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Abstract. The use of GPUs to accelerate the factoring of large sparse 
symmetric indefinite matrices shows the potential of yielding important benefits 
to a large group of widely used applications.  This paper examines how a 
multifrontal sparse solver performs when exploiting both the GPU and its 
multi-core host.  It demonstrates that the GPU can dramatically accelerate the 
solver relative to one host CPU. Furthermore, the solver can profitably exploit 
both the GPU to factor its larger frontal matrices and multiple threads on the 
host to handle the smaller frontal matrices. 
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1   Introduction 

Solving the system of linear equations Ax = b, where A is both large and sparse, is a 
computational bottleneck in many scientific and engineering applications.  Therefore, 
over the past forty years, a tremendous amount of research has gone into this problem, 
exploring both direct and iterative methods [1].  This paper focuses on a subset of this 
large space of numerical algorithms, factoring large sparse symmetric indefinite 
matrices.  Such problems often arise in Mechanical Computer Aided Engineering 
(MCAE) applications.  For decades, researchers have sought to exploit novel 
computing systems to accelerate the performance of sparse matrix factorization 
algorithms.  This paper continues that trend, exploring whether or not one can 
accelerate the factorization of large sparse matrices, which is already parallelized on a 
modern multi-core microprocessor, by additionally exploiting graphics processing 
units (GPUs). 

The GPU is a very attractive candidate as an accelerator to ameliorate a 
computational bottleneck such as sparse matrix factorization.  Unlike previous 
generations of accelerators, such as those designed by Floating Point Systems [2] for 
the relatively small market of scientific and engineering applications, current GPUs 
are designed to improve the end-user experience in mass-market arenas such as 



gaming.  Together with other niche chips, such as Sony, Toshiba, and IBM’s (STI) 
Cell [3], they are a new generation of devices whose market share is growing rapidly, 
independently of science and engineering.  The extremely high peak floating point 
performance of these new commodity components begs the question as to whether or 
not they can be exploited to increase the throughput and/or reduce the cost of 
applications beyond the markets for which they are targeted.  The quest to explore 
broader use of GPUs is often called GPGPU, which stands for General Purpose 
computation on GPUs [4]. 

There are many algorithms for factoring large sparse linear systems.  The 
multifrontal method [5] is particularly attractive, as it transforms the sparse matrix 
factorization into a hierarchy of dense matrix factorizations.  Multifrontal codes can 
effectively exploit the memory hierarchies of cache-based microprocessors, routinely 
going out-of-core to disk as needed.  With the right data structures, the vast majority 
of the floating point operations can be performed with calls to highly tuned BLAS3 
routines, such as the SGEMM matrix-matrix multiplication routine [6], and near peak 
throughput is expected.  Not surprisingly, all of the major commercial MCAE 
applications use multifrontal solvers.   

Recent GPGPU work has demonstrated that dense, single-precision linear algebra 
computations, e.g., SGEMM, can achieve very high levels of performance on GPUs 
[7][8][9].  This in turn led to early efforts to exploit GPUs in multifrontal linear 
solvers by investigators at USC [10], ANSYS [11], and AAI [12].  These early efforts 
compared the performance of early model NVIDIA G80 GPUs to that of single CPU 
hosts.  In the work reported herein, we extend the previous work and report on the 
performance of a multifrontal linear solver exploiting both a state-of-the-art NVIDIA 
Tesla C1060 GPU as well as shared memory concurrency on its dual-socket, quad-
core Intel Nehalem host microprocessor.   

The remainder of the paper is organized as follows.   The next section provides a 
brief overview of the multifrontal method and illustrates how it turns a sparse problem 
into a tree of dense ones.  This is followed by a brief overview of the NVIDIA Tesla 
C1060 GPU used in this experiment.  We discuss both the unique nature of its 
architecture as well as its CUDA programming language.  Section IV presents our 
strategy for factoring individual frontal matrices on the GPU and provides 
performance results on the GPU.  Section V presents the impact on the overall 
performance of the multifrontal sparse solver of utilizing both shared memory 
parallelism and the GPU.  Finally, we summarize the results of our experiment and 
suggest directions for future research.  

2. Overview of a Multifrontal Sparse Solver 

Fig.1 depicts the non-zero structure of a small sparse matrix.  Coefficients that are 
initially non-zero are represented by an ‘x’, while those that fill-in during 
factorization are represented by a ‘*’.  Choosing an optimal order in which to 
eliminate these equations is in general an NP-complete problem, so heuristics, such as 
METIS [13], are used to try to reduce the storage and operations necessary.  The 
multifrontal method treats the factorization of the sparse matrix as a hierarchy of 



dense sub-problems.  Fig.2 depicts the multifrontal view of the matrix in Fig.1. The 
directed acyclic graph of the order in which the equations are eliminated is called the 
elimination tree.  When each equation is eliminated, a small dense matrix called the 
frontal matrix is assembled.  In Figure 1, the numbers to the left of each frontal matrix 
are its row indices.  Frontal matrix assembly proceeds in the following fashion:  the 
frontal matrix is cleared, it is loaded with the initial values from the pivot column 
(and row if it’s asymmetric), then any updates generated when factoring the pivot 
equation’s children in the elimination tree are accumulated.  Once the frontal matrix 
has been assembled, the variable is eliminated.  Its Schur complement (the shaded 
area in Fig.2) is computed as the outer product of the pivot row and pivot column 
from the frontal matrix.  Finally, the pivot equation’s factor (a column of L) is stored 
and its Schur complement placed where it can be retrieved when needed for the 
assembly of its parent’s frontal matrix.  If a post-order traversal of the elimination tree 
is used, the Schur complement matrix can be placed on a stack of real values. 

 

1 X X   X      
3 XX     X
2 XXX   *X*
7 X XX  
9 XX  X
8 XXX*X*
4 X *X *XX* 
5 X  XXXX
6 X* X**XX

1 X X   X      
3 XX     X
2 XXX   *X*
7 X XX  
9 XX  X
8 XXX*X*
4 X *X *XX* 
5 X  XXXX
6 X* X**XX
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Fig.1 Sparse matrix with symmetric 
non-zero structure 

Fig.2 Multifrontal view of sparse matrix  
from Fig.1 

The cost of assembling frontal matrices is reduced by exploiting supernodes.  A 
supernode is a group of equations whose non-zero structures in the factored matrix are 
indistinguishable.  For example, zeros filled-in during the factorization of the matrix 
in Fig.1 turn its last four equations into a supernode.  The cost of assembling one 
frontal matrix for the entire supernode is amortized over the factorization of all the 
constituent equations, reducing the multifrontal matrices overhead.  Furthermore, 
when multiple equations are eliminated from within the same frontal matrix, their 
Schur complement can be computed very efficiently as the product of two dense 
matrices. 

Fig.3 depicts a finite element grid generated by the LS-DYNA MCAE code 
(www.lstc.com).  The matrix for the grid in Fig 3 is relatively small, having only 
235,962 equations.  Matrices with two orders-of-magnitude more equations are 
routinely factored today.  Factoring such large problems can take many hours, a time 
that is painfully apparent to the scientists and engineers waiting for the solution. 

Fig.4 illustrates the elimination tree for the matrix corresponding to the grid in Fig 
3, as ordered by METIS.  This particular elimination tree has 12,268 relaxed [14] 
supernodes in it.  There are thousands of leaves and one root.  The leaves are relative 
small, O(10) equations being eliminated from O(100).  The supernodes near the root 
are much bigger. Hundreds of equations are eliminated from over a thousand.  



Because dense factor operations scale as order N3

 

, approximately two-dozen 
supernodes at the top of the tree contain half of the total factor operations. 

 
Fig.3: Example of an MCAE Finite Element Problem and Grid (courtesy LSTC) 

 

 
Fig. 4 Supernodal elimination tree for problem in Figure 3 (courtesy Cleve Ashcraft) 

 
The multifrontal code discussed in this paper has two strategies for exploiting 

shared-memory, multithreaded concurrency.  The frontal matrices at the leaves of the 
elimination tree can all be assembled and factored independently.  At the lower levels 
in the tree, there can be thousands of such leaves, dwarfing the number of processors, 
and hence each supernode is assigned to an individual processor.  This leads to a 
breadth-first traversal of the elimination tree, and a real stack can no longer be used to 
manage the storage of the update matrices [15].  Near the top of the elimination tree, 
the number of supernodes drops to less than the number of processors.  Fortunately, 
for the finite element matrices considered in this work, these few remaining 
supernodes are large, and a right-looking code can be sped up by dividing the matrix 
into panels and assigning them to different processors. 

The objective of the work reported here is to attempt to use GPUs as inexpensive 
accelerators to factor the large supernodes near the root of the elimination tree, while 
processing the smaller supernodes near the bottom of the tree by exploiting shared-



memory concurrency on the multicore host.  This should lead to a significant increase 
in the throughput of sparse matrix factorization compared to a single CPU.  The next 
section gives a brief description of the NVIDIA Tesla C1060 and its CUDA 
programming language, highlighting just those features used in this work to factor 
individual frontal matrices. 

3. Graphics Processing Units 

The NVIDIA Tesla GPU architecture consists of a set of multiprocessors.  Each of the 
C1060’s thirty multiprocessors has eight Single Instruction, Multiple Data (SIMD) 
processors. This GPU supports single precision (32 bit) IEEE 754 [16] formatted 
floating-point operations.  It also supports double precision, but at a significantly 
lower performance.  Each SIMD processor can perform two single precision 
multiplies and one add at every clock cycle.  The clock rate on the C1060 card is 1.3 
GHz.  Therefore, the peak performance is: 

 
  1.3 GHz * 3 results/cycle * 8 SIMD/mp * 30 mp = 936 GFlops/s 
 
The ratio of multiplies to adds in matrix factorization is one, so for a linear solver, 

the effective peak performance is 624 GFlop/s.  In practice, the NVIDIA CuBLAS 
SGEMM routine delivers just over half of that performance. 

Memory on the Tesla GPU is organized into device memory, shared memory and 
local memory. Device memory is large (4 GBytes), is shared by all multiprocessors, is 
accessible from both host and GPU, and has high latency (over 100 clock cycles).  
Each multiprocessor has a small (16 KBytes) shared memory that is accessible by all 
of its SIMD processors. Shared memory is divided into banks and, if accessed so as to 
avoid bank conflicts, has a one cycle latency.  Shared memory should be thought of a 
user-managed cache or buffer between device memory and the SIMD processors.  
Local memory is allocated for each thread.  It is small and can be used for loop 
variables and temporary scalars, much as registers would be used.  The constant 
memory and texture memory were not used in this effort.   

In our experience, there are two primary issues that must be addressed to use the 
GPU efficiently: 

 code must use many threads, without conditionals, operating on 
separate data to keep the SIMD processors busy 

 code must divide data into small sets, which can be cached in 
the shared memory. Once in shared memory, data must be used 
in many operations (10 – 100) to mask the time spent 
transferring between shared and device memory.  

It is not yet feasible to convert a large code to execute on the GPU.  Instead, compute-
bound subsets of the code should be identified that use a large percentage of the 
execution time.  Only those subsets should be converted to run on the GPU.  Their 
input data is transferred from the host to the GPU’s device memory before initiating 
computation on the GPU.  After the GPU computation is complete, the results are 
transferred back to the host from the GPU’s device memory.  



To facilitate general-purpose computations on their GPU, NVIDIA developed the 
Compute Unified Device Architecture (CUDA) programming language [17].  CUDA 
is a minimal extension of the C language and is loosely type-checked by the NVIDIA 
compiler (and preprocessor), nvcc, which translates CUDA programs (.cu) into C 
programs.  These are then compiled with the gcc compiler and linked as an NVIDIA 
provided library.   Within a CUDA program, all functions have qualifiers to assist the 
compiler with identifying whether the function belongs on the host of the GPU.  For 
variables, the types have qualifiers to indicate where the variable lives, e.g., 
__device__ or __shared__.  CUDA does not support recursion, static 
variables, functions with arbitrary numbers of arguments, or aggregate data types. 

4. Algorithm for Factoring Individual Frontal Matrices on the 
GPU 

In earlier work, we determined that, in order to get meaningful performance using the 
GPU, we had to both maximize use of the NVIDIA supplied SGEMM arithmetic 
kernel and minimize data transferred between the host and the GPU.  We decided to 
adopt the following strategy for factoring individual frontal matrices on the GPU: 

• Download the factor panel of a frontal matrix to the GPU. Store symmetric 
data in a square matrix, rather than a compressed triangular.  This wastes 
storage, but is easy to implement. 

• Use a left-looking factorization, proceeding over panels from left to right: 
- Update a panel with SGEMM 
- Factor the diagonal block of the panel 
- Eliminate the off-diagonal entries from the panel 

• Update the Schur complement of this frontal matrix with SGEMM 
• Return the entire frontal matrix to the  host, converting back from square to 

triangular storage 
Return an error if the pivot threshold was exceeded or a diagonal entry was  
• equal to zero  

 
Table 1  Log of time spent factoring a model frontal matrix 

 

Method Name GPU msec %GPU time 

Copy data to and from GPU 201.0 32.9% 
Factor 32x32 diagonal blocks 42.6 7.0% 
Eliminate off diagonal panels 37.0 6.1% 

Update with SGEMM 330.6 54.1% 
Total time 611.4 100.0% 

 
The time log for factoring a large, simulated frontal matrix with the fully optimized 

CUDA factorization code is in Table 1.  This timing was taken when the GPU was 



eliminating 3072 equations from 4096.  Approximately half of the execution time on 
the GPU is spent in SGEMM.  Eliminating off-diagonals and factoring diagonal 
blocks takes only 13% of the time.  The remaining third of the time is spent realigning 
the matrices and copying data to and from the host.  A further 0.029 seconds are spent 
on the host, and not reflected in Table 1.  The computation rate for the entire dense 
symmetric factorization is 163 GFlops/s.  In contrast, four cores of the Intel Xeon 
Nehalem host achieve 29 GFlop/s when factoring the same sized frontal matrix and 
using the same 32-column panel width.  Performance results using the GPU to factor 
a variety of model frontal matrices is presented in Table 2.  These range in the number 
of equations eliminated from the frontal matrix (size) as well as the number of 
equations left in the frontal matrix, i.e., its external degree (degree).  As expected, the 
larger the frontal matrix gets, the more operations one has to perform to factor it, and 
the higher the performance of the GPU.  

 
Table 2  Performance of the GPU frontal matrix factorization kernel. 
 

Size Degree Secs GFlop/s 
1024 1024 0.048 51.9 
1536 1024 0.079 66.3 
2048 1024 0.117 79.7 
512 2048 0.045 60.2 
1024 2048 0.079 86.5 
1536 2048 0.123 101.3 
2048 2048 0.179 112.2 
512 3072 0.076 74.7 
1024 3072 0.128 103.9 
1536 3072 0.188 122.4 
2048 3072 0.258 136.0 
512 4096 0.116 84.0 
1024 4096 0.185 118.3 
1536 4096 0.267 137.3 
2048 4096 0.361 150.9 

5. Performance of the Accelerated Multifrontal Solver 

In this section we examine the performance impact of the GPU on overall multifrontal 
sparse matrix factorization.  We will use a matrix extracted from the LS-DYNA 
MCAE application.  It is derived from a three dimensional problems composed of 
three cylinders nested within each other, and connected with constraints.  The rank of 
this symmetric matrix is 760320 and its diagonal and lower triangle contain 29213357 
non-zero entries.  After reordering with Metis, it takes 7.104E+12 operations to factor 
the matrix.  The resulting factored matrix contains 1.28E+09 entries.   

Figure 5 plots the time is takes to factor the matrix, as a function of the number of 
cores employed, both with and without the GPU.  The dual socket Nehalem host 
sustains 10.3 GFlop/s when using one core, and 59.7 GFlop/s when using all eight.  
When the GPU is employed, it performs 6.57E+12 operations, 92% of the total, and 
sustains 98.1 GFlop/s in doing so.  The overall performance with the GPU improves 



to 61.2 GFlop/s when one host core is used, and 79.8 GFlop/s with all eight.  For 
perspective, reordering and symbolic factorization take 7.9 seconds, permuting the 
input matrix takes 2.64 seconds, and the triangular solvers take 1.51 seconds. 

 
 
Fig. 5 Multicore factorization time, with and without the GPU. 
 
To understand why there seems to be so little speedup when the GPU-enhanced 

solver goes from one core to eight, consider Figure 6.  It displays the number of 
supernodes per level in the elimination tree for the three cylinder matrix, along with 
the number of operations required to factor the supernodes at each level.  Notice that 
the vast majority of the operations are in the top few levels of the tree, and these are 
processed by the GPU.   

Figure 7 plots the performance achieved by the multicore host when factoring the 
supernodes at each level of the tree.  Note, near the leaves, performance is nowhere 
near the peak.  This is true even for one core, as the supernodes are too small to 
facilitate peak SGEMM performance.  As multiple cores are used, relatively little 
speedup is observed, which is likely due to the relatively low ratio of floating point 
operations to memory loads and stores for these small supernodes, leaving them 
memory bound on the multicore processor. 

 
 



 
 
Fig. 6 Number of supernodes and factor operations per level in the tree. 
 

 
 
Fig. 7 Multicore performance per level in the elimination tree. 



6. Summary 

This paper has demonstrated that a GPU can in fact be used to significantly accelerate 
the throughput of a multi-frontal sparse symmetric factorization code, even when 
exploiting shared memory concurrency on the host multicore microprocessor.  We 
have demonstrated factorization speed-up of 5.91 relative to one core on the host, and 
1.34 when using eight cores.  This was done by designing and implementing a 
symmetric factorization algorithm for the NVIDIA C1060 in the CUDA language and 
then offloading a small number of large frontal matrices, containing over 90% the 
total factor operations, to the GPU. 

The authors have recently received a preproduction NVIDIA C2050 (Fermi) GPU, 
which provides double precision at one half the performance of single precision, 
much like the Pentium host’s SSE function units. We will rerun the experiments 
reported above in double precision and report the results at VecPar 2010.  We expect 
no change to our overall conclusion that GPUs can accelerate the shared memory 
multifrontal code. 

We believe that by demonstrating that the GPU can be successfully exploited in a 
production quality, double precision multifrontal code, we will have taken the next 
logical step towards integrating GPUs into MCAE applications.  However, more work 
needs to be done before the use of GPUs will be common for the numerical aspects of 
such applications.  The GPU frontal matrix factorization code implemented for this 
experiment should be revisited to make it more efficient in its use of memory on the 
GPU.  It should be modified to implement pivoting so that indefinite problems can be 
factored entirely on the GPU.  Further, it should be extended to work on frontal 
matrices that are bigger than the relatively small device memory on the GPU, much as 
the multifrontal code goes out-of-core when the size of a sparse matrix exceeds the 
memory of the host processor. 

Finally, if one GPU helps, why not more?  Researchers have been implementing 
parallel multifrontal codes for over two decades [18].  In fact, the multifrontal code 
used in these experiments has both MPI constructs.  Therefore exploiting multiple 
GPUs is not an unreasonable thing to consider.  However, when one considers that 
one would have to simultaneously overcome both the overhead of accessing the GPU 
as well as the costs associated with communicating amongst multiple processors; it 
may be very challenging to efficiently factor one frontal matrix with multiple GPUs. 
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