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Abstract. The eigenvector corresponding to the second smallest\&fgenof
the Laplacian of a graph, known as the Fiedler vector, hagveeuof applica-
tions in areas that include matrix reordering, graph parting, protein analysis,
data mining, machine learning, and web search. The conipuataf the Fiedler
vector has been regarded as an expensive process as iteis\suiving a large
eigenvalue problem. We present a novel and efficient paedtjerithm for com-
puting the Fiedler vector of large graphs based on the TraiceniEation al-
gorithm. We compare the parallel performance of our methitd &vmultilevel
scheme, designed specifically for computing the Fiedletorewhich is imple-
mented in routine MC7FIEDLER of the Harwell Subroutine Library (HSL).

1 Introduction

The second smallest eigenvalue and the corresponding/eicten of the Laplacian of a
graph have been used in a number of application areas imgjudiatrix reordering [10,
9, 8, 1], graph partitioning [12, 13], machine learning [1f4totein analysis and data
mining [5, 16], and web search [4]. The second smallest s@jar of the Laplacian
of a graph is sometimes calléde algebraic connectivity of the grapbnd the cor-
responding eigenvector is known as ffiedler vector due to the pioneering work of
Fiedler [3].

For a givern x n sparse symmetric matri, or an undirected weighted graph with
positive weights, one can form the weighted-Laplacian ixals,, as follows:
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One can obtain the unweighted Laplacian by simply replaeagh nonzero element of
the matrixA by 1. In this paper, we focus on the more general weighted tasenethod

we present is also applicable to the unweighted LaplaciamceSthe Fiedler vector
can be computed independently for disconnected graphsssaree that the graph is



connected. The eigenvalueslgf are 0= A; < A2 < A3 < ... < Ap. The eigenvectox;
corresponding to smallest nontrivial eigenvalgas the sought Fiedler vector.

A state of the art multilevel solver [7] called MCHEDLER for computing the
Fiedler vector is implemented in the Harwell Subroutinerhity(HSL) [6]. It uses a
series of levels of coarser graphs where the eigenvaludgmotorresponding to the
coarsest level is solved via the Lanczos method for estimgdtie Fiedler vector. The
results are then prolongated to the finer graphs and Ray(@igtient Iterations (RQI)
with shift and invert are used for refining the eigenvectamelar systems encountered
in RQI are solved via the SYMMLQ algorithm.

We describe a novel parallel solver: TRACEMIN-Fiedler lshea the Trace Mini-
mization algorithm (TRACEMIN) [15, 14] in Section 2 and pees results in Section 3
comparing it to MC73FIEDLER.

2 The TRACEMIN-Fiedler Algorithm

We consider solving the standard symmetric eigenvaluel@nob
Lx=Ax (2)

wherelL denotes the weighted Laplacian, using the TRACEMIN schemelftaining
the Fiedler vector. The basic TRACEMIN algorithm [15, 14hdae summarized as
follows. LetXy be an approximation of the eigenvectors correspondingetp #fmallest
eigenvalues such thX{f LX y = 5, andX] Xy =1, whereZj = diag(pik),pék), s p,(,k)).
The updated approximation is obtained by solving the min&tidon problem

min tr(Xy — A) "L (Xk — Ay), subject tad] Xy = 0. (3)

This in turn leads to the need for solving a saddle point moblin each iteration
of the TRACEMIN algorithm, of the form

L Xk | Ak LX g
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Once4y is obtained(Xy — Ay) is then used to obtaiXy,1 which forms the section
Xp 1LX k1 = Zir1, X, 1 Xke1 = |. The TRACEMIN-Fiedler algorithm, which based
on the basic TRACEMIN algorithm, is given in Figure 1.

In step 4 the columns of the matrik, are orthonormal because columns\of
andY are orthonormal. The most time consuming part of the algorits solving the
saddle-point problem in each outer TRACEMIN iteration.Smvolves, in turn, solv-
ing large sparse symmetric positive semi-definite systefrttsecform LW = Xy using
the Conjugate Gradient algorithm with a diagonal precaomaér. Our main enhance-
ment of the basic TRACEMIN scheme are contained in step 8irgpkystems involv-
ing the Laplacian, and step 7 concerning the deflation peodasthe TRACEMIN-
Fiedler algorithm, not only is the coefficient matrixis guaranteed to be symmet-
ric positive semi-definite, but that its diagonal (the preaitioner) is guaranteed to

have positive elements. On the other hand, in METBDLER there is no guaran-
tee that the linear systems, arising in the RQI with shift anert, are symmetric



Algorithm 1:

Data: L is then x n Laplacian matrix defined in Eqn.(1keut is the stopping criterion for
the||.||» of the eigenvalue problem residual
Result x; is the eigenvector corresponding to the second smallesteadue ofl
p—2;, Qg+ 3p;
Neonv «— 0; Xcowve—1[ I
L—L+L||w102x1;
D «— the diagonal of._ ;
D «— the diagonal of_ ;
X1 < rand(n,q);
for k=1,2,... maxit do
1. OrthonormalizeX into V;
2. Compute the interaction matrik, «—— VI LV y;
3. Compute the eigendecompositidpY = Y2k of Hk. The eigenvalue&y are
arranged in ascending order and the eigenvectors are ctmberorthogonal;
4. Compute the corresponding Ritz vect¥is«—— VY;
Note thatXy is a section, i.eX] LX = Sy, X[ Xk =1;
5. Compute the relative residydlLX x — Xk Zk||eo/||L ||c0;
6. Test for convergence: If the relative residual of an agipnate eigenvector is less
thanegyt, move that vector fronxy to Xconyand replacécony by Nconv+ 1 increment.
If Nconv> p, stop;
7. Deflate: Ifncony > 1, Xk «— Xk — Xcond XdonXk);
8.if k=1then
‘ Solve the linear systetdW = X, approximately via the PCG scheme using the
diagonal preconditiondb;

else
Solve the linear systefdV = Xy approximately via the PCG scheme using the

diagonal precondition€b;
9. Form the Schur complemest «—— XIWk;
10. Solve the linear systeBkNy = x[xk for N directly;
11. UpdateXy 1 «— Xk — Ak = WiNg ;

Fig. 1. TRACEMIN-Fiedler algorithm.



positive semi-definite with positive diagonal elementsneks MC73FIEDLER uses
SYMMLQ without any preconditioning to solve linear systeinghe Rayleigh Quo-
tient Iterations.

We should note here that the mattixis symmetric positive semi-definite with
one zero eigenvalue. As soon as the first eigenvalue has rgaalydhowever, the right
hand sideX is orthogonal to the null space bfdue to the deflation step 7. Since the
smallest (i.e. 0) eigenvalue converges after the firsttitaraf the algorithm we add a
small diagonal perturbation for the first iteration of thgaithm only in order to ensure
PCG will not fail.

The order of the linear system in step 1®jis q whereq = 6, therefore we solve
these small systems directly. We note that our algorithmeezesily compute additional
eigenvectors of the Laplacian matrix by settimtp be the number of desired of smallest
eigenpairs.

3 Parallel Implementation of TRACEMIN-Fiedler

The parallel TRACEMIN-Fiedler algorithm consists of thersabasic steps as the serial
algorithm 1. The matrix and vectors are distributed in bkakross the processors. Our
parallel implementation is based on the MPI communicaflanaty.

One critical part of the parallelization is the matrix vagbooduct. Due to the block
nature of the TRACEMIN algorithm, the matrixis applied to a set of vectors at a time,
which leads to greater efficiency. The amount of commurocatieeded in the matrix
vector product is problem dependent. The scalability of dgeration and therefore of
the overall parallel TRACEMIN-Fiedler algorithm variespgmding on the number of
non-zeros irL and their location. The parallel matrix-vector multiplicen operation is
performed in Step 2, for the computationtdf, in Step 5, for computing the residuals,
and once in each iteration of the PCG solve in Step 8.

The other type of communication needed in the parallel TRMMO¥E:Fiedler algo-
rithm is the AllReduce operation. This is required in the pomation of dot products
and norms. In particular, the AllReduce communication iggrened in Step 1, for the
orthonormalization step, in Step 2, for the computatiom@f on Step 5, in the com-
putation of the residual norms, in Step 7, for the deflatioarapon and in Step 9, in
the computation of the Schur complement matrix. The AllRedcommunication op-
eration is performed three times in each iteration of the PGIBe in Step 8. In our
implementation, most AllReduce operations are applied seteof vectors, which is
more efficient than doing more reductions one at a time.

4 Numerical Results

We implement the TRACEMIN-Fiedler algorithm in Figure 1 iarpllel using MPI1. We
compare the parallel performance of MCFEDLER with TRACEMIN-Fiedler using
a cluster with Infiniband interconnection where each nodesists of two quad-core
Intel Xeon CPUs (X5560) running at 2.80GHz (8 cores per ndéa) both solvers we
set the stopping tolerance for tlee— normof the eigenvalue problem residual to 0
In TRACEMIN-Fiedler we set the inner stopping criterionsas= 101 x go, and the



maximum number of the preconditioned CG to 30. For MGIBDLER, we use all
the default parameters.

The set of test matrices are obtained from the Universityarfitia (UF) Sparse Ma-
trix Collection [2]. A search for matrices in this colleatiavhich are square, real, and
which are of order 2200, 000< N < 5,000 000 returns four matrices listed in Table 1.
If a matrix, A, is nonsymmetric we us@A| + |AT|)/2, instead. Furthermore, if the ad-
jacency graph oA has any disconnected single vertices we removed them ginee t
vertices are independent and have trivial solutions. Wéydypyth MC73FIEDLER and
TRACEMIN-Fiedler to the weighted Laplacian generated fitw@ adjacency graph of
the preprocessed matrix where the weights are the absallitessof matrix entries.
After obtaining the Fiedler vecto® returned by each algorithm, we compute the cor-
responding eigenvalue,

X Lxo
rn=222
X5 X2

We report the relative residudléx, — A2Xz||w/||L||» in Table 2.

(5)

Table 1. Matrix size (N), number of nonzerosi2, and type of test matrices.

Matrix Group/Name | N | nnz |symmetric
1. Rajat/rajat31 4,690 00220,316 25 no
2. Schenk/nlpkkt 3,542 40095,117,79 yes
3. Freescale/Freescal|81428 75517,052 62 no
4, Zaoui/kktPower  |2,063494{12 771 36 yes

Table 2. Relative residuald|Lx — AX||e/||L|| for TRACEMIN-Fiedler and MC73FIEDLER
whereggy = 107°.

TRACEMIN-Fiedler MC73FIEDLER
Matrix/Corel 1 | 8 | 16 | 32 | 1
rajat31 1.1x10?[1.1x101%1.1x 107 ?[1.1x 107 %] 3.03x10°°
nipkkt 9.1x10%{91%x106|9.1x10%|91x106| 6.49x10°7

Freescalel |7.5x 10712|7.5x10712|75x 10712|7.5x 10712| 1.03x 10~
kktPower [3.1x 10724|3.1x 10724[3.1x 10724|3.1x10724| 4.07x 1078

The total time required by TRACEMIN-Fiedler using 1, 2, andatles with 8 MPI
processes, i.e. using 8 cores, per node are presented mJalde emphasize that the
parallel scalability results for TRACEMIN-Fiedler is piinary and that there is more
room for improvement. Since MCZBIEDLER is purely sequential we have used it on
a single core. The speed improvements realized by TRACERNIBdler on 1, 8, 16,
and 32 cores over MC7BIEDLER on a single core are depicted in Figure 2, with the
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Fig. 2. Speed improvement of TRACEMIN-Fiedler compared to unipesor HSLMC73 for

four test problems.



actual solve times and the speed improvement values are igiviables 3 and 4. Note
that on 32 cores, our scheme realizes speed improvemem§@/&_FIEDLER that
range between 4 and 641 for our four test matrices.

Table 3. Total time in seconds (rounded to the first decimal placel/RACEMIN-Fiedler and
MC73.FIEDLER.

TRACEMIN-Fiedler MC73FIEDLER
Matrix/CoresLl |8 |16 |32 |1
rajat31 5.6 |1.4 /0.7 |0.4 |81.5
nipkkt 100.924.915.310.883.9
Freescalel [61.5 (23.516.012.552.8
kktPower |4.8 |1.0 |0.7 |0.5 [341.6

Table 4. Speed improvement over MCFEDLER (Tuc7a riepLer/T)-

TRACEMIN-Fiedler MC73FIEDLER
Matrix/Corell 8 |16 [32 |1
rajat31 14.559.2 |116.5227.51.0
nlpkkt 08|34 |55 (7.8 |1.0
Freescalel |0.9 [2.2 |3.3 |4.2 [1.0
kktPower |71.2332.3501.0641.41.0

5 Conclusions

We have presented a new algorithm for computing the Fiedletor on parallel com-
puting platforms, and have shown its effectiveness congjtarthe well-known scheme
given by routine MC73IEDLER of the Harwell Subroutine Library for computing the
Fiedler vector of four large sparse matrices.
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