
TRACEMIN-Fiedler: A Parallel Algorithm for
Computing the Fiedler Vector

Murat Manguoglu1 and Eric Cox1 and Faisal Saied2 and Ahmed Sameh1

1 Purdue University,
Department of Computer Science,

305 N. University Street,
West Lafayette, IN 47907

2 Purdue University,
Computing Research Institute,

Room 202 250 North University Street,
West Lafayette, IN 47907

Abstract. The eigenvector corresponding to the second smallest eigenvalue of
the Laplacian of a graph, known as the Fiedler vector, has a number of applica-
tions in areas that include matrix reordering, graph partitioning, protein analysis,
data mining, machine learning, and web search. The computation of the Fiedler
vector has been regarded as an expensive process as it involves solving a large
eigenvalue problem. We present a novel and efficient parallel algorithm for com-
puting the Fiedler vector of large graphs based on the Trace Minimization al-
gorithm. We compare the parallel performance of our method with a multilevel
scheme, designed specifically for computing the Fiedler vector, which is imple-
mented in routine MC73FIEDLER of the Harwell Subroutine Library (HSL).

1 Introduction

The second smallest eigenvalue and the corresponding eigenvector of the Laplacian of a
graph have been used in a number of application areas including matrix reordering [10,
9, 8, 1], graph partitioning [12, 13], machine learning [11], protein analysis and data
mining [5, 16], and web search [4]. The second smallest eigenvalue of the Laplacian
of a graph is sometimes calledthe algebraic connectivity of the graph, and the cor-
responding eigenvector is known as theFiedler vector, due to the pioneering work of
Fiedler [3].

For a givenn×n sparse symmetric matrixA, or an undirected weighted graph with
positive weights, one can form the weighted-Laplacian matrix, Lw, as follows:

Lw(i, j) =

{

∑ ĵ |A(i, ĵ)| if i = j,
−|A(i, j)| if i 6= j.

(1)

One can obtain the unweighted Laplacian by simply replacingeach nonzero element of
the matrixA by 1. In this paper, we focus on the more general weighted case; the method
we present is also applicable to the unweighted Laplacian. Since the Fiedler vector
can be computed independently for disconnected graphs, we assume that the graph is

connected. The eigenvalues ofLw are 0= λ1 < λ2≤ λ3≤ ...≤ λn. The eigenvectorx2

corresponding to smallest nontrivial eigenvalueλ2 is the sought Fiedler vector.
A state of the art multilevel solver [7] called MC73FIEDLER for computing the

Fiedler vector is implemented in the Harwell Subroutine Library(HSL) [6]. It uses a
series of levels of coarser graphs where the eigenvalue problem corresponding to the
coarsest level is solved via the Lanczos method for estimating the Fiedler vector. The
results are then prolongated to the finer graphs and RayleighQuotient Iterations (RQI)
with shift and invert are used for refining the eigenvector. Linear systems encountered
in RQI are solved via the SYMMLQ algorithm.

We describe a novel parallel solver: TRACEMIN-Fiedler based on the Trace Mini-
mization algorithm (TRACEMIN) [15, 14] in Section 2 and present results in Section 3
comparing it to MC73FIEDLER.

2 The TRACEMIN-Fiedler Algorithm

We consider solving the standard symmetric eigenvalue problem

Lx = λx (2)

whereL denotes the weighted Laplacian, using the TRACEMIN scheme for obtaining
the Fiedler vector. The basic TRACEMIN algorithm [15, 14] can be summarized as
follows. LetXk be an approximation of the eigenvectors corresponding to the p smallest

eigenvalues such thatXT
k LX k = Σk andXT

k Xk = I , whereΣk = diag(ρ (k)
1 ,ρ (k)

2 , ...,ρ (k)
p).

The updated approximation is obtained by solving the minimization problem

min tr(Xk−∆k)
TL(Xk−∆k), subject to∆T

k Xk = 0. (3)

This in turn leads to the need for solving a saddle point problem, in each iteration
of the TRACEMIN algorithm, of the form

[

L X k

XT
k 0

][

∆k

Nk

]

=

[

LX k

0

]

. (4)

Once∆k is obtained(Xk− ∆k) is then used to obtainXk+1 which forms the section
XT

k+1LX k+1 = Σk+1,XT
k+1Xk+1 = I . The TRACEMIN-Fiedler algorithm, which based

on the basic TRACEMIN algorithm, is given in Figure 1.
In step 4 the columns of the matrixXk are orthonormal because columns ofVk

andYk are orthonormal. The most time consuming part of the algorithm is solving the
saddle-point problem in each outer TRACEMIN iteration. This involves, in turn, solv-
ing large sparse symmetric positive semi-definite systems of the formLW k = Xk using
the Conjugate Gradient algorithm with a diagonal preconditioner. Our main enhance-
ment of the basic TRACEMIN scheme are contained in step 8, solving systems involv-
ing the Laplacian, and step 7 concerning the deflation process. In the TRACEMIN-
Fiedler algorithm, not only is the coefficient matrixL is guaranteed to be symmet-
ric positive semi-definite, but that its diagonal (the preconditioner) is guaranteed to
have positive elements. On the other hand, in MC73FIEDLER there is no guaran-
tee that the linear systems, arising in the RQI with shift andinvert, are symmetric

Algorithm 1 :
Data: L is then×n Laplacian matrix defined in Eqn.(1) ,εout is the stopping criterion for

the ||.||∞ of the eigenvalue problem residual
Result: x2 is the eigenvector corresponding to the second smallest eigenvalue ofL
p←− 2; q←− 3p ;
nconv←− 0; Xconv←− [];
L̂ ←− L + ||L ||∞10−12× I ;
D←− the diagonal ofL ;
D̂←− the diagonal of̂L ;
X1←− rand(n,q);
for k = 1,2, . . . max it do

1. OrthonormalizeXk into Vk;
2. Compute the interaction matrixHk←−VT

k LV k;
3. Compute the eigendecompositionHkYk = YkΣk of Hk. The eigenvaluesΣk are
arranged in ascending order and the eigenvectors are chosento be orthogonal;
4. Compute the corresponding Ritz vectorsXk←− VkYk;
Note thatXk is a section, i.e.XT

k LX k = Σk,XT
k Xk = I ;

5. Compute the relative residual||LX k−XkΣk||∞/||L ||∞;
6. Test for convergence: If the relative residual of an approximate eigenvector is less
thanεout, move that vector fromXk to Xconvand replacenconv by nconv+1 increment.
If nconv≥ p, stop;
7. Deflate: Ifnconv> 1,Xk←− Xk−Xconv(XT

convXk);
8. if k = 1 then

Solve the linear system̂LW k = Xk approximately via the PCG scheme using the
diagonal preconditioner̂D;

else
Solve the linear systemLW k = Xk approximately via the PCG scheme using the
diagonal preconditionerD;

9. Form the Schur complementSk←− XT
k Wk;

10. Solve the linear systemSkNk = XT
k Xk for Nk directly;

11. UpdateXk+1←− Xk−∆k = WkNk ;

Fig. 1.TRACEMIN-Fiedler algorithm.

positive semi-definite with positive diagonal elements. Hence, MC73FIEDLER uses
SYMMLQ without any preconditioning to solve linear systemsin the Rayleigh Quo-
tient Iterations.

We should note here that the matrixL is symmetric positive semi-definite with
one zero eigenvalue. As soon as the first eigenvalue has converged, however, the right
hand sideXk is orthogonal to the null space ofL due to the deflation step 7. Since the
smallest (i.e. 0) eigenvalue converges after the first iteration of the algorithm we add a
small diagonal perturbation for the first iteration of the algorithm only in order to ensure
PCG will not fail.

The order of the linear system in step 10 isq×q whereq = 6, therefore we solve
these small systems directly. We note that our algorithm caneasily compute additional
eigenvectors of the Laplacian matrix by settingp to be the number of desired of smallest
eigenpairs.

3 Parallel Implementation of TRACEMIN-Fiedler

The parallel TRACEMIN-Fiedler algorithm consists of the same basic steps as the serial
algorithm 1. The matrix and vectors are distributed in blocks across the processors. Our
parallel implementation is based on the MPI communication library.

One critical part of the parallelization is the matrix vector product. Due to the block
nature of the TRACEMIN algorithm, the matrixL is applied to a set of vectors at a time,
which leads to greater efficiency. The amount of communication needed in the matrix
vector product is problem dependent. The scalability of this operation and therefore of
the overall parallel TRACEMIN-Fiedler algorithm varies depending on the number of
non-zeros inL and their location. The parallel matrix-vector multiplication operation is
performed in Step 2, for the computation ofHk, in Step 5, for computing the residuals,
and once in each iteration of the PCG solve in Step 8.

The other type of communication needed in the parallel TRACEMIN-Fiedler algo-
rithm is the AllReduce operation. This is required in the computation of dot products
and norms. In particular, the AllReduce communication is performed in Step 1, for the
orthonormalization step, in Step 2, for the computation ofHk, on Step 5, in the com-
putation of the residual norms, in Step 7, for the deflation operation and in Step 9, in
the computation of the Schur complement matrix. The AllReduce communication op-
eration is performed three times in each iteration of the PCGsolve in Step 8. In our
implementation, most AllReduce operations are applied to aset of vectors, which is
more efficient than doing more reductions one at a time.

4 Numerical Results

We implement the TRACEMIN-Fiedler algorithm in Figure 1 in parallel using MPI. We
compare the parallel performance of MC73FIEDLER with TRACEMIN-Fiedler using
a cluster with Infiniband interconnection where each node consists of two quad-core
Intel Xeon CPUs (X5560) running at 2.80GHz (8 cores per node). For both solvers we
set the stopping tolerance for the∞−normof the eigenvalue problem residual to 10−5.
In TRACEMIN-Fiedler we set the inner stopping criterion asεin = 10−1∗ εout, and the

maximum number of the preconditioned CG to 30. For MC73FIEDLER, we use all
the default parameters.

The set of test matrices are obtained from the University of Florida (UF) Sparse Ma-
trix Collection [2]. A search for matrices in this collection which are square, real, and
which are of order 2,000,000< N < 5,000,000 returns four matrices listed in Table 1.
If a matrix,A, is nonsymmetric we use(|A|+ |AT |)/2, instead. Furthermore, if the ad-
jacency graph ofA has any disconnected single vertices we removed them since those
vertices are independent and have trivial solutions. We apply both MC73FIEDLER and
TRACEMIN-Fiedler to the weighted Laplacian generated fromthe adjacency graph of
the preprocessed matrix where the weights are the absolute values of matrix entries.
After obtaining the Fiedler vectorx2 returned by each algorithm, we compute the cor-
responding eigenvalueλ2,

λ2 =
xT

2 Lx2

xT
2 x2

. (5)

We report the relative residuals||Lx2−λ2x2||∞/||L||∞ in Table 2.

Table 1.Matrix size (N), number of nonzeros (nnz), and type of test matrices.

Matrix Group/Name N nnz symmetric
1. Rajat/rajat31 4,690,002 20,316,253 no
2. Schenk/nlpkkt 3,542,400 95,117,792 yes
3. Freescale/Freescale13,428,755 17,052,626 no
4. Zaoui/kktPower 2,063,494 12,771,361 yes

Table 2. Relative residuals‖Lx− λx‖∞/‖L‖∞ for TRACEMIN-Fiedler and MC73FIEDLER
whereεout = 10−5.

TRACEMIN-Fiedler MC73FIEDLER
Matrix/Cores 1 8 16 32 1
rajat31 1.1×10−12 1.1×10−12 1.1×10−12 1.1×10−12 3.03×10−9

nlpkkt 9.1×10−6 9.1×10−6 9.1×10−6 9.1×10−6 6.49×10−7

Freescale1 7.5×10−12 7.5×10−12 7.5×10−12 7.5×10−12 1.03×10−7

kktPower 3.1×10−24 3.1×10−24 3.1×10−24 3.1×10−24 4.07×10−8

The total time required by TRACEMIN-Fiedler using 1, 2, and 4nodes with 8 MPI
processes, i.e. using 8 cores, per node are presented in Table 3. We emphasize that the
parallel scalability results for TRACEMIN-Fiedler is preliminary and that there is more
room for improvement. Since MC73FIEDLER is purely sequential we have used it on
a single core. The speed improvements realized by TRACEMIN-Fiedler on 1, 8, 16,
and 32 cores over MC73FIEDLER on a single core are depicted in Figure 2, with the

 1

 10

 100

 1000

321681

S
pe

ed
 Im

pr
ov

em
en

t (
T

M
C

73
 /

T
T

R
A

C
E

M
IN

-F
ie

dl
er

)

Number of Cores (8 Cores per Node)

rajat31
nlpkkt120

Freescale1
kkt_power

Fig. 2. Speed improvement of TRACEMIN-Fiedler compared to uniprocessor HSLMC73 for
four test problems.

actual solve times and the speed improvement values are given in Tables 3 and 4. Note
that on 32 cores, our scheme realizes speed improvements over MC73 FIEDLER that
range between 4 and 641 for our four test matrices.

Table 3. Total time in seconds (rounded to the first decimal place) forTRACEMIN-Fiedler and
MC73 FIEDLER.

TRACEMIN-Fiedler MC73FIEDLER
Matrix/Cores1 8 16 32 1
rajat31 5.6 1.4 0.7 0.4 81.5
nlpkkt 100.524.915.310.883.9
Freescale1 61.5 23.516.012.552.8
kktPower 4.8 1.0 0.7 0.5 341.6

Table 4.Speed improvement over MC73FIEDLER (TMC73 FIEDLER/T).

TRACEMIN-Fiedler MC73FIEDLER
Matrix/Cores1 8 16 32 1
rajat31 14.559.2 116.5227.51.0
nlpkkt 0.8 3.4 5.5 7.8 1.0
Freescale1 0.9 2.2 3.3 4.2 1.0
kktPower 71.2332.3501.0641.41.0

5 Conclusions

We have presented a new algorithm for computing the Fiedler vector on parallel com-
puting platforms, and have shown its effectiveness compared to the well-known scheme
given by routine MC73FIEDLER of the Harwell Subroutine Library for computing the
Fiedler vector of four large sparse matrices.

References

1. Stephen T. Barnard, Alex Pothen, and Horst Simon. A spectral algorithm for envelope reduc-
tion of sparse matrices.Numerical Linear Algebra with Applications, 2(4):317–334, 1995.

2. T. A. Davis. University of Florida sparse matrix collection. NA Digest, 1997.
3. M. Fiedler. Algebraic connectivity of graphs.Czechoslovak Mathematical Journal,

23(2):298–305, 1973.
4. Xiaofeng He, Hongyuan Zha, Chris H.Q. Ding, and Horst D. Simon. Web document clus-

tering using hyperlink structures.Computational Statistics & Data Analysis, 41(1):19 – 45,
2002.

5. Desmond J. Higham, Gabriela Kalna, and Milla Kibble. Spectral clustering and its use in
bioinformatics.Journal of Computational and Applied Mathematics, 204(1):25 – 37, 2007.
Special issue dedicated to Professor Shinnosuke Oharu on the occasion of his 65th birthday.

6. HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See
http://www.cse.scitech.ac.uk/nag/hsl/.

7. Y.F. Hu and J.A. Scott. HSLMC73: a fast multilevel Fiedler and profile reduction code.
Technical Report RAL-TR-2003-036, 2003.

8. M. Manguoglu. A parallel hybrid sparse linear system solver. In Computational Electro-
magnetics International Workshop, 2009. CEM 2009, pages 38–43, July 2009.

9. M. Manguoglu, M. Koyuturk, A. Grama, and A. H. Sameh. Weighted matrix ordering and
parallel banded preconditioners for iterative linear system solvers.SIAM Journal on Scien-
tific Computing, accepted.

10. Murat Manguoglu, Ahmed H. Sameh, and Olaf Schenk. Pspike: A parallel hybrid sparse lin-
ear system solver.Lecture Notes in Computer Science(Euro-Par 2009 Parallel Processing),
5704:797–808, 2009.

11. Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. InAdvances in Neural Information Processing Systems 14, pages 849–856. MIT
Press, 2001.

12. Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices with eigenvec-
tors of graphs.SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

13. Huaijun Qiu and Edwin R. Hancock. Graph matching and clustering using spectral partitions.
Pattern Recognition, 39(1):22 – 34, 2006.

14. Ahmed Sameh and Zhanye Tong. The trace minimization method for the symmetric gener-
alized eigenvalue problem.J. Comput. Appl. Math., 123(1-2):155–175, 2000.

15. Ahmed H. Sameh and John A. Wisniewski. A trace minimization algorithm for the general-
ized eigenvalue problem.SIAM Journal on Numerical Analysis, 19(6):1243–1259, 1982.

16. S. J. Shepherd, C. B. Beggs, and S. Jones. Amino acid partitioning using a fiedler vector
model.Journal European Biophysics Journal, 37(1):105–109, 2007.

