
Evaluation of Message Passing Communication 

Patterns in Finite Element Solution of Coupled Problems  

Renato N.  Elias
1
, Jose J. Camata

2
, Albino Aveleda

2
 and Alvaro L.G.A. Coutinho

2
 

 
1IM/DTL, Multidisciplinary Institute,  

Federal Rural University of Rio de Janeiro,  

Av. Governador Roberto Silveira, s/n,  
26210-210, Nova Iguaçu, RJ, Brazil. 

rnelias@gmail.com 
 

2NACAD, High Performance Computing Center,  

Federal University of Rio de Janeiro, PO Box 68506, 

21945-970, Rio de Janeiro, RJ, Brazil.  

{camata, bino, alvaro}@nacad.ufrj.br 

Abstract. This work presents a performance evaluation of single node and 

subdomain communication schemes available in EdgeCFD, an implicit edge-

based coupled fluid flow and transport code for solving large scale problems in 

modern clusters. A natural convection flow problem is considered to assess 

performance metrics. Tests, focused in single node multi-core performance, 
show that past Intel Xeon processors dramatically suffer when large workloads 

are imposed to a single node. However, the problem seems to be mitigated in 

the newest Intel Xeon processor. We also observe that MPI non-blocking point-

to-point interface sub-domain communications, although more difficult to 

implement, are more effective than collective interface sub-domain 

communications. 

Keywords: Parallel Computing, Message Passing, Communication Patterns, 

Coupled Problems, Edge-Based. 

1   Introduction 

In 2008 the petascale barrier has been broken. According to Kogge [5] such 

systems can carry out real computations 1,000 times more challenging than those 

computable by early terascale systems. The size of such systems raises particular 

challenges, including performance on each node, scalable programming models, 

performance and correctness debugging, and improving fault tolerance and recovery. 

On the applications side, Gropp [6] stresses the fact that when discussing such 

systems researchers often overlook the increasing complexity of individual nodes, 

processors and the underlying network. Particular applications may benefit from the 

sheer power of such systems, but the majority of them have to be re-examined. Again, 

according to Gropp [6], researchers are creating new tools to develop, debug, and tune 

applications, as well as creating new programming models and languages that could 



enhance scalability by reducing communication overhead. The Computational Fluid 

Dynamics (CFD) community is aware of these new developments [7]. 

In Brazil there is a growing need to understand complex processes in the oil and 

gas industry. Particularly, understanding these processes is therefore critical to 

effective exploration for oil and gas in the recently discovered pre-salt fields in ultra-

deep waters offshore in Brazil. Several of such complex processes can be recast in the 

general framework of fluid-structure interaction and coupled fluid flow and transport 

problems, involving multiple spatial and temporal scales. This paper presents a 

parallel performance evaluation of computation and communication models 

implemented in EdgeCFD, an implicit edge-based coupled fluid flow and transport 

solver for large-scale problems in modern clusters. EdgeCFD currently supports 

stabilized and multiscale finite element formulations and has been used in problems 

ranging from Newtonian and non-Newtonian fluid flows, free-surface flow 

simulations with fluid-structure interaction, gravity currents and turbulence (details 

available in [2] and references therein). Of particular interest in the present work is 

EdgeCFD’s performance in the current multi-core processors, particularly process 

placement within processors and the impact of several subdomain communication 

models. The target machines are modern clusters with the latest processor and 

network technologies, paving the way towards sustained petascale performance. 

Following [4] and [10], where strategies for massive parallelism computations in 

unstructured grids are discussed, EdgeCFD adopts peer-to-peer non-blocking 

communication among processes. 

The remainder of this paper is as follows. Next section details the benchmark 

software and communication models currently supported. The natural convection 

problem used to access parallel performance metrics is given in Section 3. The paper 

ends with a summary of our main conclusions.  

2   EdgeCFD: The Benchmark Software 

EdgeCFD was chosen to evaluate performance in several aspects, such as: parallel 

models, system architecture and processors. EdgeCFD was developed to exploit 

parallel architectures in four different ways, which broaden the range of machines that 

can be efficiently used. Three of them rely on message passing interface (MPI) 

implementations while the fourth one is based on threaded parallelism for shared 

memory systems or system components such as many-cores processors with shared 

memory at cache levels. 

For the message passing implementations, the three variants differ in how data are 

split and messages exchanges are scheduled among processors. The simplest case is 

based on collective communication calls. In this strategy, nodes are divided in two 

groups: parallel interface and internal nodes. Interface nodes, all hollow and solid 

vertices in Figure 1a, are known by all processors. On the other hand, nodes owned 

exclusively by a processor are internal nodes.  Computation of matrix-vector products 

and residuals are performed in just one, blocking, step where the parallel interface 

values are combined using MPI_ALLREDUCE operations. This collective 

communication model was further extended to remove the need of excessive data 



exchange as well as redundant information storage. In this case, globalization 

operations are also performed in one step but, now, using MPI_ALLGATHER calls. 

The more complex message passing parallel model employs peer-to-peer (p2p) 

message exchanges among processors and takes advantage of communication and 

computation overlapping. Following [4], the point-to-point (p2p) communication 

strategy is based on a master-slave relationship between processors. This relationship 

is established by creating a hierarchy based on host partition numbers. Thus, the 

processor Pi is slave of Pj if Pi and Pj are neighbors and i < j. Note that a processor 

can be slave and master at the same time, depending only on the number that 

identifies it in relation to its neighbors. Figure 1a illustrates a two dimensional mesh 

which is decomposed into four partitions. The hollow vertices denote the nodes, or 

degrees of freedom of the system of equations, that will be sent to the receiver (a 

master processor). On the other hand, the solid vertices represent the nodes or degrees 

of freedom that will be received from donors (a slave processor). Figure 1b shows the 

communication graph corresponding to this mesh. In this case, P1 is slave of P2 and 

P3. P2 is slave of P3 and P4 but it is master of P1. P3 is slave of P4 and master of P1 

and P2. Finally, P4 is master of P2 and P3. 

 

 
 

(a) Mesh Partition (b) Communication Graph 

Fig. 1.  Master-Slave relationship 

The information exchange among neighboring processors is implemented in two 

stages: in the first stage, slaves processes send their information to be operated by 

masters (where the interface contributions are accumulated) and, in the second stage, 

the solution values are copied back from masters to slaves. In addition, EdgeCFD uses 

non-blocking send and receive MPI primitives, which allow communication and 

computation overlapping.  

3   Performance tests 

The three dimensional Rayleigh–Benard convection problem is used to investigate 

code performance in situations ranging from small to large scale simulations in 

different architectures and system configurations. The problem consists in a fluid, 

initially at rest, contained in a 3D rectangular domain with aspect ratio 4:1:1 

(Lenght:Depth:Height) and subjected to an unity temperature gradient [3]. For a 4:1:1 



container aspect ratio, with no-slip boundary conditions at walls, the flow is three 

dimensional and must gives rise to four convection cells. The fluid properties are set 

to result in Rayleigh and Prandt numbers of 30,000 and 0.71 respectively. For the 

performance tests two meshes with different discretizations are used. The coarser 

mesh (MSH1) is formed by 178,605 tetrahedra elements and 39,688 nodes while the 

finer one (MSH2) is made by splitting the domain in 501×125×125 divisions, which 

gives rise to 39,140,625 tetrahedral elements. In both cases the solution is evolved 

towards steady-state using EdgeCFD's block sequential implicit time-marching 

scheme. In this scheme the Navier-Stokes block is solved by the Inexact-Newton 

method and the temperature block by simple multi-correction iterations. The inner 

iterative driver for both Navier-Stokes and temperature transport is an edge-based 

preconditioned GMRES method. A nodal block-diagonal preconditioner is used for 

the Navier-Stokes equations while a simple diagonal preconditioning is employed for 

the temperature equation. GMRES tolerance for the temperature is fixed at 10
−3

 while 

the maximum tolerances for the inexact Newton method is set to 0.1. For both, flow 

and transport, the number of Krylov vectors is fixed in 25. We consider that steady 

state is achieved when the relative velocity increment differs by less than 10
−5

. 

 

Tests are carried out in three different Intel Xeon-based HPC systems. All 

systems are equipped with quad core CPUs.  

 

• SGI Altix ICE cluster with 32 compute nodes. Each node has eight 2.66 GHz 

cores (in two Intel Xeon Processor Quad-Cores, Clovertown - X5355). L2 cache 

size 8MB on-die for Quad-Core; 4MB per core pair; shared by the two cores. 

Memory Blade:  16GB. All nodes are interconnected using InfiniBand 

technology in a Hypercube topology. 

• DELL cluster PowerEdge M1000e with 16 compute nodes (M600). Each node 

has eight 3.00 GHz cores (in two Intel Xeon Processor Quad-Cores, Harpertown - 

E5450). L2 cache size 12MB on-die for Quad-Core; 6MB per core pair; shared 

by two cores. Memory Blade:  16GB. All nodes are interconnected using 

InfiniBand technology in a full-CLOS topology.  

• Intel Nehalem server with eight 2.8 GHz cores (in two Intel Xeon Processor 

Quad-Cores, Nehalem – X5560). L3 cache size 8 MB shared by all cores. 

Memory: 12 GB.  

 

All systems have similar configurations in terms of number of sockets per node 

and cores per socket. Tests were performed using Intel Fortran compiler using the 

same compilation options in all cases. The cache sharing scheme in older Intel Xeon 

processors, although behaving as Quad-core are, in fact, two Dual-core processors put 

together. Mesh entities are ordered to improve data locality as described in [1].  

In the performance tests, initially, we evaluate single node performance and multi-

core performance according to the parallel models described in Section 2. Tests are 

primarily conducted in the coarser mesh (MSH1), for runs using up to 8 intra-node 

cores. In other words, no network connection was employed in order to reveal 

intrinsic CPU aspects, such as: cache size, memory sharing, load balance, process 

placement, etc.... Figure 2 shows the speedup for EdgeCFD, running the parallel 

schemes presented in section 2, using 2 different systems, SGI Altix ICE 8200 (Figure 



2a) and the Nehalem server (Figure 2b). The systems are chosen to show the 

performance evolution between 2 Xeon family processors, X5355 and X5560 

respectively. 

 
 

 
(a) SGI Altix ICE (clovertown) (b) Nehalem server (i7) 

Fig. 2.  Speedup for two Xeon systems running up to 8 intra-node cores 

As can be seen from Figure 2, the overall performance is much better in the newer 

Xeon processor (Nehalem or i7) than in previous version (Clovertown/Harpertown). 

Regarding the parallel scheme, the peer-to-peer model resulted in the best 

performance, as expected, reaching a particularly good speedup in the Nehalem 

processor. However, for the Clovertown CPU, the poor performance led us to 

investigate this issue from other aspects, such as: cache size and sharing, node 

architecture, etc. In both architectures peer-to-peer message passing is clearly 

superior. Earlier experiments [11] on a HP ProLiant DL145 G3 cluster with 912 cores 

powered with Opteron 2218 dual core processors and Gigabit network have shown 

that p2p was also faster than collective communication when using more than one 

computational node. 

Figure 3a show a raw comparison among the benchmark systems when running 

serial cases (using one core). It clearly shows the performance increase for the Intel 

Xeon processor between releases from 2006 (Clovertown) until 2009, when Nehalem 

processor was launched.  The wall time reduction, in our tests, reached 37% for 

processors with 3 years of difference. The performance gains are even more 

pronounced when we analyze the multi-core case running in a single node (Figure 

3b). Other interesting result is the parallel performance shown by Nehalem which is 

faster than the Cluster Dell and SGI Altix-ICE systems, where older Intel Xeon CPUs 

are present. It seems that these results are mainly influenced by the cache memory 

system that Nehalem processor has.  



  
(a) CPU (serial run) (b) System (8 cores, 1 node) 

Fig. 3.  System comparisons for CPU performance in serial runs (a) and peer-to-peer MPI 

performance using 8 cores in 1 node (b). 

Motivated by the results presented so far, tests were also conducted considering 

different combinations of cores per nodes. Figure 4a shows the elapsed wall time 

spent to solve the Rayleigh-Benard problem in parallel (message passing with peer-to-

peer scheme), using 8 cores for several arranges of cores × nodes. Tests were 

performed in Cluster Dell but similar results were also obtained in the SGI Altix ICE 

8200.  

From Figure 4a, we note that diminishing the number of cores per node, the 

performance increases substantially, which points out that older Xeon processors 

suffer when all cores are simultaneously busy. It is important to remember that the 

main EdgeCFD’s kernels (matrix-vector product, stiffness matrix build up and 

assembly of elements residua) strongly relies in indirect memory addressing 

operations and are, thus, influenced by how mesh entities are accessed and used 

during these operations. In EdgeCFD, mesh entities are reordered to makes efficient 

use of cache memory as explained in details in [1]. However, due to the complexity of 

the main loops of the software, cache misses are expected even for reordered meshes.  

To better understand the meshing ordering effect we have also run this problem 

considering two mesh configurations: original nodal ordering and nodes reordered 

using Reverse Cuthill Mckee (RCM).  In the latter case, edges and elements were 

ordered in ascending order of edge (element) nodes. All tests were made in a single 

node. For the first case, it was necessary 24:26 (mm:ss) to solve the Rayleigh-Benard 

problem on MSH1, while for the reordered, the wall time decreased to 17:57 (mm:ss). 

The parallel profiling information was obtained using TAU (Tuning Analysis Utilities 

[9]) and, for the case using one core per node, where all communication is made 

through InfiniBand network, the time spent in MPI_WaitAll  calls was around 3.2% 

of the total wall time. For the case using all cores available in one node, where all 

communication is made using memory bus, the largest MPI cost, due to MPI_WaitAll 

routine, was around 2.4%. This may be an indication of the MPI inability to provide 

efficient communication in non-homogeneous systems (here memory bus/InfiniBand) 

as described in [8]. 



Figure 4b presents the speedup curve obtained with p2p communication pattern 

and using the best combination of cores per nodes in the Cluster Dell system. 

Comparing with Figure 2a, which presents the same metric for the SGI Altix ICE 

8200, but using only one node, we can conclude that using a large number of cores 

per node dramatically reduces performance. Note that using one core per node, 

12.5% of the theoretical processing power, an ideal speed-up is reached. This also 

supports the previous argument, because in this case, communication is homogeneous 

and uses only InfiniBand network. 

  
(a) CPU (serial run) (b) Best speedup - one core per node 

Fig. 4.  Performance impact according to cores x nodes distribution on Cluster Dell 

 

In order to illustrate the impact of the performance issues discussed in previous 

sections, tests are also conducted for the same problem in the finer mesh (MSH2) 

described in section 3. For this test, 64 cores are employed to solve 31,140,625 flow 

equations per nonlinear iteration per time step and 7,843,248 transport equations for 

each multi-correction iteration per time step. The number of time steps considered 

was enough to make the initialization process negligible. Two runs with different 

combinations of cores × node are used. In the first run, all cores of 8 nodes are used in 

order to exhaust nodes resources. In the second case, only 4 cores are used from 16 

nodes, 50% of each node resources. In the first case, it is necessary 01:49:13 

(hh:mm:ss) to solve 10 time steps while in the second case, considering only 50% of 

each node capacity, the walltime substantially decreased to 00:57:05. All runs are 

performed in the Cluster Dell, which uses Intel Xeon E5450.  

4   Concluding Remarks 

This work presented several performance tests for different versions of the Intel Xeon 

processor family running EdgeCFD, a stabilized finite element software for solving 

incompressible flows coupled (or not) to advection-diffusion transport problems. 

Tests focused in single node multi-core performance showing that past Intel Xeon 

processors dramatically suffers when large workloads are imposed to a single node. 

However, the problem seems to be mitigated in the newest Intel Xeon processor 



(codename Nehalem or commercial name Core I7) by the inclusion of a third level 

(L3) of shared cache memory. Other important change made by Intel, in its newest 

Xeon processor, was the construction of a fast linking channel among processors 

called Quick Path Interconnect, QPI for short. As a consequence, performance 

dramatically decreases when systems built with older Intel Xeon processors are 

subjected to large workloads. In the other hand, excellent performances may be 

reached when placement policies, such as using a smaller number of cores per node, 

are adopted as shown in Figure 4.  

We also investigated message-passing parallelism. We observed that peer-to-peer 

two-stage information exchange among neighboring processors, using non-blocking 

send and receive MPI primitives, present the best performance. Experiments also 

demonstrate the difficulty of MPI to handle heterogeneous communication. Moreover, 

by setting a suitable MPI process distribution, execution time can be reduced by more 

than one half as we observe in the large run with the finer mesh on the Cluster Dell. A 

possible direction to tackle such difficulties is to set-up an architecture aware mesh 

partition, but this remains to be explored in EdgeCFD. 

Acknowledgements. This work is partially supported by CNPq, Petrobras, ANP, Dell 

and Intel.  

References 

 

1. Coutinho, A.L.G.A., Martins, M.A.D., Sydenstricker, R.M., Elias, R.N. Performance 

comparison of data-reordering algorithms for sparse matrix–vector multiplication in edge-
based unstructured grid computations. International Journal for Numerical Methods in 

Engineering, 66:431–460, 2006. 

2. Lins, E.F., Elias, R.N., Guerra, G.M., Rochinha, F.A., Coutinho, A.L.G.A. Edge-based finite 

element implementation of the residual-based variational multiscale method. International 

Journal for Numerical Methods in Fluids, 61(1):1-22, 2009.  

3. Kessler, R., Nonlinear transition in three-dimensional convection, Journal of Fluid 
Mechanics, 174:357-379. 

4. Sahni, O., Zhou, M., Shepard, M. S., Jansen, K. E., Scalable Implicit Finite Element Solver 

for Massively Parallel Processing with Demonstration to 160K Cores, Proceedings of the 

Supercomputing Conference, Portland, OR, USA, 2009 

5. Kogge, P., The Challenges of Petascale Architectures, IEEE Computing in Science 
Engineering, pp 10-16, Nov-Dec 2009.  

6. Gropp, W.D., Software for Petascale Computing System, IEEE Computing in Science 

Engineering, pp 17-21, Nov-Dec 2009.  

7. Biswas, R., Proceedings of the 21st International Conference on Parallel Computational 

Fluid Dynamics, Moffet Field, CA, May 2009.  

8. G. Berti, J.L. Traff, What MPI Could (and Cannot) Do for Mesh-Partitioning on Non-

homogeneous Networks. In: Bernd Mohr, Jesper Larsson Träff, Joachim Worringen, Jack 

Dongarra (Eds.): Recent Advances in Parallel Virtual Machine and Message Passing 

Interface, 13th European PVM/MPI User's Group Meeting, Bonn, Germany,  Lecture Notes 

in Computer Science 4192 Springer 2006.  

9. S. Shende and A. D. Malony. The TAU Parallel Performance System  International Journal 

of High Performance Computing Applications, 20(2): 287-311, 2006.  



10. Houzeaux, G., Vázquez, M., Aubry, R., Cela, J. M., A Massively Parallel Fractional Step 

Solver for Incompressible Flows, Journal of Computational Physics, 228:6316-6332, 2009 

11. Elias, R.N., Camata, J.J., Paraizo, P., Coutinho, A.L.G.A., Communication and 

Performance Evaluation of Edge-Based Coupled Fluid Flow and Transport Computations, 
ECCOMAS, Coupled Problems, Barcelona, 2009 

 


