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Abstract. We present a comparative study between VDBSCAN and α-

Bisecting Spherical K-Means algorithms. The first algorithm, VDBSCAN, is a 

variation of the DBSCAN algorithm, which produces the same results as 

DBSCAN but add the possibility of selecting a parameter for the DBSCAN. 

The second algorithm, α-Bisecting Spherical K-Means, is a variation of the well 

known K-Means algorithm that improves the K-Means performance. Here, we 

have implemented parallel versions of the VDBSCAN and α-Bisecting 

Spherical K-Means algorithms and compare the performance of these 

implementations. 

Keywords: DBSCAN, K-Means, Density-Based clustering, Parallel computing, 
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1   Introduction 

This paper shows a comparative study between parallel implementations of 

VDBSCAN and α-Bisecting Spherical K-Means algorithms. Two of the most 

important clustering algorithms are the DBSCAN, a density-based clustering method, 

and the K-Means, a hierarchical divisive clustering method. 

VDBSCAN [1] is a variation of DBSCAN. It modifies the algorithm used to 

manage noise, while it maintains the same final results. These variations are important 

because they allow selecting an ε parameter with a heuristic algorithm [1]. The α-

Bisecting Spherical K-Means [2, 3] obtains better performance than basic K-Means. 

In this article we study the improvements of the parallel VDBSCAN and parallel α-

Bisecting Spherical K-Means. We assume that the problem to be solve has already 

been distributed because generally this is the case in information retrieval systems in 

which the document subcollections are already distributed. 



1.1   Clustering models 

Clustering models are based on a partition of a document collection into different 

clusters, where the membership to a cluster is decided by the similarity between 

documents [4, 5, 6]. The base assumption is that similar documents tend to be more 

related than those that are very different. 

One of the main problems of the clustering techniques is how to determine the 

number of clusters in a dataset due to particular difficulties that algorithms normally 

ignore [6]. However DBSCAN does not present this problem since it can determine 

the number of clusters automatically, and the α-Bisecting Spherical K-Means has the 

number of clusters as a parameter. 

Literature offers a large collection of clustering algorithms. We should not forget 

that there is no universal technique for clustering that can be applied to all datasets 

[7]. All clustering techniques can not find all clusters, and even if a technique finds 

them, the algorithm’s complexity varies. Clustering methods can be classified in 

several types [4, 5, 7, 8]: partitional, hierarchical, density-based clustering, grid-based 

clustering, model-based clustering and categorical data clustering. 

It is interesting to observe the increasing number of DBSCAN based algorithms in 

many different fields of application [9, 10, 11, 12, 13, 14, 15]. 

1.2 The K-Means 

The K-Means algorithm [7, 16, 17, 18, 19] is an iterarive process and it usually 

converges. K-Means is algorithm widely used iterative divisive technique, and the 

most important reasons are [7, 20, 21, 22]: 

• Its time complexity is  ( )IknΟ  where n is the number of documents, k is 

the number of clusters and I is the number of iterations to converge. 

Tipically, k and I are fixed and set beforehand. So, the algorithm has a 

time complexity linear to the collection’s size. 

• Its spatial complexity is ( )nk +Ο  plus the necessary space for the matrix.  

• The document order of analyse is not influence by seed, although the 

initial seed influences the performance. 

• It benefits from tipycal weighted matrix dispersity.  

Algorithm 1.  Typical K-Means  

Input: Document collection and number of clusters (k) 

Output: k disjoint clusters 

Step-1: k centers of cluster are ramdonly selected. 

Step-2: Each document is assigned to a cluster of 
nearer center. 

Step-3: The k centers are recalculated.  



Step-4: If the convergence critera is met then end, 
else go to step-2 

Note: Normally, the convergence critera is defined as 
either no further changes in centers or the changes 
are minimum. 

1.3 The DBSCA� Algorithm 

DBSCAN (Algorithm 2) [8] has two input parameters: ε, and MinEle. The first 

defines the maximum distance between two neighbor elements, and the second 

defines the minimum number of elements that must be neighbors in a cluster [6]. 

DBSCAN has the following characteristics [5, 8, 23, 24, 25, 26, 27]: 

• It was designed to discover efficiently database clusters and noise. 

• It works well on Euclidean spaces of two or three dimensions and on high 

dimensionality spaces too. 

• It finds clusters of arbitrary size and shape, but it is influenced by the 

function used to calculate the distance between two objects. 

• It is not deterministic in a strict sense, its behavior depends on the input 

order of objects. However, the results (clusters formed) are always the 

same. 

• It is a very efficient and effective clustering algorithm. One important 

reason is that only needs one evaluation through the database. 

• It is robust with respect to the noise. 

• It works at every metric space, not only at vectorial space. 

• It can be easily implemented. 

• It presents a computational complexity ( )2nΟ , which can be improved 

using space indexes to ( )( )nn logΟ . 

Algorithm 2. DBSCAN 

Input: Ν∈ℜ∈
×

MinEleM
nm

,,ε (M is document collection) 

Output: k disjoint clusters { }k

jj 1=
π , R (Noise) 

Step-1: j=1 

Step-2: For all documents d still to classify do 

Step-2.1: V=EpsNeighborhood(d,M,ε) (Elements of M which 

are to distance ε of d) 

Step-2.2: If |V|<MinEle then dRR ∪=  



Step-2.3: Else 

Step-2.3.1: d
jj
∪= ππ  and dVV −=  

Step-2.3.2: While V has elements 

Step-2.3.2.1: Select Vx ∈  

Step-2.3.2.2: W=EpsNeighborhood(x,M,ε) (Elements of M 

which are to distance ε of x) 

Step-2.3.2.3: If |W|<MinEle then WVV ∪=  and W
jj
∪= ππ  

Step-2.3.2.4: xVV −=  

Step-2.3.3: 1+= jj  

DBSCAN (Algorithm 2) verifies that documents are within a distance ε of each 

other in the collection. And it also verifies if MinEle documents are in this area. If an 

element has MinEle elements at distance ε then it is a core element of a cluster. If two 

core elements are to a distance ε then their clusters are merged. Elements of a cluster 

that do not include MinEle or more elements to a distance ε are edge elements. The 

algorithm finishes when all documents are assigned to a cluster or classified as noise. 

[8, 25, 27] 

2 α-Bisecting Spherical K-Means 

The α-Bisecting Spherical K-Means (Algorithm 3) [3] uses the α-Bisecting K-Means 

[3] to obtain an approximated initial solution and later it uses the Spherical K-Means 

to refine it, combining the best of both algorithms. The same idea was used in a 

previous version of the α -Bisecting Spherical K-Means [2], which was based on a 

more standard bisection version, without an α parameter. 

The K-Means algorithm has been parallelizated the most [28, 29, 30, 31] starting 

almost always by a dataset centralized or repeated. But we start with an already 

distributed document collection. 

Often in literature, one finds a simple parallelization of the K-Means algorithm, in 

which the sum and products are performed in parallel with one global reduction [28, 

292, 30]. Here [3], we apply the same parallelization strategy to the α-Bisecting 

Spherical K-Means algorithm. 

Algorithm 3. Parallel α-Bisecting Spherical K-Means 

Note: This code is executed by every processing 
element. 
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π ) is fulfilled or t is equal to 

maxiter else increment t and go to step-2. 

* Each process element divides his subcolection into 
two clusters. One formed by elements situed in a radio 

m k

x σ
α

−
−= 1  ( x  is the mean cosine distance and σ the 

standard deviation) and other formed by the rest of 
elements. This last cluster is recursively divided in 
two clusters until k clusters are obtained. [2, 3] 

** It basically computes a cluster normalized mean 
with a reduction operations [3]. 

3 VDBSCA�  

3.1 DBSCA� vs VDBSCA� 

The original DBSCAN algorithm [8] uses the minimum number of elements that it 

looks for neighbors of an element. If the number of neighbors is less than the 

parameter then neighbors of this element are not considered. The main idea of the 



VDBSCAN (Algorithm 4) is to change this feature. In VDBSCAN, the minimum 

number of elements is only used when a cluster has been classified a real cluster or 

noise. In other words, VDBSCAN always consider the neighborhood of one element, 

independently of its size. 

With this variant the algorithm we yield two very important characteristics: 

1. We reduce approximately to one the number of times we calculate the 

neighborhood in each algorithm iteration, and with fewer elements. The final 

cost is ( )
2

2
nΟ , which is half of the DBSCAN one. 

2. We can obtain, with a heuristic, a good value to the minimum distance 

beetwen two elements into the same cluster [1]. 

Algorithm 4. VDBSCAN 

Input: Ν∈ℜ∈
×

MinEleM
nm

,,ε (M is document collection) 

Output: k disjoint clusters { }k

jj 1=
π , R (Noise) 

Step-1: NoU=M and j=1 

Step-2: While NoU has elements 

Step-2.1: Include random element of NoU in S 

Step-2.2: Initialize U={} 

Step-2.3: While S has elements 

Step-2.3.1: Select Sx ∈  

Step-2.3.2: { }xUU ∪=  and S#oU#oU −=  

Step-2.3.3: V= EpsNeighborhood(x,NoU,ε) (Elements of 

NoU which are to distance ε of x) 

Step-2.3.4: ( ) UVSS −∪=  

Step-2.4: If |U|<MinEle then URR ∪=  

Step-2.5: If |U| ≥ MinEle then U
j

=π  and j=j+1 

Step-2.6: { } RM#oU
j

ii
−−=

=1
π  



3.2 Parallel VDBSCA� 

The parallel VDBSCAN (Algorithm 5) focuses on information retrieval although it is 

not limited to this context, it can be used in any area where DBSCAN is used. 

Every process element works with a part of the collection. And every processing 

element also saves global information about the location of classified documents 

within clusters, which documents are being classified and which are still pending. The 

main interprocess communication is used to maintain global information, and query 

neighborhood information regarding a given document. 

Algorithm 5.  Distributed VDBSCAN  

Note: This code is executed by every processing 
element. 

Input: #MinEleM nim

i
∈ℜ∈ × ,,ε  

Output: k disjoint clusters { }k

jj 1=
π , R (Noise) 

Step-1: 
i

M#oUG = and j=1 

Step-2: While NoUG still has elements 

Step-2.1: We include in SG an aleatory element from 
NoUG (Sincronization, the same element in all 
processing elements). 

Step-2.2: We initialize UG={} 

Step-2.3: While SG has elements 

Step-2.3.1: We select SGx ∈  (Sincronization, the same 

x element in all process elements). 

Step-2.3.2: { }xUGUG ∪=  

Step-2.3.3: NoUG=NoUG-SG 

Step-2.3.4: V=PEpsNeighborhood(x,NoUG,ε) (Each 
processing element work with his part of NoUG to 

obtain which are to ε distance of x). 

Step-2.3.5: ( ) UGVSGSG −∪=  

Step-2.4: If MinEleUG <  Then UGRR ∪=  



Step-2.5: If MinEleUG ≥  Then UG
j

=π  and 1+= jj  

Step-2.6: { } RM#oUG
j

lli
−−=

=1
π  

We want to emphasize that in step-2.1 the selection of a random element causes a 

sincronization, because all processing elements have to use the same random element. 

In step-2.3.1, another sincronization is performed, because all processing elements 

have to know the selected element. The processing element that saves this selected 

element, distributes it, and the rest of processing elements to calculate the neighboord 

for their documents that are not used (step-2.3.4). The other communications are 

reductions, and these appear in step-2-4, step-2.5 and step-2.6. 

4 Parallel Environment 

Many times, the nature of the problem fores the data parallelization, because the data 

is already distributed and its centralization is not permissible. We focus on these 

cases. 

The parallel algorithm is based in a SPMD (Single Program Multiple Data) model. 

The implementation has been developmented in a cluster of PCs. The 

communications are implemented using MPI [32, 33], thus, the code follows a 

standard and is more portable.  

α-Bisecting Spherical K-Means and VDBSCAN start from a weighted matrix 

(sparse matrix). Three basic types of distributions exist when we work with a matrix: 

by rows (by terms), by colummuns (by documents) and by blocks.  

We work in a distributed system where documents collection can be formed by real 

subcollections, which can physically be distributed. Therefore, given that the 

documents are already distributed, we are left with no other choice but to distribute 

the documents by documents (columns) as depicted in Fig. 1. 

 

Fig. 1. Distribution by documents (by columns) of the document collection. 

In this case, a distribution by rows (by terms) would incur great communication 

overhead during the query phase, so this distribution is rarely used [34]. The most 

common operation in the algorithm is the product array by array. In a distribution by 



rows, it would be implementated as a reduction with a cost equal to the number of 

columns. And, in a distribution by columns, it would be implemented as a broadcast 

with a cost equal to the number of rows. The retrieval information system have more 

columns than rows, it is an inherent proble. Thus, broadcast is less expensive. Beside, 

a broadcast implementation in TCP/IP model is simpler than a reduction 

implementation. 

5 Experimental Results 

For our experiments, wi use two collectios formed by a document collection, a queries 

set and their relevant documents in collection.  

1. Times Magazine 1963 contains 425 papers from Times Magazine of 

1963. The main subjet is world news, mainly political news. It generates a 

weight matrix with 6545 rows (terms) and 425 columns (documents). 

2. TREC-DOE has 226087 abstracts of USA department of energy. It 

generates a weight matrix with 87417 rows (terms) and 226087 columns 

(documents). 

The first collection is used to evaluate retrieval performance and not overall 

computational performance. This collection generates a weighted matrix, which is a 

small sparse matrix with 6545 rows and 425 columns. Its sparsity factor is 0.027017. 

All values are beetwen 0 and 1. 

The second collection represents a more realistic document collection and it is used 

to evaluate overall computational performance. The generated weighted matrix is a 

sparse matrix with 87417 rows and 226087 columns and its sparsity factor is 5.3025e-

004. All values are beetwen 0 and 1. 

5.1 Quality Retrieval Performance 

 

Fig. 2. Behaivor of both methods with Times collection. 



The studies are based at precision and recall measure, concretely we have used the 

curve for eleven standard leves, to compare both measure [34].  

Fig. 2 shows how VDBSCAN performs better than α-Bisecting Spherical K-

Means, here we show the mean performance curve for the α-Bisecting Spherical K-

Means because its behavior depends on the unknown parameters in the algorithms 

which yielding to an unpredictable set of curves. 

5.2 Computational Performance 

In this subsection, we take a closer look at the different phases of the algorithms and 

compared them using the experiments set around the two document collections, 

TIMES and TREC-DOE. First, we look at the Modelization phase and then the Query 

Evaluation Phase. 

 5.2.1 The Modelization Phase 

From the computational times of the Modelization phase, we can observe that the 

VDBSCAN is more expensive than α-Bisecting Spherical K-Means and the 

VDBSCANʼs parallelization is more beneficial to its algorithmic performance. 

Resulting in a greater impact as the number of documents in the collection is larger.  

 

Fig. 3. Parallel performance of the modelization phase for the TREC-DOE collection. 

Results from the experiments using the TIMES document collection show very 

little difference in the computational time. The number of documents in the TREC-

DOE collection is larger than in the TIMES one, thus the difference in computational 

time between the two algorithms is emphasized and well depicted by this experiment 

(see Fig. 3). Increasing the number of processing elements in the VDBSCAN also 

exhibits better improvement in its performance. As shown in Fig. 4, the efficiency of 

VDBSCAN is consistently greater than 70% when scaling the number of processing 

elements. The efficiency of the α-Bisecting Spherical K-Means is not nearly as good. 

The speed-ups obtained with the VDBSCAN are also greater. When using the TIMES 



document collection, the efficiency started to degrade for both algorithms after two 

processing elements and this is due to the small size of the collection. 

    

Fig. 4. Speed up and efficiency of the modelization phase for the TREC-DOE collection. 

The results of efficiency and speed up study (Fig. 4) present analogous behavior to 

time study. When we use a little collection (Times) efficiency is acceptable using 

until two process elements, and there are not important differences with none of the 

methods. When we use a big collection (TREC-DOE) performance improve 

outstandingly. VDBSCAN maintains the efficiencia at any moment greater of 70%. 

5.3.2 The Query Evaluation Phase 

 

 

Fig. 5. Parallel performance of the query evaluation phase for the TREC-DOE collection. 

α-Bisecting Spherical K-Means always shows a smaller evaluation time than 

VDBSCAN, although the difference is small, mainly when the number of process 

elements used grows. In this analysis, we use the mean behavior of α-Bisecting 



Spherical K-Means. The parallel performances improve until four process elements, 

after performance decrease, see Fig. 5.  

In Fig. 6 we can see the efficiency and speed up of the parallel implementations. 

Both algorithms exhibit poor efficiency, which is under 50% even with 2 processing 

elements, it drops drastically as the number of processing elements is increased. And 

speed up grow to four process elements, after it decrease. VDBSCAN reaches a little 

more speed up. 

    

Fig. 6. Speed up and efficiency of the query evaluation phase for the TREC-DOE collection 

6 Conclusions 

VDBSCAN improves the performance of DBSCAN by simply introducing the use 

heuristics to select input parameters to the algorithm. In the α-Bisecting Spherical K-

Means, the number of clusters to build, the principal parameters and initial seed are 

unknowns that lead to a variable performance, making the algorithms computational 

performance highly dependent on a good selection of these parameters. 

The performance of the information retrieval for VDBSCAN, with the correct 

parametric selection, is similar to a weighted matrix. Sometimes exhibiting a minor 

improvement or worsening. When comparing information retrieval performance of 

the VDBSCAN and α-Bisecting Spherical K-Means, the VDBSCAN outperforms its 

counterpart. 

Our computational experiments showed that the Modelization phase of VDBSCAN 

is more expensive than α-Bisecting Spherical K-Means, but the parallel performance 

of this phase in VDBSCAN is better. Additionally, the Modelization phase is only 

performed once, thus itʼs equivalent to an initial setup cost that is amortized by all the 

other benefits of the implementation. 

For the evaluation time, α-Bisecting Spherical K-Means is slightly faster than 

VDBSCAN, but the difference is reduced as the number of processing elements is 

increased. Thus even when VDBSCANʼs Modelization is computationally more 

expensive and slower than the α-Bisecting Spherical K-Means, its parallel 



performance is better as demonstrated by the speed-ups and efficiency analysis. 

Moreover, the computational time differences of the Modelization and Query 

Evaluation phases that tend to favor the α-Bisecting Spherical KMeans algorithm, are 

all counter-argued by the better performance of the VDBSCAN in the information 

retrieval time and the easy initial parametric selection. 

The poor parallel performance found in the evaluation phase is intrinsic to the 

problems considered here because they induced poor data locality in its core 

operations. Namely, the sparsity of the matrices that lead to poor performance of the 

matrix-vector or vector-vector operations. Future implementations should consider the 

optimization of these products for very sparse arrays. Even with our current 

implementation of the products, we reduce the overall execution time as we increase 

the number of processing elements. 
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