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Abstract. Automatic result verification is an important tool to reduce
the impact of floating-point errors in numerical computation and to guar-
antee the mathematical rigor of results. One fundamental problem in
Verified Computing is to find an enclosure that surely contains the exact
result of a linear system. Many works have been developed for optimizing
Verified Computing algorithms using parallel programming techniques
and message passing paradigm on clusters of computers. However, the
High Performance Computing scenario changed considerably since the
emergence of multicore architectures in the past few years. This paper
presents an ongoing research project which has the purpose of develop-
ing a self-verified solver for dense interval linear systems optimized for
parallel execution on these new architectures. The current version has
obtained up to 85% of reduction at execution time and a speedup of 6.70
when solving a 15,000 x 15,000 interval linear system on an eight core
computer.

1 Introduction and Motivation

In numerical algorithms, the correct implementation of a method does not guar-
antee that the computed result will be correct. Floating point arithmetic uses
finite fractions to represent the real numbers, which are originally defined in
Mathematics as infinite fractions. The difference between the true value and the
approximation is the roundoff error. Floating point operations on computers
are considered of maximum accuracy if the rounded result differs at most by
one unit in the last place from the exact result. Automatic result verification is
an important technique to reduce the impact of arithmetic errors in Numerical
Computation [1, 2]. Verified Computing guarantees the mathematical rigor of
the results of a computation by providing an interval result that surely contains
the correct result. This interval result is called an enclosure [3].

Interval Arithmetic provides the mathematical basis for the Verified Com-
puting. This arithmetic is based on sets of intervals, rather than sets of real



numbers. Typically, the interval evaluation of an arithmetic expression such as
a polynomial costs about twice as much as the evaluation of the expression
in simple floating point arithmetic. However, using interval function evaluation
with directed roundings, the algorithm may provide a guarantee of the com-
puted result which could not be achieved even by thousands of floating point
evaluations [1–3].

Usually the input of a numerical method are point numbers. Engineering
and scientific problems, however, are frequently modeled by numerical simula-
tions on computers which are based on real measures that sometimes may be
unprecise. To deal with uncertain data, the computer would need to be able to
support interval input data as input data instead of point numbers and to do
computations using Interval Arithmetic [3]. Dealing with uncertain data in the
context of linear systems means that an interval linear systems must be solved.
The solution of such a system is not trivial, since an infinite number of matrices
contained in the interval should be solved. However, the computation of this
solution set is a NP-complete problem [17]. Thus, the only possible way to find
a solution is to compute a narrow interval that contains the solution set, that
is, interval vectors that bound

∑
(A, b), and whose overestimation decreases as

the widths of the entries in A and b decrease [3, 4].
There are many libraries that compute approximate solutions to point lin-

ear systems. Widely used for that purpose are the optimized software libraries
LAPACK (Linear Algebra PACKage) [5] and SCALAPACK (SCAlable Linear
Algebra PACKage) [6]. These libraries present a great performance and can
manage to find an approximation of the correct solution, which is needed to
compute the error bounds, faster than verified libraries [3, 18, 19]. However, even
when using highly optimized libraries to solve part of the verified method, the
task of solving an interval linear systems with verified results still presents a very
high computational cost when dealing with large dense interval systems. Thus,
the use of High Performance Computing (HPC) techniques appears as a useful
tool to drop down the time needed to solve interval linear systems with Verified
Computing [3, 4].

2 Parallel and Verified Computing

Many works have been developed for implement self-validated (SV) linear sys-
tems solvers using parallel computing on clusters of computers. These works try
to combine message passing paradigm programming with linear algebra libraries
like ScaLAPACK. Some of these works like [7, 8] operate with point input data
while others like [3] propose solvers to treat uncertain input data represented by
intervals matrices and vectors. A first study in the direction of multicore proces-
sors was also presented in [18]. However, this work presents an initial approach
specifically for dualcores processors.

Today’s computers are almost all built with multicore processors which can-
not be considered as independently processors. Multicores processors share on-
chip resources, which separate processors do not, and therefore cannot be con-



sidered as the new SMP [9]). On the Top500 List [10] released in November
2009, 426 systems are using quadcores processors, 59 systems use dualcores and
only four systems still use singlecore processors. Six systems use IBMs advanced
Sony PlayStation 3 processor with 9 cores and three systems are using the new
6 cores Shanghai AMD Opteron processor.

Historically, the standard parallelization approach of numerical linear algebra
utilized by the LAPACK and ScaLAPACK libraries relied on parallel implemen-
tations of BLAS (Basic Linear Algebra Subprograms) [16]. But, although this
approach solves numerous complexity problems, it also enforces a very rigid and
inflexible software structure, where, at the level of linear Algebra, the algorithms
are expressed in a serial way [9].

Recent research efforts are addressing this critical and highly disruptive sit-
uation. In [9], the authors present the Parallel Linear Algebra for Scalable Mul-
ticores Architectures (PLASMA) which should succeed LAPACK and ScaLA-
PACK. PLASMA relies on tile algorithms, which provide fine granularity par-
allelism. The standard linear algebra algorithms are represented as Directed
Acyclic Graphs (DAG) where nodes represent tasks and edges represent depen-
dencies among them. This programming model enforces asynchronous and out
of order scheduling of operations [9, 11]. In [12], it is presented the SuperMatrix,
a runtime system that parallelizes matrix operations for SMP and multicores ar-
chitectures. The supermatrix idea is based on a number of insights gained from
the FLAME project [13]. Basically, it views matrices hierarchically as blocks that
serve as units of data where operations over those blocks are treated as units of
computation. Thus, implementation transparently enqueues the required oper-
ations (internally tracking dependencies) and then executes the operations us-
ing out-of-order execution techniques inspired by superscalar microarchitectures.
However, these optimized software libraries do not implement verified comput-
ing methods. Additionally, support for uncertain input data and interval linear
systems solvers are not provided.

On the other hand, verified computing tools (such as C-XSC [17]) can provide
verified results but the execution times for solving the problem are much higher
since their are not developed for multicore architectures. Additionally, the use
of verified methods in C-XSC usually introduces a loss of performance in the
application, since it uses special data structures and operations to implement
dot scalar products [8]. This effect is even worse when dealing with large interval
systems [3]. In this context, this paper proposes a self-verified solver for dense
interval linear systems optimized for parallel execution on multicore processors.

3 Mathematical Background

Previous researches show the Midpoint-Radius approach of Interval Arithmetic
as a good choice for implementations using floating point arithmetic [3, 18, 19].
The main point in using Midpoint-Radius arithmetic is that this representa-
tion allows to employ optimized algorithms and software libraries to implement
operations. The use of such libraries have the striking advantages that they



are available for almost every computer hardware and that they are individ-
ually adapted and tuned for specific hardware and compiler configurations. A
Midpoint-Radius interval is defined as follows [14]:

〈a, α〉 := {x ∈ ℜ/ |x − a| ≤ α} for a ∈ ℜ, 0 ≤ α ∈ ℜ (1)

Interval operations always satisfy the fundamental property of isotonicity.
That is, if X is contained in another interval X ′, and Y is contained in Y ′,
then the combination of X and Y is contained in the interval computed by
combining the bigger intervals X ′ and Y ′ [2]. Sometimes the standard definition
of Midpoint-Radius arithmetic causes overestimation. However, it was proved by
Rump [14] that the overestimation of Midpoint-Radius Arithmetic is uniformly
bounded by 1.5 for the basic arithmetic operations as well as for vector and
matrix operations over ℜ. In the case of an interval presenting a not too large
radius, the factor is quantified to be near 1.

For interval vectors and interval matrices the relations =,
◦

⊂, and ⊆ are

defined component wise. The inner inclusion relation is defined by [x]
◦

⊂ [y] ⇔

[x]i
◦

⊂ [y]i, i = 1, . . . , n for [x] , [y] ∈ Iℜn. On the other hand, the proper subset
relation is defined by [x] ⊂ [y] ⇔ ([x] ⊆ [y] and [x] 6= [y]). The midpoint and the
diameter of an interval vector or matrix are also defined component wise. For

example, m ([x]) = (m ([x]i)), and d ([A]) =
(

d
(

[a]ij

))

, for [x] ∈ Iℜn, [A] ∈

Iℜnxn.
Many algorithms for numerical verification are based on the application of

well known fixed point theorems to interval sets. As an example, the Brouwer’s
Fixed Point Theorem is used to guarantee the convergence. Let X = [x] ∈ Iℜn

be a machine interval vector. As a box in n-dimensional space, [x] satisfies the
conditions of Brouwer’s Fixed Point Theorem. Supposing its possible to find a
box with f ([x]) ⊆ [x], then [x] is proved to be an enclosure of at least one
fixed point x∗ of f . The assertion remains valid replacing f by its floating point
interval evaluation f⋄ because f⋄ ([x]) ⊆ [x] implies f ([x]) ⊆ [x] since f⋄ ([x]) is
a superset of f ([x]) [2, 4].

In order to achieve validated enclosures, the algorithm must enclose all sources
of error that can be generated during the computation. The basic approach of
many SV-methods is computation of an approximate solution, local lineariza-
tion and estimation of linearization and numerical errors by means of suitable
theorems the assumptions of which are verified on the computer [21]. A simple
mechanism for implementing these idea follows the principle of iterative refine-

ment. However, it is important to mention that an interval algorithm differs
significantly from the corresponding point algorithm.

The method we chose is based on the Residual Iteration Scheme of the
Newton-like Method. The main reason for this choice is that besides being a
well-established SV-method, it also allows use of optimized libraries because
can be implemented with Midpoint-Radius arithmetic. The description of the
method, fully given by [2], is summarized on the following. Let Ax = b be a real
system of equations, finding a solution of the system Ax = b is equivalent to



finding a zero of f (x) = Ax − b. Hence, Newton’s method gives the following
fixed point iteration scheme, where x(0) is some arbitrary starting value [2]:

x(k+1) = x(k) − A−1
(

Ax(k) − b
)

, k = 0, 1, . . . (2)

In general, the inverse of A is not exactly known. Thus, instead of A−1, an
approximate inverse R ≈ A−1 of A is used. Replacing the real iterates x(k) by

interval vectors [x]
(k)

∈ Iℜn, if there exists an index k with [x]
(k+1)

⊂ [x]
(k)

,
then, by Brouwer’s Fixed point Theorem, the equation has at least one fixed

point x ∈ [x]
(k)

. Supposing R is regular, then this fixed point is also a solution of

Ax = b. However, considering the diameter of [x]
(k+1)

the following is obtained:

d
(

[x]
(k+1)

)

= d
(

[x]
(k)

)

+d
(

R
(

A [x]
(k+1)

− b
))

≥ d
(

[x]
(k)

)

. Thus, in general,

the subset relation will not be satisfied. For this reason, the right-hand side is
modified to the following equation, where I denotes the n x n identity matrix:

x(k+1) = Rb + (I − RA)x(k), k = 0, 1, . . . , (3)

It was proved that if there exists and index k with [x]
(k+1) ◦

⊂ [x]
(k)

, then the
matrices R and A are regular, and there is a unique solution x of the system

Ax = b with x ∈ [x]
(k+1)

. This result remains valid for any matrix R. However,
it is an empirical fact that the better R approximates the inverse of A, the
faster the inclusion relation will be satisfied. Additionally, it is a well-known
numerical principle that an approximate solution x̃ of Ax = b may be improved
by solving the system Ay = d, where d = b − Ax̃ is the residual of Ax̃. Since
y = A−1 (b − Ax̃) = x − x̃, the exact solution of Ax = b is given by x = x̃ + y.
Therefore, the Residual Iteration Scheme is presented on Equation 4.

y(k+1) = R (b − Ax̃)
︸ ︷︷ ︸

=:z

+(I − RAx̃)
︸ ︷︷ ︸

=:C

y(k), k = 0, 1, . . . (4)

The residual equation Ay = d has a unique solution y ∈ [y]
(k+1) ◦

⊂ [y]
(k)

for

the corresponding interval iteration scheme. Moreover, since y = x−x̃ ∈ [y]
(k+1)

,

a verified solution of the unique solution of Ax = b is given by x̃+[y]
(k+1)

. These
results remain valid if replace the exact expressions for z and C in (4) by interval
extensions. However, to avoid overestimation effects, it is highly recommended
to evaluate b − Ax̃ and I − RA without any intermediate rounding [2].

4 Proposed Approach

The Residual Iteration Scheme adaptation to solve interval linear systems using
Verified Computing led to Algorithm 1, proposed on [17]. Its result is a high ac-
curacy interval vector that surely contains the correct result. Verification process
is composed by steps 5 to 15. These steps use the Midpoint-Radius arithmetic
with direct roundings [2, 3].



Algorithm 1 Enclosure of a square interval linear system

1: R ≈ mid ([A])−1 {Compute an approximate inverse using LU-Decomposition algo-
rithm}

2: x̃ ≈ R.mid ([b]) {Compute the approximation of the solution}
3: [z] ⊇ R ([b] − [A] x̃) {Compute enclosure for the residuum}
4: [C] ⊇ (I − R [A]) {Compute enclosure for the iteration matrix}
5: [w] := [z] , k := 0 {Initialize machine interval vector}
6: while not ([w] ⊆ int [y]ork > 10) do

7: [y] := [w]
8: [w] := [z] + [C] [y]
9: k + +

10: end while

11: if [w] ⊆ int [y] then

12:
∑

([A] , [b]) ⊆ x̃ + [w] {The solution set (
∑

) is contained in the solution found
by the method}

13: else

14: No Verification
15: end if

4.1 Initial Implementation

An initial version of Algorithm 1 using Midpoint-Radius arithmetic was imple-
mented and used to obtain the computational costs of each step. This imple-
mentation was developed in C++ using the Intel MKL 10.2.1.017 [15] library
for optimized LAPACK and BLAS routines for Intel processors. In order to
achieve better performance, the approximate inverse R and approximate solu-
tion x are calculated using only traditional floating point operations using only
the midpoint matrix. Later, for computation of the residuum, interval arithmetic
is applied with original interval matrix [A] and interval vector [b] to ensure the
accuracy of the result [3].

The Step 1 (approximate inverse calculation using LU-Decomposition) uses
the following LAPACK routines: dgetrf, dlange, dgecon and dgetri. Step 2 (ap-
proximation of the solution) is implemented by BLAS dgemv routine. Steps 3
and 4 compute respectively the enclosure for the residuum and enclosure for the
iteration matrix. Since [A] and [b] as well as [C] and [z] are interval matrices
and vectors, the computation of enclosures must employ interval algorithms as

defined on [14]. Let A = 〈ã, α〉 ∈ I+F and B =
〈

b̃, β
〉

∈ I+F be two Midpoint-

Radius intervals, the operations of addition and subtraction C := A ◦B ∈ I+F ,
with ◦ ∈ {+,−} and C = 〈c̃, γ〉 are implemented in IEEE 754 Standard for Bi-
nary Floating point Arithmetic [22] by Algorithm 2. Similarly, the multiplication
is defined by Algorithm 3. The symbols �, ∇ and ∆ indicate respectively the
directed roundings for nearest, downward and upward.

As previously mentioned, the major advantage of Midpoint-Radius Arith-
metic is to allow calculation with pure floating point operations without making
any changes in the rounding mode on interim operations. Therefore, although
[C] and [z] are intervals, they are calculated with dgemv and dgemm BLAS



Algorithm 2 IEEE 754 Midpoint-Radius Interval Addition and Subtraction.

1: c̃ = �

(

ã ◦ b̃
)

2: γ̃ = ∆
(

ǫ′ |c̃| + α̃ + β̃
)

Algorithm 3 IEEE 754 Midpoint-Radius Interval Multiplication.

1: c̃ = �

(

ã.b̃
)

2: γ̃ = ∆
(

η + ǫ′ |c̃| + (|ã| + α̃) β̃ + α̃β̃
)

routines with directed roundings. The rounding mode is manipulated by fes-

etround C++ function from fenv.h header which supports four rounding modes:
FE UPWARD, FE DOWNWARD, FE TONEAREST, and FE TOWARDZERO.

An error will be generated in the midpoint evaluation. This error should be
compensated using the relative error unit. According to [14], denote the relative
rounding error unit by ǫ, set ǫ′ = 1

2ǫ, and denote the smallest representable (un-
normalized) positive floating point number by η. In IEEE 754 double precision
epsilon = 2−52 and η = 2−1074. Therefore, the evaluation of C midpoint (c̃) and
radius (γ̃) is given by Algorithm 4.

Algorithm 4 IEEE 754 Matrix-matrix Midpoint-Radius Interval Multiplica-
tion.
1: c̃1 = ∇ (R.mid (A))
2: c̃2 = ∆ (R.mid (A))
3: c̃ = ∆ (c̃1 + 0.5 (c̃2 − c̃1))
4: γ̃ = ∆ (c̃ − c̃1) + |R| .rad (A)

At last, steps from 5 to 15 implement the iteration to obtain the enclosure.
Again, Midpoint-Radius Arithmetic and direct roundings are employed. Step
8 ([C] and [y] multiplication) uses BLAS dgemv with directed roundings. The
while loop verifies if the new result are contained in the interior of the previous
result. If it is true, the while loop is finished, and the enclosure was found. If
not, it tries for 10 iterations to find the enclosure. It is an empirical fact that
the inner inclusion is satisfied nearly after a few steps or never [2].

4.2 Initial Approach Evaluation

Two kinds of evaluations were considered around the initial implementation:
accuracy and performance. Aiming at verifying the accuracy, we used an ill-
conditioned matrix generated by the well known Boothroyd/Dekker formula
(Equation 5) with dimension 10, which has a condition number 1.09.10+15. The
radius for both matrix A and vector b were defined as 0.1.10−10.



Aij =

(
n + i − 1

i − 1

)

x

(
n − 1

n − j

)

x
n

i + j − 1
, bi = i,∀(i, j) = 1, 2, . . . , N (5)

The results found by the solver are presented in Table 1. It is important
to highlight that despite the implemented solver uses Midpoint-Radius Arith-
metic to do the computation, the results in Table 1 were converted to Infimum-
Supremum notation to facilitate the visualization. Exact Result column indicates
the known exact point result, Infimum and Supremum columns contain interval
bounds for enclosure.

Table 1. Results found by implemented solver for a 10x10 Boothroyd/Dekker formula
interval linear system

Exact Result Infimum Supremum

0 0.0 -0.0000119 0.0000108
1 1.0 0.9998992 1.0001113
2 -2.0 -2.0005827 -1.9994736
3 3.0 2.9979758 3.0022444
4 -4.0 -4.0070747 -3.9936270
5 5.0 4.9826141 5.0193190
6 -6.0 -6.0472924 -5.9574730
7 7.0 6.9045776 7.1061843
8 -8.0 -8.2221804 -7.8004473
9 9.0 8.6064275 9.4384110

As expected, the exact result is contained in the interior of the solution
set our solver computed. The interval diameter varies between 2.27 × 10−5 and
8.319835×10−1. This was expected, since the Boothroyd/Dekker formula creates
a very ill-conditioned system. Experiments of well-conditioned systems randomly
generated with values between 0 and 1 were also performed. In these cases, the
diameter was between 0 and 1 × 10−7. The average condition number of these
systems was around 6.12 × 101.

Performance experiments were carried out over a Intel Core 2 Duo T6400
2.00 GHz processor with 2MB L2 and 3GB of DDR2 667MHz RAM operating
in dual channel. The operating system is Linux Ubuntu 9.04 (32 bits version, ker-
nel 2.6.28-13-generic). The compiler used was gcc v. 4.3.3 with the MKL library
v.10.2.1.017. The input for these experiments were linear systems randomly gen-
erated with values between 0 and 1 for A and b and a radius of 0.1 × 10−10 on
both cases. The execution times of each step of the algorithm was computed. For
simplicity reasons, steps from 6 to 15 were joined into 1 step. Table 2 presents
the average execution times for each step for solving a system with dimension
n = 5, 000.

Table 2 shows that the computation of the approximate inverse R and the
computation of the interval matrix C (steps 1 and 4 respectively) are the two



Table 2. Average exec. times (sec) for a randomly generated system with n = 5, 000.

Task Description Execution times

Computation of approximate inverse R (Step 1) 144.652161
Computation of approximate solution x (Step 2) 0.535467
Computation of enclosure for the residuum z of x (Step 3) 1.949728
Compute enclosure for the iteration matrix C (Step 4) 109.452704
Machine interval vector initialization (Step 5) 0.000117
Iterative refinement and inner inclusion verification (Steps 6 to 15) 4.635784
Total execution time including E/S operations 262.710470

most computational intensive operations in this algorithm. Step 1 takes more
then 55% (144.65 seconds) of the total time while Step 4 takes 42% (109.45 sec-
onds). These two steps correspond to 97% of total processing time, and therefore,
they must be carefully parallelized aiming at a better performance.

4.3 Optimized Parallel Approach

As presented in the previous subsection, steps 1 and 4 are the most computa-
tional intensive operations in the algorithm. Thus, the proposed parallelization
focused on these two steps as follows.

Optimization of the Approximate Inverse Calculation: since the New-
ton Like Iteration requires only an approximation of the inverse matrix of A
and once our approach employs Midpoint-Radius Interval Arithmetic, R can be
computed using highly optimized software libraries. In [3], the pdgetri routine
of ScaLAPACK was employed for R calculation. Our initial approach was im-
plemented using analogous LAPACK routine dgetri. However, although MKL
implementation of LAPACK is highly optimized for Intel processors, LAPACK
algebra algorithms are not efficient on multicore. Hence, as expected LAPACK
routines had no performance gain when increasing the number of cores.

Therefore, our strategy for Step 1 is to explore fine granularity parallelism
as well as asynchronous and out of order scheduling of operations by employing
the PLASMA library. However, the most actual version of PLASMA does not
provide yet a matrix inversion routine. In fact, when dealing with multicore
processors there are no libraries available that can be directly employed for
optimized matrix inversion. Thus, the idea is exploit PLASMA dgesv routine.

The dgesv was developed to compute the solution of a system of linear equa-
tions. However, it is possible to operate the right hand side b of dgesv as a matrix
and it is a well-known mathematical property that multiplying a matrix by its
inverse results the identity matrix. Considering that, we employed PLASMA
dgesv routine passing to A and b parameters, respectively, the A and its identity
matrices. This way, the result computed by dgesv is the approximate inverse R.

It is important to mention that while packages like LAPACK and ScaLA-
PACK exploit parallelism within multithreading BLAS, PLASMA uses BLAS



only for high performance implementations of single core operations (often re-
ferred to as kernels). PLASMA exploits parallelism at the algorithmic level above
the level of BLAS. For that reason, PLASMA must be linked with a sequential
BLAS library or a multithreaded BLAS library with multithreading disabled.
PLASMA must not be used in conjunction with a multithreaded BLAS, as this
is likely to create more threads than actual cores, which annihilates PLASMA′s
performance [23]. Since our approach takes advantage of multithreaded BLAS
in operations executed by other steps (like matrices multiplication) we used
multithreaded MKL. To avoid affecting PLASMA performance, the function
mkl set num threads is used to dynamically control the number of threads.

Optimization of the Iteration Matrix Computation: Concerning Step
4, the computation of the enclosure for the iteration matrix [C], the adopted
strategy is to use half of the available processors to compute the interval upper
bound and the other half to compute the interval lower bound. A similar strat-
egy was successfully employed in [18] where threads were used to compute the
interval bounds on a dual core processor. In that case, however, synchronization
is simpler and it was not necessary to deal with load balancing.

The idea is to utilize different threads to execute the operations in each
rounding mode. This strategy avoids the constant rounding mode changing which
is a time expensive operation. Additionally, since the cache is shared between
cores, computing distinct bounds over the same data in parallel optimizes data
locality. Threads are created and managed using the standard POSIX threads
library [20] and inter-thread synchronization is done using shared memory and
POSIX semaphores primitives.

Initially, a routine verifies the number of available cores and distributes the
number of each bound threads among them. Cores identified by odd numbers are
assigned to upper bound computation and the even numbers to lower bound.
If the number of total cores available is odd, then upper bound will be com-
puted with one more thread than lower bound. The cpu set t variables of sched.h

header are used to create the core pools. Threads are then statically attributed
to cores by calling sched setaffinity function. It is important to highlight, that
defining the processor affinity instructs the operating system kernel scheduler to
not change the processor used by one particular thread.

After threads are assigned to processors they start setting their rounding
modes and get blocked by semaphores until the main flow releases them all
at once. On the sequence, each thread calls the dgemm BLAS routine for the
matrix-matrix multiplication. The main flow blocks itself with a semaphore until
the computation of upper and lower bounds ends. Once the computation of [C]
is completed, threads send signals to unblock main flow semaphore, which then
follows to next step.

4.4 Optimized Approach Evaluation

In order to verify the benefits of employed optimizations, two kind of exper-
iments were performed. The first concerns the correctness of the result. The



second experiment was done to evaluate the speedup improvement brought by
the proposed method. The evaluations were executed in a 2 processors quad-
core Intel Xeon E5520 2.27 GHz with 128 KB L1, 1MB L2, 8MB L3 shared and
16 GB of DDR3 1066 MHz RAM. The operating system is Linux Ubuntu 9.04
(kernel 2.6.28-11-server). The compiler used was gcc v. 4.3.3 together with the
libraries MKL 10.2.2.025 and PLASMA 2.1.0.

Once modifications were done in the algorithm, we conducted some experi-
ments with the same well-conditioned and ill-conditioned matrices solved by our
initial approach to confirm that there were no accuracy loss on the result. The
tests generated by the Boothroyd/Dekker formula presented almost the same ac-
curacy on both versions (initial and optimized). Actually, for this example, the
result of the initial version is minimally better than the result of the optimized
version. As required by the algorithm, both results contain the exact result. For
well-conditioned matrices, both implementations give exactly the same results.

We carried out performance experiments for matrices dimensions from 1,000
to 15,000. Table 3 presents the execution times in seconds for each algorithm
step when solving a random 15,000 x 15,000 interval linear system varying the
number of cores. Column Imp. refers to the approach where In. is the initial
implementation and Op. is the optimized version. Cores column indicates the
number of cores employed in that execution and columns Step 1..15 refer to
the algorithms steps in the same way as in Table 2. As we had a small standard
deviation, we just run the solver 10 times for each situation. The upper and lower
bounds, i.e., highest and lowest execution times, were removed and the final times
were obtained by calculating the arithmetic mean of remaining times.

Table 3. Execution times in seconds to solve a 15,000 x 15,000 interval linear system.

Imp. Cores Step 1 Step 2 Step 3 Step 4 Step 5 Step 6–15 Total

In. 1 1,905.4969 8.3916 23.6316 2,204.0620 0.0002 73.0728 4,488.7467
Op. 1 1,147.8716 5.6718 19.1374 2,218.5130 0.0002 70.4101 3,461.6043
Op. 2 575.8929 5.7024 19.3800 1,169.3131 0.0002 64.8068 1,835.0956
Op. 3 387.9773 5.6246 18.1846 1,058.4973 0.0002 68.9738 1,539.2580
Op. 4 292.6839 5.6923 19.4538 646.0218 0.0002 32.4533 996.3056
Op. 5 249.2505 5.5699 18.1954 626.2732 0.0002 34.9536 934.2430
Op. 6 209.5168 5.7400 19.3016 493.2460 0.0002 33.6801 761.4850
Op. 7 182.3047 5.5987 17.8858 474.7029 0.0002 34.1734 714.6659
Op. 8 160.8892 5.6867 18.9293 451.5206 0.0002 32.9934 670.0196

Figure 1 shows the speedups obtained from Table 3. Line Sp T.T.Seq. is the
speedup of total execution time comparing optimized implementation running

in n cores to the initial approach in 1 core (i.e., T Op.(n)
T In.(1) ). Sp T.T.Par. concerns

to optimized total time in n cores compared to optimized algorithm executing in

1 core (i.e., T Op.(n)
T Op.(1) ). Sp Inv. Seq. and Sp Inv. Par. illustrate speedups obtained

in an analogous manner considering only the Step 1 execution time. Sp S4. Par.

presents the speedup for Step 4 of algorithm.
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Fig. 1. Speedups obtained solving an interval linear system of size 15,000 x 15,000.

In Table 3 and Figure 1 it is possible to see a significant reduction in the
execution time. Sp T.T.Seq. initially presented super linear speed up and slowly
decreased until 6.70 for 8 cores, which is a expected result due to scalability issues
like as the influence of sequential portions of code. Sp T.T.Par. also presented
high speedups and a similar behavior. The main reason for this difference is the
Step 1 of the algorithm. The optimized implementation running in 1 core spent
only 60% of the time spent by the initial approach. This is because PLASMA
optimizations not boil down only to the parallelism but also to new algorithmic
approaches for data management and tasks scheduling which are more suitable
for multicore architectures.

Sp Inv. Seq. and Sp Inv. Par. can be explained by these same reasons. It
is important to note that Step 1 computed with LAPACK dgetri routine on 8
cores spent 1,864.168661 seconds, which means a speedup of 1.02 and confirms
that this is not suitable for multicore.

Sp S4. Par. presented good speedups too. We suppose that this is due to
cache effects. In the sequential version, all matrix elements must be loaded in
the cache to compute [C] with rounding-up, and after that, again, to compute it
with rounding-down. If the entire matrix does not fit in the cache, there will be
many cache misses for each rounding mode. Since more threads use the same data
at the same time, the multithreaded version allows a more effective utilization
of the available cache memory, resulting in a better speedup as expected.

At last, verification steps (6–15) although not explicit parallelized showed
performance gains too. The reason is that the use of dgemm routine benefits
from multithreaded MKL.

5 Considerations and Future work

This paper presented the current version of a self-verified solver for dense inter-
val linear systems optimized for parallel execution on multicore architectures.



The implementation delivered enclosures of the correct solutions for interval
input data with considerable accuracy. The computational costs of each of its
intermediate steps were computed and the main time expensive oh them were
optimized aiming at obtaining performance gain on multicore processors. The
proposed solution led to a scalable implementation which has achieved up to
85% of reduction at execution time when solving a 15,000 x 15,000 interval
linear system over an eight core computer.

Its important to mention that the presented solver was written for dense sys-
tems. However, sparse systems are also supported although they will be treated
as a dense system. No special method or data storage is used concerning the
sparsity of these systems. Many performance related issues still remain under
investigation. There is a clear tradeoff between the overhead incurred by thread
synchronization and the performance gain, which affects the solver scalability.
Therefore, future directions includes the investigation of how to optimize the
parallelized steps, the identification other parts of the algorithm to parallelize
and the exploitation of new architectures as the hybrid computers that mix
GPUs and multicore processing.

The ability of finding verified results for dense linear systems of equations
increases the result accuracy. The possibility to perform this computation in
multicore architectures reduces the computational time that verified computing
need through the benefits of high performance computing. Therefore, the use
of verified and high performance computing together appears as a suitable way
to increase the reliability and performance of many applications, specially when
those applications deal with uncertain data.
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