
VDBSCA� and α-Bisecting Spherical K-Means in

distributed information retrieval systems

Daniel Jiménez González
1
, Vicente Vidal Gimeno

1
 and Leroy Anthony Drummond

2

1 Department of Computer Systems and Computation

Polytechnic University of Valencia (Spain)
dajigon@inf.upv.es ; vvidal@dsic.upv.es

2 Computational Research Division

Lawrence Berkeley National Laboratory

Berkeley, California, USA
ladrummond@lbl.gov

Abstract. We present a comparative study between VDBSCAN and α-

Bisecting Spherical K-Means algorithms. The first algorithm, VDBSCAN, is a

variation of the DBSCAN algorithm, which produces the same results as

DBSCAN but add the possibility of selecting a parameter for the DBSCAN.

The second algorithm, α-Bisecting Spherical K-Means, is a variation of the well

known K-Means algorithm that improves the K-Means performance. Here, we

have implemented parallel versions of the VDBSCAN and α-Bisecting

Spherical K-Means algorithms and compare the performance of these

implementations.

Keywords: DBSCAN, K-Means, Density-Based clustering, Parallel computing,

Dataset clustering, Hierarchical divisive clustering

1 Introduction

This paper shows a comparative study between parallel implementations of

VDBSCAN and α-Bisecting Spherical K-Means algorithms. Two of the most

important clustering algorithms are the DBSCAN, a density-based clustering method,

and the K-Means, a hierarchical divisive clustering method.

VDBSCAN [1] is a variation of DBSCAN. It modifies the algorithm used to

manage noise, while it maintains the same final results. These variations are important

because they allow selecting an ε parameter with a heuristic algorithm [1]. The α-

Bisecting Spherical K-Means [2, 3] obtains better performance than basic K-Means.

In this article we study the improvements of the parallel VDBSCAN and parallel α-

Bisecting Spherical K-Means. We assume that the problem to be solve has already

been distributed because generally this is the case in information retrieval systems in

which the document subcollections are already distributed.

1.1 Clustering models

Clustering models are based on a partition of a document collection into different

clusters, where the membership to a cluster is decided by the similarity between

documents [4, 5, 6]. The base assumption is that similar documents tend to be more

related than those that are very different.

One of the main problems of the clustering techniques is how to determine the

number of clusters in a dataset due to particular difficulties that algorithms normally

ignore [6]. However DBSCAN does not present this problem since it can determine

the number of clusters automatically, and the α-Bisecting Spherical K-Means has the

number of clusters as a parameter.

Literature offers a large collection of clustering algorithms. We should not forget

that there is no universal technique for clustering that can be applied to all datasets

[7]. All clustering techniques can not find all clusters, and even if a technique finds

them, the algorithm’s complexity varies. Clustering methods can be classified in

several types [4, 5, 7, 8]: partitional, hierarchical, density-based clustering, grid-based

clustering, model-based clustering and categorical data clustering.

It is interesting to observe the increasing number of DBSCAN based algorithms in

many different fields of application [9, 10, 11, 12, 13, 14, 15].

1.2 The K-Means

The K-Means algorithm [7, 16, 17, 18, 19] is an iterarive process and it usually

converges. K-Means is algorithm widely used iterative divisive technique, and the

most important reasons are [7, 20, 21, 22]:

• Its time complexity is ()IknΟ where n is the number of documents, k is

the number of clusters and I is the number of iterations to converge.

Tipically, k and I are fixed and set beforehand. So, the algorithm has a

time complexity linear to the collection’s size.

• Its spatial complexity is ()nk +Ο plus the necessary space for the matrix.

• The document order of analyse is not influence by seed, although the

initial seed influences the performance.

• It benefits from tipycal weighted matrix dispersity.

Algorithm 1. Typical K-Means

Input: Document collection and number of clusters (k)

Output: k disjoint clusters

Step-1: k centers of cluster are ramdonly selected.

Step-2: Each document is assigned to a cluster of
nearer center.

Step-3: The k centers are recalculated.

Step-4: If the convergence critera is met then end,
else go to step-2

Note: Normally, the convergence critera is defined as
either no further changes in centers or the changes
are minimum.

1.3 The DBSCA� Algorithm

DBSCAN (Algorithm 2) [8] has two input parameters: ε, and MinEle. The first

defines the maximum distance between two neighbor elements, and the second

defines the minimum number of elements that must be neighbors in a cluster [6].

DBSCAN has the following characteristics [5, 8, 23, 24, 25, 26, 27]:

• It was designed to discover efficiently database clusters and noise.

• It works well on Euclidean spaces of two or three dimensions and on high

dimensionality spaces too.

• It finds clusters of arbitrary size and shape, but it is influenced by the

function used to calculate the distance between two objects.

• It is not deterministic in a strict sense, its behavior depends on the input

order of objects. However, the results (clusters formed) are always the

same.

• It is a very efficient and effective clustering algorithm. One important

reason is that only needs one evaluation through the database.

• It is robust with respect to the noise.

• It works at every metric space, not only at vectorial space.

• It can be easily implemented.

• It presents a computational complexity ()2nΟ , which can be improved

using space indexes to ()()nn logΟ .

Algorithm 2. DBSCAN

Input: Ν∈ℜ∈
×

MinEleM
nm

,,ε (M is document collection)

Output: k disjoint clusters { }k

jj 1=
π , R (Noise)

Step-1: j=1

Step-2: For all documents d still to classify do

Step-2.1: V=EpsNeighborhood(d,M,ε) (Elements of M which

are to distance ε of d)

Step-2.2: If |V|<MinEle then dRR ∪=

Step-2.3: Else

Step-2.3.1: d
jj
∪= ππ and dVV −=

Step-2.3.2: While V has elements

Step-2.3.2.1: Select Vx ∈

Step-2.3.2.2: W=EpsNeighborhood(x,M,ε) (Elements of M

which are to distance ε of x)

Step-2.3.2.3: If |W|<MinEle then WVV ∪= and W
jj
∪= ππ

Step-2.3.2.4: xVV −=

Step-2.3.3: 1+= jj

DBSCAN (Algorithm 2) verifies that documents are within a distance ε of each

other in the collection. And it also verifies if MinEle documents are in this area. If an

element has MinEle elements at distance ε then it is a core element of a cluster. If two

core elements are to a distance ε then their clusters are merged. Elements of a cluster

that do not include MinEle or more elements to a distance ε are edge elements. The

algorithm finishes when all documents are assigned to a cluster or classified as noise.

[8, 25, 27]

2 α-Bisecting Spherical K-Means

The α-Bisecting Spherical K-Means (Algorithm 3) [3] uses the α-Bisecting K-Means

[3] to obtain an approximated initial solution and later it uses the Spherical K-Means

to refine it, combining the best of both algorithms. The same idea was used in a

previous version of the α -Bisecting Spherical K-Means [2], which was based on a

more standard bisection version, without an α parameter.

The K-Means algorithm has been parallelizated the most [28, 29, 30, 31] starting

almost always by a dataset centralized or repeated. But we start with an already

distributed document collection.

Often in literature, one finds a simple parallelization of the K-Means algorithm, in

which the sum and products are performed in parallel with one global reduction [28,

292, 30]. Here [3], we apply the same parallelization strategy to the α-Bisecting

Spherical K-Means algorithm.

Algorithm 3. Parallel α-Bisecting Spherical K-Means

Note: This code is executed by every processing
element.

Input: Ν∈ℜ∈ × kitertolM nim

i
,max,,

Output: k disjoint clusters { }k

jj 1=
π

Step-1: Compute k clusters { }k

jj 1

)0(

=
π using the parallel

•-Bisecting K-Means* and their normalized concept

vectors** { }k

jj
c

1

)0(

=
 in parallel. Initialize t=0.

Step-2: Build a new partition { }k

j

t

j 1

)1(

=

+
π induced by { }k

j

t

j
c

1

)(

=

according to: { } kjljklcxcxMx t

l

Tt

j

T

i

t

j
≤≤≠≤≤⋅>⋅∈∀=

+
1,,1,:)()()1(

π

Step-3: Compute in parallel the new normalized concept

vector { }k

j

t

j
c

1

)1(

=

+
 associated to the new partition

Step-4: Stop if { }() { }() { }()k

j

t

j

k

j

t

j

k

j

t

j
ftolff

1

)1(

1

)1(

1

)(

=

+

=

+

=
⋅≤− πππ

({ }() ∑∑
= ∈

=
⋅=

k

j x

j

Tk

jj

j

cxf
1

1
π

π) is fulfilled or t is equal to

maxiter else increment t and go to step-2.

* Each process element divides his subcolection into
two clusters. One formed by elements situed in a radio

m k

x σ
α

−
−= 1 (x is the mean cosine distance and σ the

standard deviation) and other formed by the rest of
elements. This last cluster is recursively divided in
two clusters until k clusters are obtained. [2, 3]

** It basically computes a cluster normalized mean
with a reduction operations [3].

3 VDBSCA�

3.1 DBSCA� vs VDBSCA�

The original DBSCAN algorithm [8] uses the minimum number of elements that it

looks for neighbors of an element. If the number of neighbors is less than the

parameter then neighbors of this element are not considered. The main idea of the

VDBSCAN (Algorithm 4) is to change this feature. In VDBSCAN, the minimum

number of elements is only used when a cluster has been classified a real cluster or

noise. In other words, VDBSCAN always consider the neighborhood of one element,

independently of its size.

With this variant the algorithm we yield two very important characteristics:

1. We reduce approximately to one the number of times we calculate the

neighborhood in each algorithm iteration, and with fewer elements. The final

cost is ()
2

2
nΟ , which is half of the DBSCAN one.

2. We can obtain, with a heuristic, a good value to the minimum distance

beetwen two elements into the same cluster [1].

Algorithm 4. VDBSCAN

Input: Ν∈ℜ∈
×

MinEleM
nm

,,ε (M is document collection)

Output: k disjoint clusters { }k

jj 1=
π , R (Noise)

Step-1: NoU=M and j=1

Step-2: While NoU has elements

Step-2.1: Include random element of NoU in S

Step-2.2: Initialize U={}

Step-2.3: While S has elements

Step-2.3.1: Select Sx ∈

Step-2.3.2: { }xUU ∪= and S#oU#oU −=

Step-2.3.3: V= EpsNeighborhood(x,NoU,ε) (Elements of

NoU which are to distance ε of x)

Step-2.3.4: () UVSS −∪=

Step-2.4: If |U|<MinEle then URR ∪=

Step-2.5: If |U| ≥ MinEle then U
j

=π and j=j+1

Step-2.6: { } RM#oU
j

ii
−−=

=1
π

3.2 Parallel VDBSCA�

The parallel VDBSCAN (Algorithm 5) focuses on information retrieval although it is

not limited to this context, it can be used in any area where DBSCAN is used.

Every process element works with a part of the collection. And every processing

element also saves global information about the location of classified documents

within clusters, which documents are being classified and which are still pending. The

main interprocess communication is used to maintain global information, and query

neighborhood information regarding a given document.

Algorithm 5. Distributed VDBSCAN

Note: This code is executed by every processing
element.

Input: #MinEleM nim

i
∈ℜ∈ × ,,ε

Output: k disjoint clusters { }k

jj 1=
π , R (Noise)

Step-1:
i

M#oUG = and j=1

Step-2: While NoUG still has elements

Step-2.1: We include in SG an aleatory element from
NoUG (Sincronization, the same element in all
processing elements).

Step-2.2: We initialize UG={}

Step-2.3: While SG has elements

Step-2.3.1: We select SGx ∈ (Sincronization, the same

x element in all process elements).

Step-2.3.2: { }xUGUG ∪=

Step-2.3.3: NoUG=NoUG-SG

Step-2.3.4: V=PEpsNeighborhood(x,NoUG,ε) (Each
processing element work with his part of NoUG to

obtain which are to ε distance of x).

Step-2.3.5: () UGVSGSG −∪=

Step-2.4: If MinEleUG < Then UGRR ∪=

Step-2.5: If MinEleUG ≥ Then UG
j

=π and 1+= jj

Step-2.6: { } RM#oUG
j

lli
−−=

=1
π

We want to emphasize that in step-2.1 the selection of a random element causes a

sincronization, because all processing elements have to use the same random element.

In step-2.3.1, another sincronization is performed, because all processing elements

have to know the selected element. The processing element that saves this selected

element, distributes it, and the rest of processing elements to calculate the neighboord

for their documents that are not used (step-2.3.4). The other communications are

reductions, and these appear in step-2-4, step-2.5 and step-2.6.

4 Parallel Environment

Many times, the nature of the problem fores the data parallelization, because the data

is already distributed and its centralization is not permissible. We focus on these

cases.

The parallel algorithm is based in a SPMD (Single Program Multiple Data) model.

The implementation has been developmented in a cluster of PCs. The

communications are implemented using MPI [32, 33], thus, the code follows a

standard and is more portable.

α-Bisecting Spherical K-Means and VDBSCAN start from a weighted matrix

(sparse matrix). Three basic types of distributions exist when we work with a matrix:

by rows (by terms), by colummuns (by documents) and by blocks.

We work in a distributed system where documents collection can be formed by real

subcollections, which can physically be distributed. Therefore, given that the

documents are already distributed, we are left with no other choice but to distribute

the documents by documents (columns) as depicted in Fig. 1.

Fig. 1. Distribution by documents (by columns) of the document collection.

In this case, a distribution by rows (by terms) would incur great communication

overhead during the query phase, so this distribution is rarely used [34]. The most

common operation in the algorithm is the product array by array. In a distribution by

rows, it would be implementated as a reduction with a cost equal to the number of

columns. And, in a distribution by columns, it would be implemented as a broadcast

with a cost equal to the number of rows. The retrieval information system have more

columns than rows, it is an inherent proble. Thus, broadcast is less expensive. Beside,

a broadcast implementation in TCP/IP model is simpler than a reduction

implementation.

5 Experimental Results

For our experiments, wi use two collectios formed by a document collection, a queries

set and their relevant documents in collection.

1. Times Magazine 1963 contains 425 papers from Times Magazine of

1963. The main subjet is world news, mainly political news. It generates a

weight matrix with 6545 rows (terms) and 425 columns (documents).

2. TREC-DOE has 226087 abstracts of USA department of energy. It

generates a weight matrix with 87417 rows (terms) and 226087 columns

(documents).

The first collection is used to evaluate retrieval performance and not overall

computational performance. This collection generates a weighted matrix, which is a

small sparse matrix with 6545 rows and 425 columns. Its sparsity factor is 0.027017.

All values are beetwen 0 and 1.

The second collection represents a more realistic document collection and it is used

to evaluate overall computational performance. The generated weighted matrix is a

sparse matrix with 87417 rows and 226087 columns and its sparsity factor is 5.3025e-

004. All values are beetwen 0 and 1.

5.1 Quality Retrieval Performance

Fig. 2. Behaivor of both methods with Times collection.

The studies are based at precision and recall measure, concretely we have used the

curve for eleven standard leves, to compare both measure [34].

Fig. 2 shows how VDBSCAN performs better than α-Bisecting Spherical K-

Means, here we show the mean performance curve for the α-Bisecting Spherical K-

Means because its behavior depends on the unknown parameters in the algorithms

which yielding to an unpredictable set of curves.

5.2 Computational Performance

In this subsection, we take a closer look at the different phases of the algorithms and

compared them using the experiments set around the two document collections,

TIMES and TREC-DOE. First, we look at the Modelization phase and then the Query

Evaluation Phase.

 5.2.1 The Modelization Phase

From the computational times of the Modelization phase, we can observe that the

VDBSCAN is more expensive than α-Bisecting Spherical K-Means and the

VDBSCANʼs parallelization is more beneficial to its algorithmic performance.

Resulting in a greater impact as the number of documents in the collection is larger.

Fig. 3. Parallel performance of the modelization phase for the TREC-DOE collection.

Results from the experiments using the TIMES document collection show very

little difference in the computational time. The number of documents in the TREC-

DOE collection is larger than in the TIMES one, thus the difference in computational

time between the two algorithms is emphasized and well depicted by this experiment

(see Fig. 3). Increasing the number of processing elements in the VDBSCAN also

exhibits better improvement in its performance. As shown in Fig. 4, the efficiency of

VDBSCAN is consistently greater than 70% when scaling the number of processing

elements. The efficiency of the α-Bisecting Spherical K-Means is not nearly as good.

The speed-ups obtained with the VDBSCAN are also greater. When using the TIMES

document collection, the efficiency started to degrade for both algorithms after two

processing elements and this is due to the small size of the collection.

Fig. 4. Speed up and efficiency of the modelization phase for the TREC-DOE collection.

The results of efficiency and speed up study (Fig. 4) present analogous behavior to

time study. When we use a little collection (Times) efficiency is acceptable using

until two process elements, and there are not important differences with none of the

methods. When we use a big collection (TREC-DOE) performance improve

outstandingly. VDBSCAN maintains the efficiencia at any moment greater of 70%.

5.3.2 The Query Evaluation Phase

Fig. 5. Parallel performance of the query evaluation phase for the TREC-DOE collection.

α-Bisecting Spherical K-Means always shows a smaller evaluation time than

VDBSCAN, although the difference is small, mainly when the number of process

elements used grows. In this analysis, we use the mean behavior of α-Bisecting

Spherical K-Means. The parallel performances improve until four process elements,

after performance decrease, see Fig. 5.

In Fig. 6 we can see the efficiency and speed up of the parallel implementations.

Both algorithms exhibit poor efficiency, which is under 50% even with 2 processing

elements, it drops drastically as the number of processing elements is increased. And

speed up grow to four process elements, after it decrease. VDBSCAN reaches a little

more speed up.

Fig. 6. Speed up and efficiency of the query evaluation phase for the TREC-DOE collection

6 Conclusions

VDBSCAN improves the performance of DBSCAN by simply introducing the use

heuristics to select input parameters to the algorithm. In the α-Bisecting Spherical K-

Means, the number of clusters to build, the principal parameters and initial seed are

unknowns that lead to a variable performance, making the algorithms computational

performance highly dependent on a good selection of these parameters.

The performance of the information retrieval for VDBSCAN, with the correct

parametric selection, is similar to a weighted matrix. Sometimes exhibiting a minor

improvement or worsening. When comparing information retrieval performance of

the VDBSCAN and α-Bisecting Spherical K-Means, the VDBSCAN outperforms its

counterpart.

Our computational experiments showed that the Modelization phase of VDBSCAN

is more expensive than α-Bisecting Spherical K-Means, but the parallel performance

of this phase in VDBSCAN is better. Additionally, the Modelization phase is only

performed once, thus itʼs equivalent to an initial setup cost that is amortized by all the

other benefits of the implementation.

For the evaluation time, α-Bisecting Spherical K-Means is slightly faster than

VDBSCAN, but the difference is reduced as the number of processing elements is

increased. Thus even when VDBSCANʼs Modelization is computationally more

expensive and slower than the α-Bisecting Spherical K-Means, its parallel

performance is better as demonstrated by the speed-ups and efficiency analysis.

Moreover, the computational time differences of the Modelization and Query

Evaluation phases that tend to favor the α-Bisecting Spherical KMeans algorithm, are

all counter-argued by the better performance of the VDBSCAN in the information

retrieval time and the easy initial parametric selection.

The poor parallel performance found in the evaluation phase is intrinsic to the

problems considered here because they induced poor data locality in its core

operations. Namely, the sparsity of the matrices that lead to poor performance of the

matrix-vector or vector-vector operations. Future implementations should consider the

optimization of these products for very sparse arrays. Even with our current

implementation of the products, we reduce the overall execution time as we increase

the number of processing elements.

Acknowledgements

Partial support to perform this work has been received from the Spanish Ministerio de

Educación y Ciencia under projects ENE2008-02669, TIN2008-06570-C04-04.

References

1. Jiménez, D. and Vidal, V: VDBSCAN: Variant DBSCAN faster. In phase of publication

2. Jiménez, D., Vidal, V., Enguix, C.F.: A comparison of experiments with the bisecting-

spherical k-means clustering and svd algorithms. Actas congreso JOTRI (2002)

3. Jiménez, D., Vidal, V. In: Parallel Implementation of Information Retrieval Clustering

Models. Volume 3402/2005 of Lecture Notes in Computer Science. Springer Berlin (2005)

129_141

4. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of

Intelligent Information Systems 17 (2001) 107_145

5. Andritsos, P.: Data clustering techniques. Technical Report CSRG-443 (2002)

6. Halkidi, M., Vazirgiannis, M.: Clustering validity assessment: Finding the optimal

partitioning of a data set. In: ICDM. (2001) 187_194

7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31

(1999) 264_323

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: In proceedings of 2nd International

Conference on Knowledge Discovery and Data Mining. (1996) 226_231

9. Kailing, K., Kriegel, H.P., Kroeger, P.: Density-connected subspace clustering for high-

dimensional data. In: In: Proc. SDM. 2004. (2004) 246 - 257

10. Jahirabadkar, S., Kulkarni, P.: Isc - intelligent subspace clustering, a desity based clustering

approach for high dimensional dataset. World Academy of Science, Engineering and

Technology 55 (2009) 69 - 73

11. Achtert, E., peter Kriegel, H., Pryakhin, A., Schubert, M.: Hierarchical densitybased

clustering for multi-represented objects. In: In: Workshop on Mining Complex Data (MCD

2005) at ICDM05. (2005)

12. Huang, J., Ertekin, S., Giles, C.: Efficient name disambiguation for large-scale databases.

Knowledge Discovery in Databases: PKDD 2006 (2006) 536 - 544

13. Liu, S., Dou, Z., Li, F., Huang, Y.: A new ant colony clustering algorithm based on dbscan.

In: Proceedings of the 3rd International Conference on Machine Learning and Cybernetics.

(2004) 1491 - 1496

14. Roy, S., Bhattacharyya, D.K.: An approach to find embedded clusters using density based

techniques. In: Distributed Computing and Internet Technology, Second International

Conference. (2005) 523 - 535

15. Ruiz, C., Spiliopoulou, M., Ruiz, E.M.: C-dbscan: Density-based clustering with

constraints. In: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. (2007) 216 -

223

16. Savaresi, S., Boley, D.L., Bittanti, S., Gazzaniga, G.: Choosing the cluster to split in

bisecting divisive clustering algorithms. Technical report (2000)

17. Savaresi, S.M., Boley, D.L.: On the performance of bisecting k-means and pddp. First Siam

International Conference on Data Mining (2001)

18. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques.

KDD-2000 Workshop on Text Mining (2000)

19. Hartigan, J.: Clustering Algorithms. Wiley (1975)

20. Dhillon, I.S., Fan, J., Guan, Y.: Efficient clustering of very large document collections. In

R. Grossman, C. Kamath, V.K., Namburu, R., eds.: Data Mining for Scientifec and

Engineering Applications. Kluwer Academic Publishers (2001) Invited Book Chapter.

21. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using

clustering. Technical report, IBM (2000)

22. Bradley, P.S., Fayyad, U.M.: Re_ning initial points for k-means clustering. In: Proc. 15th

International Conf. on Machine learning, Morgan Kaufmann, San Francisco, CA (1998)

91_99

23. Kailing, K.: New Techniques for Clustering Complex Objects. PhD thesis, Ludwig-

Maximilians Universität München, Munich, Germany (2004)

24. Su, Z., Yang, Q., Zhang, H., Xu, X., Hu, Y.: Correlation-based document clustering using

web logs. In: Proc. of the 34th Hawaii International Conference on System Sciences, IEEE

Computer Society (2001) 5022

25. Iváncsy, R., Babos, A., Legány, C.: Analysis and extensions of popular clustering

algorithms. In: Proc. of the 6th International Symposium of Hungarian Researchers on

Computational Intelligence. (2005) 390_400

26. Januzaj, E., Kriegel, H.P., Pfeie, M.: Towards effective and efficient distributed clustering.

In: Workshop on Clustering Large Data Sets, 3rd Int. Conf. on Data Mining (ICDM 2003).

(2003) 49 _ 58

27. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and

densities in noisy, high dimensional data. In: SIAM International Conference on Data

Mining (SDM'03). (2003)

28. Kantabutra, S., Couch, A.L.: Parallel k-means clustering algorithm on nows. NECTEC

Technical Journal 1 (2000) 243_248

29. Xu, S., Zhang, J.: A hibrid parallel web document clustering algorithm and its performance

study. (2003)

30. Dhillon, I.S., Modha, D.S.: A parallel data-clustering algorithm on distributed memory

multiprocessors. In: Large-Scale Parallel Data Mining, Lecture Notes in Arti_cial

Intelligence. Volume 1759. Springer-Verlag, New York (2000) 245_260

31. Li, X., Fang, Z.: Parallel clustering algorithms. Parallel Computing 11 (1989) 275_290

32. The MPI standard, http://www.mcs.anl.gov/research/projects/mpi/index.htm

33. Message Passing Interface Forum, http://www.mpi-forum.org/

34. Baeza-Yates R. A. et al, Modern Information Retrieval. ACM Press / Addison-Wesley

(1999).

