-th processor owns the ip-th through (ip+1 − 1)-th row of A22; i.e.,

A
(p)
22 = A22(ip : (ip+1−1), :). To further reduce the costs, small nonzeros are dis-

carded from Ŝ(p) to form its approximation S̃(p). Prior to discarding the small
nonzeros, we preprocess Ŝ(p) to enhance numerical stability by permuting large
nonzeros to the diagonal. This preprocessing is performed in a distributed fash-
ion; namely, the p-th processor uses an existing serial code MC64 [4] and com-
putes the permutation of its local matrix that corresponds to the p-th diagonal
block of S̃. The off-diagonal blocks are permuted accordingly. This distributed
preprocessing technique enhances the numerical stability without forming the
global approximate Schur complement Ŝ on each processor. See [14] for more
details on the preprocessing technique.

We now describe several techniques to enhance the performance of computing
the approximate Schur complement S̃(p).



2.1 Sparse triangular solution with sparse right-hand-side columns

In the current version of SuperLU DIST, the LU factors Lℓ and Uℓ are stored in
a 2D block-cyclic format based on the supernodal structure of Lℓ (see Fig. 1(b)).
The RHS columns are assumed to be dense, and are distributed by block rows
conforming to the supernodal partition. Since the communication and computa-
tion patterns of the triangular solutions do not change between the RHS columns,
a symbolic triangular solution subroutine is invoked once to compute static com-
munication and computation schedules. Then, the triangular systems are solved
by a series of scheduled block operations with the supernodal blocks.

Our first performance-enhancing technique is to exploit the sparsity of Eℓ

and FT
ℓ when solving the triangular systems to form G(p) and W (p), respec-

tively. For this, we modified the symbolic triangular solution subroutine of Su-
perLU DIST so that only non-empty messages are sent and only computations
with non-empty blocks are performed. Since the sparsity pattern of each column
of Eℓ or Fℓ is different, this subroutine is invoked for each triangular solution
with each column. This symbolic subroutine sets up the communication and
computation schedules with respect to the supernodal blocks, which are typi-
cally not dense. Because of the supernodal structure of LU factors, when the fill
occurs in the solution vector, it occurs all the way to the boundary of the supern-
odes. Hence, during numerical solution, we keep track of the first nonzero in each
supernodal block of the RHS column. Then, the block operations are performed
only for the elements below the first nonzero location so that the operations with
explicit zeros are eliminated. We have observed that exploiting the sparsity of
the RHS columns leads to an order-of-magnitude speedup in computing W (p)

and G(p).
There are typically tens to hundreds of thousands of columns in Eℓ. Hence, it

could be costly to perform the triangular solution one column at a time. Further
optimization can be achieved by grouping Eℓ into blocks of multiple columns
and solving one block at a time. There are several advantages with blocking:
1) the symbolic solution only needs to be computed per block, 2) fewer mes-
sages need to be sent to compute W (p), and 3) the data locality to access the
LU factors may be improved. During numerical solution with the multiple RHS
columns, we keep track of the first nonzero within each supernodal block of the
multiple columns (see Fig. 1(b)). The disadvantage is that we need to pad ex-
plicit zeros so that these columns have the same nonzero pattern. The padded
zeros occur between the first nonzero position of the multiple columns and that
of the individual columns. Hence, blocking introduces a trade-off between the
data locality and the number of unwanted padded zeros. Specifically, data lo-
cality may be improved by increasing the block size; however, this increases the
number of padded zeros. In the special case in which the block size is set to be 1,
there are no operations with explicit zero operands, but only a small amount of
locality is available. For our test matrix tdr455k, the advantages outweighted
the disadvantages, and the average and maximum speedups of 5.7 and 7.4, re-
spectively, were achieved by blocking with our defalut block size of 50 and using
one preocessor per domain.



To reduce the number of padded zeros introduced by blocking, we employ the
following technique: We first permute the rows of Eℓ according to a postorder
of the elimination tree of Dℓ. Then, the columns of Eℓ are permuted in the
descending order of the row indices of their first nonzeros. The columns of FT

ℓ

are similarly permuted. One reason why this ordering reduces the number of
padded zero is as follows: When a column has the first nonzero at the location
corresponding to the i-th node of the elimination tree, then according to the
Gilbert’s path theorem [6], this first nonzero will generate the fill in the solution
vector at the positions corresponding to the nodes on the path from the i-th node
to the root of the elimination tree. After the RHS columns are sorted based
on the postorder of their first nonzero row indices, the paths of the adjacent
columns are likely to have their starting nodes close together, and the large
parts of the paths overlap in the elimination tree. Hence, the solution vectors in
the same column block are likely to have fill at similar locations, reducing the
number of padded zeros. Furthermore, during the triangular solution, only the
columns of the L-factor corresponding to the nodes on the paths are accessed.
Hence, postordering the RHS columns also improves the data locality to access
the L-factor. For our test matrix tdr455k, average and maximum speedups
of about 1.3 and 1.6 were achieved using this postordering technique and one
processor per domain. Similar topological orderings have been used for a sparse
triangular solution with multiple sparse RHS columns [12] and for computing
elements of the inverse of a sparse matrix [2]. We have also introduced another
ordering technique using a hypergraph model to maximize the similarity of the
sparsity patterns among the solution vectors in a column block [15].

2.2 Intra-processor load balance

We have developed a technique to improve the intra-processor load balance to
compute the sparse matrix-matrix multiplication T̃ (p) = W̃ (p)G̃(p). This is done
by distributing the rows of W̃ (p) and G̃(p) so that each processor in the same
processor group gℓ owns a similar number of nonzeros. Specifically, Fig. 2 shows
the pseudocode to compute G̃(p), where the p-th processor belongs to the pro-
cessor group gℓ, Êℓ contains the non-empty columns of Eℓ, Ê(p) is the rows of Êℓ

stored by the p-th processor, nc is the number of columns of Êℓ, β is the column
block size, and nb is the number of blocks (i.e., nb = ⌊nc

β
⌋). At Step 1.b of the

pseudocode, the consecutive rows of Ê(p) are distributed among all the proces-
sors (see Fig. 1(a)), but the solution vector X(p) is distributed into block rows
conforming to the supernodal partition and only among the diagonal proces-
sors (see Fig. 1(b)). After each triangular solution with a block of RHS columns,

the diagonal processor compresses each column of X(p) into X̃(p), excluding the
explicitly padded zeros and discarding small nonzeros (Step 1.c). Then, X̃(p) is
incrementaly stored in Y (p) using the CCS format (Step 1.d). Once all the solu-
tion blocks are computed, Y (p) is redistributed among all the processors in gℓ so
that each processor owns consecutive rows of the solution vectors and roughly
the same number of nonzeros (Step 2). Note that the remaining columns of
the solution vectors are computed separately (Step 3). This is because the data



1. Compute the solution vectors for the 1-st through (nbβ)-th columns

Y (p) := [ ]
for k := 1, . . . , nb do

a. Extract the next right-hand-side block,

B(p) := bE(p)(:, ((k − 1)β + 1) : (kβ))
b. Compute the sparse triangular solution,

X(p)
← L−1

ℓ B

c. Sparsify the solution vectors,
eX(p)

← X(p)

d. Store the solution vectors,

Y (p)
← [Y (p) eX(p)]

end for

2. Distribute Y (p) from the diagonal processors to all the processors
eG(p)
← Y (p)

3. Compute the remaining solution vectors

a. B(p) := bE(p)(:, (nbβ + 1) : nc)

b. X(p)
← L−1

ℓ B

c. eG(p)
← [ eG(p) eX(p)]

Fig. 2. Pseudocode to compute G(p).

structure for the triangular solution inside SuperLU DIST must be reinitialized
when the block size changes, and the redistribution of Y (p) into G̃(p) needs to
be peformed before the block size changes. These remaining colums of G̃(p) and
the solution vectors W̃ (p) of the upper triangular system are distributed into
the format that has been set up to load balance the first (nbβ) columns of G̃(p).
In our numerical experiments using four processors for each of the 16 interior
subdomains of tdr455k, without this load balancing technique, some processors
had only a negligible amount of work to compute the matrix-matrix multipli-
cation, and the load imbalance as measured by the computation time was an
up to five order of magnitude difference. With the technique described here, the
load imbalance became less than a factor of two. As a result, this technique
reduced the time to compute the Schur complement by a factor of 2.6 and the
total solution time by a factor of 1.7.

2.3 Inter-processor load balance

For the computation of the approximate Schur complement, all the processors
first compute their local update matrices T̃ (p) = W̃ (p)G̃(p). Then, the corre-
sponding rows of T̃ (p) are sent to the processors in the processor group gS , which
solve the Schur complement system. In comparison to the original system, the
Schur complement system is typically much smaller in dimension. Hence, only
a subset of processors is used to solve the Schur complement system. In this
section, we study two techniques to improve the inter-processor load balance: a
strategy to accommodate this all-to-subset communication of T̃ (p) and one to
select processors to solve the Schur complement system.



To accomodate the all-to-subset communication of T̃ (p), an MPI all-to-all
communication subroutine can be used. Even though this simpifies the imple-
mentation, there are two shortcomings with this approach. First, there are often
large variations in the sizes of the subdomains Dℓ and in the sparsity of the
interfaces Eℓ and Fℓ. Even though the intra-processor load balance is improved
by the technique described in Section 2.2, this leads to poor load balance among
the inter-processor groups to compute T̃ (p). Since the global all-to-all commu-
nication imposes synchronization among all the processors, this load imbalance
forces some processors to be idle while waiting for the other processors to com-
plete the computation of T̃ (q). Second, the all-to-all communication requires a
large buffer to recieve the corresponding rows of T̃ (q) from all the processors.

To mitigate these problems, we designed an asynchronous point-to-point com-
munication protocol to transfer T̃ (p). Fig. 3 shows the pseudocode of this com-
munication protocol, where p is the ID of this processor, ms is the number of
processors to which T̃ (p) needs to be sent, mr is the number of processors from
which nonempty T (q)(p) = T̃ (q)(ip : (ip+1 − 1), :) will be received, ISend(∗, q, t)
and IRecv(∗, q, t) indicate nonblocking send operation to and receive operation
from the q-th processor with a tag t, Wait(∗, t) blocks until the nonblocking re-
ceive operation with a tag t is processed, and Recv(∗, q, t) is a blocking receive
operation from the processor q, where ANY SOURCE can be used in the place
of q to indicate a receive operation from any source, and SENDER SOURCE
indicates the ID of the sender processor. Furthermore, Allocate(U(k), size(k))
allocates the buffer U(k) to receive T (q)(p) in the CSR format, where size(k) is
the maximum number of nonzeros, and Free(U(k)) frees the buffer U(k). In our
implementation, all the matrix operations are performed by taking advantage
of their sparsity. For efficient memory management, rows of T̃ (p) are freed, once
they are received, and we alternatly reuse two receiving buffers, U(0) and U(1),
whose sizes are stored in size(0) and size(1), respectively.

Our point-to-point communication is desinged to overlap the computation
of T̃ (q) with the communication and summation of T (q)(p). Hence, there is a

greater chance of overlap when the processors with less work to compute T̃ (q)

are assigned to the Schur complement. To achieve this, we assign processors
from relatively small interior subdomains to the Schur complement. This not
only increases the potential for the overlap, but also improves the overall load
balance of memory requirement. Furthermore, on Line 1 of the pseudocode, we
set qπmr

= p so that communication of T (q)(p) from other processors can be

overlapped with the computation and summation of the local T (p)(p). For our
test matrix tdr455k, the size of the Schur complement was only about 0.5% of
the total dimension, and the summation of the update matrices required only a
neglibile amout of time (i.e., less than one second out of 120 seconds spent to

compute S̃(p) on 16 processors). As a result, this point-to-point communication
did not reduce the computation time significantly. However, for other problems
with large interfaces, the solution time may be reduced more significantly using
this point-to-point communication.



/* All the processors perform Lines 1 through 10. */
1. for q = qπ1 , qπ2 , . . . , qπms

do

2. T (q) := W (p)(iq : (iq+1 − 1), :) ∗ G(p) /* compute the rows of T to be sent to the q-th processor */
3. if(q == p) then /* sending to itself */
4. size(0) = nnz(T (q))
5. U(0) := T (q)
6. else

7. ISend(nnz(T (q), q, t0)
8. if( nnz(T (q)) > 0 ) then Isend(T (q), q, t1)
9. end if

10. end if

/* The processor subset responsible for solving the Schur complement perform Lines 11 through 75. */
11. if( p ∈ gS ) then

12. p0 := p
13. nm := 1 /* number of received messages */
14. while( size(0) == 0 and nm < mr ) do /* find the size of the first nonempty message */
15. Recv(size(0), ANY SOURCE, t0)
16. nm := nm + 1
17. p0 := SENDER SOURCE
18. end do

19. if( size(0) > 0 ) then

20. nk := 1 /* number of received nonempty messages */
21. if( p0 6= p ) then

22. Allocate( U(0), size(0) )
23. IRecv(U(0), p0, t1)
24. end if

25. end if

26. if( nm < mr ) then

27. IRecv(size(1), ANY SOURCE, t0) /* request the size of the next message */
28. end if

29. S := A
(p)
22 /* initialize the Schur complement */

30. if( nm < mr ) then /* find the size of the second nonempty message */
31. Wait(size(1), t0)
32. nm := nm + 1
33. while( size(1) == 0 and nm < mr ) do

34. Recv(size(1), ANY SOURCE, t0)
35. nm := nm + 1
36. end do

37. end if

38. p1 := SENDER SOURCE
39. if( size(1) > 0 ) then

40. Allocate(U(1), size(1)) /* allocate the buffer for the second message */
41. IRecv(U(1), p1, t1)
42. if( nm < mr ) then /* request the size of the next message */
43. IRecv(size(0), ANY SOURCE, t0)
44. end if

45. end if

46. if( p0 6= p ) then

47. Wait(U(0), t1)
48. end if

49. S := S − U(0) /* sparse update of the local Shur complement */
50. while( nm ≤ mr ) do /* while there is more nonempty messages */
51. if( nm < mr ) then

52. Wait(nnz, t0)
53. nm := nm + 1
54. while( nnz == 0 and nm < mr ) do

55. Recv(nnz, ANY SOURCE, t0)
56. nm := nm + 1
57. end do

58. p1 := SENDER SOURCE
59. if( nnz > 0 ) then

60. if( nnz > size(mod(nk − 1, 2))) then

61. Free(U(mod(nk − 1, 2)))
62. Allocate( U(mod(nk − 1, 2)), nnz )
63. size(mod(nk − 1, 2)) = nnz
64. end if

65. IRecv(U(mod(nk − 1, 2)), p1, t1)
66. end if

67. if( nm < mr ) then

68. IRecv(nnz, ANY SOURCE, t0)
69. end if

70. end if

71. Wait(U(mod(nk, 2)), t1)
72. S := S − U(mod(nk, 2))
73. nk := nk + 1
74. end do

75. end if

Fig. 3. Pseudocode of the point-to-point communication to form S.
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Fig. 4. Solution times required by SuperLU DIST and our hybrid solver on tdr455k.

More importantly, though, in comparison to the all-to-all communication,
this point-to-point communiation can significantly reduce memory requirements.
This is because the point-to-point communication alternately uses only two re-
ceiving buffers, instead of a large buffer to hold all the receiving updates in the
all-to-all communication. When four processors were used on each of the 16 in-
terior subdomains of tdr455k, the point-to-point communication reduced the
total number of nonzero elements in the receiving buffers by a factor of about 3.1
on average, and up to 6.3. Notice that the size of the all-to-all communication
buffer may increase with the number of processors. As a result when 64 proces-
sors were used on each of the 16 interior subdomains of tdr455k, the buffer size
was reduced by a factor of 55.9 on average, and up to 97.0 using the point-to-
point communication.

3 Parallel performance

We now present parallel performance of our hybrid solver. For these numerical
experiments, the Schur complement systems were solved using a preconditioned
Krylov method of PETSc. The initial aproximation to the solution is the zero
vector, and the computed solution was considered to have converged when the
ℓ2-norm of the initial residual was reduced by at least twelve orders of magnitude.
This is the solution accuracy required in the actual simulations.

Fig. 4(a) compares the total solution times required by SuperLU DIST and
our hybrid solver to solve the tdr455k linear system. The hybrid solver used a
drop tolerance σ1 to enforce the sparsity of Ẽ and F̃ , σ2 to enforce the sparsity
of S̃, and unrestarted GMRES for solving the Schur complement system. With
the one-level parallel approach of our hybrid solver, the number of interior sub-
domains was set to be equal to the total number of processors. With the two-level
approach, the number of interior subdomains was fixed to be 16, and the proces-
sors were evenly distributed among the interior subdomains. The figure shows
that the solution time with our hybrid solver scaled better than that with Su-



perLU DIST. The numerical results have also shown that the required memory
scales better with our hybrid solver. For example, with 16 subdomains and the
small drop tolerances (σ1, σ2) = (10−6, 10−5), the total number of nonzeros in
the preconditioner was reduced only by 10% using our hybrid solver. However, on
256 processors, the maximum memory required by a processor was about 2.3GB
using our two-level approach, while SuperLU DIST still required about 3.2GB.

Fig. 4(a) also shows that with the small drop tolerances, the scaling of the
one-level and two-level approaches were similar. This is because the number of
GMRES iterations was nearly independent of the number of interior subdomains,
and GMRES converged within 20 iterations even when more interior subdomains
were needed for the one-level approach to use more processors. For comparison,
we have tested a state-of-the-art hybrid solver HIPS [5], which implements the
one-level parallelization. HIPS computes the preconditioner for solving the Schur
complement system based on an ILU factorization of S̃, where the sparsity of
the preconditioner is enforced based on both the numerical values and locations
of nonzeros. Specifically, fill is allowed only between separators adjacent to the
same subdomain. As a result, the computation of the preconditioner scales to a
large number of processors. Unfortunately, this preconditioner was not effective
for tdr455k; specifically, it required 151 iterations on 16 processors, and it
failed to converge within 1, 000 iterations on 32 processors even though the drop
tolerances were set to be zero. Moreover, even when HIPS converged, our solver
solved the linear system faster.

Larger drop tolerances reduce the memory required by our hybrid solver.
For example, in Fig. 4(b), less memory was needed since the drop tolerances
were increased by an order of magnitude from those in Fig. 4(a). Specifically,
in Fig. 4(a), about 15% of the nonozeros were discarded from the matrices E

and F , and about 50% of the nonzeros were discarded from the Schur comple-
ment Ŝ. The respective percentages of the discarded nonzeros for Fig. 4(b) were
about 30% and 75%. Unfortunately, with large drop tolerances, the number of
GMRES iterations may increase as more interior subdomains are generated. For
example, in Fig. 4(b), the number of iterations increased from 32 to 290 when
the number of interior subdomains increased from 16 to 256. As a result, with
the one-level approach, the solution time did not scale. On the other hand, the
two-level approach demonstrated more robust performance since the processor
count can be increased while fixing the size of the Schur complement. These
results illustrate the advantage of the two-level approach. For our target of solv-
ing larger problems, a more strict sparsity constraint may be needed. Therefore,
Fig. 4(b) represents the more practical behavior of our hybrid solver.

Finally, in Table 1, we show the timing results of our hybrid solver to solve
another linear system tdr8cavity of dimension 17, 799, 228 with 727, 163, 784
nonzeros. For these experiments, we fixed the number of subdomains to be 64,
which resulted in the average subdomain dimension of 277, 220 and the Schur
complement dimension of 57, 150. In the table, np, ngℓ

, and ngS
are the num-

bers of processors used to solve the entire system, to factorize a subdomain,
and to solve the Schur complement system, respectively; itrs is the number of



Time

np ngℓ
ngS

itrs LU(Dℓ) Comp( eS) LU( eS) Solve Total Speedup

64 1× 1 8× 8 9 334.0 305.5 4.4 37.7 681.7
128 1× 2 8× 8 9 176.0 165.0 4.3 31.8 377.4 1.81
256 2× 2 8× 8 9 91.3 80.1 4.8 24.2 200.6 1.89
512 2× 4 8× 8 8 52.5 47.9 4.6 19.3 125.5 1.59

1024 4× 4 8× 8 8 32.7 28.1 4.7 20.7 86.4 1.47
2048 4× 8 8× 8 10 22.9 20.9 4.9 22.6 71.6 1.19
4096 8× 8 8× 8 8 20.3 13.1 4.5 25.2 63.5 1.13
Table 1. Solution times required by our hybrid solver on tdr8cavity.

BiCGSTAB iterations required for the solution convergence; LU(Dℓ), Comp(S̃),

LU(S̃), Solve, and Total are the times in seconds for factorizing the ℓ-th sub-

domain, computing S̃, factorizing S̃, computing the solution vector, and solving
the entire system, respectively; and Speedup is the speedup gained by increasing
the processor count by a factor of two. The table shows that the first two phases
of the hybrid solver LU(Dℓ) and Comp(S̃) scaled to thousands of processors.

Since ngS
is fixed to be 64, LU(S̃) stayed the same. Even though the last phase

Solve did not scale, the total solution time scaled to thousands of processors.
We were not able to use SuperLU DIST to solve this linear system due to the
excessive communication required for the triangular solution.

4 Conclusion

We presented several techniques to improve the robustness and scalability of our
parallel hybrid solver based on the Schur complement method. Numerical re-
sults have shown that our solver is numerically more robust than another hybrid
solver, HIPS, while its solution time scales better than that of the direct solver
SuperLU DIST. We are studying other techniques to further improve the perfor-
mance of our hybrid solver such as improving initial partition, assigning different
numbers of processors to subdomains, distributing the Schur complement based
on the separator boundaries, and other parallel preconditioning techniques for
the Schur complement system.
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