
Multifrontal Computations on GPUs
and Their Multi-core Hosts

Robert F. Lucas1, Gene Wagenbreth1, Dan M. Davis1, and Roger Grimes

2

1 Information Sciences Institute, University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90230
{rflucas, genew, ddavis}@isi.edu

2 Livermore Software Technology Corporation
7374 Las Positas Rd

Livermore, California 94551
grimes@lstc.com

Abstract. The use of GPUs to accelerate the factoring of large sparse
symmetric indefinite matrices shows the potential of yielding important benefits
to a large group of widely used applications. This paper examines how a
multifrontal sparse solver performs when exploiting both the GPU and its
multi-core host. It demonstrates that the GPU can dramatically accelerate the
solver relative to one host CPU. Furthermore, the solver can profitably exploit
both the GPU to factor its larger frontal matrices and multiple threads on the
host to handle the smaller frontal matrices.

Keywords: GPU acceleration, GPGPU, multifrontal algorithms, MCAE.

1 Introduction

Solving the system of linear equations Ax = b, where A is both large and sparse, is a
computational bottleneck in many scientific and engineering applications. Therefore,
over the past forty years, a tremendous amount of research has gone into this problem,
exploring both direct and iterative methods [1]. This paper focuses on a subset of this
large space of numerical algorithms, factoring large sparse symmetric indefinite
matrices. Such problems often arise in Mechanical Computer Aided Engineering
(MCAE) applications. For decades, researchers have sought to exploit novel
computing systems to accelerate the performance of sparse matrix factorization
algorithms. This paper continues that trend, exploring whether or not one can
accelerate the factorization of large sparse matrices, which is already parallelized on a
modern multi-core microprocessor, by additionally exploiting graphics processing
units (GPUs).

The GPU is a very attractive candidate as an accelerator to ameliorate a
computational bottleneck such as sparse matrix factorization. Unlike previous
generations of accelerators, such as those designed by Floating Point Systems [2] for
the relatively small market of scientific and engineering applications, current GPUs
are designed to improve the end-user experience in mass-market arenas such as

gaming. Together with other niche chips, such as Sony, Toshiba, and IBM’s (STI)
Cell [3], they are a new generation of devices whose market share is growing rapidly,
independently of science and engineering. The extremely high peak floating point
performance of these new commodity components begs the question as to whether or
not they can be exploited to increase the throughput and/or reduce the cost of
applications beyond the markets for which they are targeted. The quest to explore
broader use of GPUs is often called GPGPU, which stands for General Purpose
computation on GPUs [4].

There are many algorithms for factoring large sparse linear systems. The
multifrontal method [5] is particularly attractive, as it transforms the sparse matrix
factorization into a hierarchy of dense matrix factorizations. Multifrontal codes can
effectively exploit the memory hierarchies of cache-based microprocessors, routinely
going out-of-core to disk as needed. With the right data structures, the vast majority
of the floating point operations can be performed with calls to highly tuned BLAS3
routines, such as the SGEMM matrix-matrix multiplication routine [6], and near peak
throughput is expected. Not surprisingly, all of the major commercial MCAE
applications use multifrontal solvers.

Recent GPGPU work has demonstrated that dense, single-precision linear algebra
computations, e.g., SGEMM, can achieve very high levels of performance on GPUs
[7][8][9]. This in turn led to early efforts to exploit GPUs in multifrontal linear
solvers by investigators at USC [10], ANSYS [11], and AAI [12]. These early efforts
compared the performance of early model NVIDIA G80 GPUs to that of single CPU
hosts. In the work reported herein, we extend the previous work and report on the
performance of a multifrontal linear solver exploiting both a state-of-the-art NVIDIA
Tesla C1060 GPU as well as shared memory concurrency on its dual-socket, quad-
core Intel Nehalem host microprocessor.

The remainder of the paper is organized as follows. The next section provides a
brief overview of the multifrontal method and illustrates how it turns a sparse problem
into a tree of dense ones. This is followed by a brief overview of the NVIDIA Tesla
C1060 GPU used in this experiment. We discuss both the unique nature of its
architecture as well as its CUDA programming language. Section IV presents our
strategy for factoring individual frontal matrices on the GPU and provides
performance results on the GPU. Section V presents the impact on the overall
performance of the multifrontal sparse solver of utilizing both shared memory
parallelism and the GPU. Finally, we summarize the results of our experiment and
suggest directions for future research.

2. Overview of a Multifrontal Sparse Solver

Fig.1 depicts the non-zero structure of a small sparse matrix. Coefficients that are
initially non-zero are represented by an ‘x’, while those that fill-in during
factorization are represented by a ‘*’. Choosing an optimal order in which to
eliminate these equations is in general an NP-complete problem, so heuristics, such as
METIS [13], are used to try to reduce the storage and operations necessary. The
multifrontal method treats the factorization of the sparse matrix as a hierarchy of

dense sub-problems. Fig.2 depicts the multifrontal view of the matrix in Fig.1. The
directed acyclic graph of the order in which the equations are eliminated is called the
elimination tree. When each equation is eliminated, a small dense matrix called the
frontal matrix is assembled. In Figure 1, the numbers to the left of each frontal matrix
are its row indices. Frontal matrix assembly proceeds in the following fashion: the
frontal matrix is cleared, it is loaded with the initial values from the pivot column
(and row if it’s asymmetric), then any updates generated when factoring the pivot
equation’s children in the elimination tree are accumulated. Once the frontal matrix
has been assembled, the variable is eliminated. Its Schur complement (the shaded
area in Fig.2) is computed as the outer product of the pivot row and pivot column
from the frontal matrix. Finally, the pivot equation’s factor (a column of L) is stored
and its Schur complement placed where it can be retrieved when needed for the
assembly of its parent’s frontal matrix. If a post-order traversal of the elimination tree
is used, the Schur complement matrix can be placed on a stack of real values.

1 X X X
3 XX X
2 XXX *X*
7 X XX
9 XX X
8 XXX*X*
4 X *X *XX*
5 X XXXX
6 X* X**XX

1 X X X
3 XX X
2 XXX *X*
7 X XX
9 XX X
8 XXX*X*
4 X *X *XX*
5 X XXXX
6 X* X**XX

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

1

2

3

7

8

9

4

5

6

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

8
4
5
6

2
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

1

2

3

7

8

9

4

5

6

1

2

3

7

8

9

4

5

6

1

2

3

7

8

9

4

5

6

Fig.1 Sparse matrix with symmetric
non-zero structure

Fig.2 Multifrontal view of sparse matrix
from Fig.1

The cost of assembling frontal matrices is reduced by exploiting supernodes. A
supernode is a group of equations whose non-zero structures in the factored matrix are
indistinguishable. For example, zeros filled-in during the factorization of the matrix
in Fig.1 turn its last four equations into a supernode. The cost of assembling one
frontal matrix for the entire supernode is amortized over the factorization of all the
constituent equations, reducing the multifrontal matrices overhead. Furthermore,
when multiple equations are eliminated from within the same frontal matrix, their
Schur complement can be computed very efficiently as the product of two dense
matrices.

Fig.3 depicts a finite element grid generated by the LS-DYNA MCAE code
(www.lstc.com). The matrix for the grid in Fig 3 is relatively small, having only
235,962 equations. Matrices with two orders-of-magnitude more equations are
routinely factored today. Factoring such large problems can take many hours, a time
that is painfully apparent to the scientists and engineers waiting for the solution.

Fig.4 illustrates the elimination tree for the matrix corresponding to the grid in Fig
3, as ordered by METIS. This particular elimination tree has 12,268 relaxed [14]
supernodes in it. There are thousands of leaves and one root. The leaves are relative
small, O(10) equations being eliminated from O(100). The supernodes near the root
are much bigger. Hundreds of equations are eliminated from over a thousand.

Because dense factor operations scale as order N3

, approximately two-dozen
supernodes at the top of the tree contain half of the total factor operations.

Fig.3: Example of an MCAE Finite Element Problem and Grid (courtesy LSTC)

Fig. 4 Supernodal elimination tree for problem in Figure 3 (courtesy Cleve Ashcraft)

The multifrontal code discussed in this paper has two strategies for exploiting

shared-memory, multithreaded concurrency. The frontal matrices at the leaves of the
elimination tree can all be assembled and factored independently. At the lower levels
in the tree, there can be thousands of such leaves, dwarfing the number of processors,
and hence each supernode is assigned to an individual processor. This leads to a
breadth-first traversal of the elimination tree, and a real stack can no longer be used to
manage the storage of the update matrices [15]. Near the top of the elimination tree,
the number of supernodes drops to less than the number of processors. Fortunately,
for the finite element matrices considered in this work, these few remaining
supernodes are large, and a right-looking code can be sped up by dividing the matrix
into panels and assigning them to different processors.

The objective of the work reported here is to attempt to use GPUs as inexpensive
accelerators to factor the large supernodes near the root of the elimination tree, while
processing the smaller supernodes near the bottom of the tree by exploiting shared-

memory concurrency on the multicore host. This should lead to a significant increase
in the throughput of sparse matrix factorization compared to a single CPU. The next
section gives a brief description of the NVIDIA Tesla C1060 and its CUDA
programming language, highlighting just those features used in this work to factor
individual frontal matrices.

3. Graphics Processing Units

The NVIDIA Tesla GPU architecture consists of a set of multiprocessors. Each of the
C1060’s thirty multiprocessors has eight Single Instruction, Multiple Data (SIMD)
processors. This GPU supports single precision (32 bit) IEEE 754 [16] formatted
floating-point operations. It also supports double precision, but at a significantly
lower performance. Each SIMD processor can perform two single precision
multiplies and one add at every clock cycle. The clock rate on the C1060 card is 1.3
GHz. Therefore, the peak performance is:

 1.3 GHz * 3 results/cycle * 8 SIMD/mp * 30 mp = 936 GFlops/s

The ratio of multiplies to adds in matrix factorization is one, so for a linear solver,

the effective peak performance is 624 GFlop/s. In practice, the NVIDIA CuBLAS
SGEMM routine delivers just over half of that performance.

Memory on the Tesla GPU is organized into device memory, shared memory and
local memory. Device memory is large (4 GBytes), is shared by all multiprocessors, is
accessible from both host and GPU, and has high latency (over 100 clock cycles).
Each multiprocessor has a small (16 KBytes) shared memory that is accessible by all
of its SIMD processors. Shared memory is divided into banks and, if accessed so as to
avoid bank conflicts, has a one cycle latency. Shared memory should be thought of a
user-managed cache or buffer between device memory and the SIMD processors.
Local memory is allocated for each thread. It is small and can be used for loop
variables and temporary scalars, much as registers would be used. The constant
memory and texture memory were not used in this effort.

In our experience, there are two primary issues that must be addressed to use the
GPU efficiently:

 code must use many threads, without conditionals, operating on
separate data to keep the SIMD processors busy

 code must divide data into small sets, which can be cached in
the shared memory. Once in shared memory, data must be used
in many operations (10 – 100) to mask the time spent
transferring between shared and device memory.

It is not yet feasible to convert a large code to execute on the GPU. Instead, compute-
bound subsets of the code should be identified that use a large percentage of the
execution time. Only those subsets should be converted to run on the GPU. Their
input data is transferred from the host to the GPU’s device memory before initiating
computation on the GPU. After the GPU computation is complete, the results are
transferred back to the host from the GPU’s device memory.

To facilitate general-purpose computations on their GPU, NVIDIA developed the
Compute Unified Device Architecture (CUDA) programming language [17]. CUDA
is a minimal extension of the C language and is loosely type-checked by the NVIDIA
compiler (and preprocessor), nvcc, which translates CUDA programs (.cu) into C
programs. These are then compiled with the gcc compiler and linked as an NVIDIA
provided library. Within a CUDA program, all functions have qualifiers to assist the
compiler with identifying whether the function belongs on the host of the GPU. For
variables, the types have qualifiers to indicate where the variable lives, e.g.,
__device__ or __shared__. CUDA does not support recursion, static
variables, functions with arbitrary numbers of arguments, or aggregate data types.

4. Algorithm for Factoring Individual Frontal Matrices on the
GPU

In earlier work, we determined that, in order to get meaningful performance using the
GPU, we had to both maximize use of the NVIDIA supplied SGEMM arithmetic
kernel and minimize data transferred between the host and the GPU. We decided to
adopt the following strategy for factoring individual frontal matrices on the GPU:

• Download the factor panel of a frontal matrix to the GPU. Store symmetric
data in a square matrix, rather than a compressed triangular. This wastes
storage, but is easy to implement.

• Use a left-looking factorization, proceeding over panels from left to right:
- Update a panel with SGEMM
- Factor the diagonal block of the panel
- Eliminate the off-diagonal entries from the panel

• Update the Schur complement of this frontal matrix with SGEMM
• Return the entire frontal matrix to the host, converting back from square to

triangular storage
Return an error if the pivot threshold was exceeded or a diagonal entry was
• equal to zero

Table 1 Log of time spent factoring a model frontal matrix

Method Name GPU msec %GPU time

Copy data to and from GPU 201.0 32.9%
Factor 32x32 diagonal blocks 42.6 7.0%
Eliminate off diagonal panels 37.0 6.1%

Update with SGEMM 330.6 54.1%
Total time 611.4 100.0%

The time log for factoring a large, simulated frontal matrix with the fully optimized

CUDA factorization code is in Table 1. This timing was taken when the GPU was

eliminating 3072 equations from 4096. Approximately half of the execution time on
the GPU is spent in SGEMM. Eliminating off-diagonals and factoring diagonal
blocks takes only 13% of the time. The remaining third of the time is spent realigning
the matrices and copying data to and from the host. A further 0.029 seconds are spent
on the host, and not reflected in Table 1. The computation rate for the entire dense
symmetric factorization is 163 GFlops/s. In contrast, four cores of the Intel Xeon
Nehalem host achieve 29 GFlop/s when factoring the same sized frontal matrix and
using the same 32-column panel width. Performance results using the GPU to factor
a variety of model frontal matrices is presented in Table 2. These range in the number
of equations eliminated from the frontal matrix (size) as well as the number of
equations left in the frontal matrix, i.e., its external degree (degree). As expected, the
larger the frontal matrix gets, the more operations one has to perform to factor it, and
the higher the performance of the GPU.

Table 2 Performance of the GPU frontal matrix factorization kernel.

Size Degree Secs GFlop/s
1024 1024 0.048 51.9
1536 1024 0.079 66.3
2048 1024 0.117 79.7
512 2048 0.045 60.2
1024 2048 0.079 86.5
1536 2048 0.123 101.3
2048 2048 0.179 112.2
512 3072 0.076 74.7
1024 3072 0.128 103.9
1536 3072 0.188 122.4
2048 3072 0.258 136.0
512 4096 0.116 84.0
1024 4096 0.185 118.3
1536 4096 0.267 137.3
2048 4096 0.361 150.9

5. Performance of the Accelerated Multifrontal Solver

In this section we examine the performance impact of the GPU on overall multifrontal
sparse matrix factorization. We will use a matrix extracted from the LS-DYNA
MCAE application. It is derived from a three dimensional problems composed of
three cylinders nested within each other, and connected with constraints. The rank of
this symmetric matrix is 760320 and its diagonal and lower triangle contain 29213357
non-zero entries. After reordering with Metis, it takes 7.104E+12 operations to factor
the matrix. The resulting factored matrix contains 1.28E+09 entries.

Figure 5 plots the time is takes to factor the matrix, as a function of the number of
cores employed, both with and without the GPU. The dual socket Nehalem host
sustains 10.3 GFlop/s when using one core, and 59.7 GFlop/s when using all eight.
When the GPU is employed, it performs 6.57E+12 operations, 92% of the total, and
sustains 98.1 GFlop/s in doing so. The overall performance with the GPU improves

to 61.2 GFlop/s when one host core is used, and 79.8 GFlop/s with all eight. For
perspective, reordering and symbolic factorization take 7.9 seconds, permuting the
input matrix takes 2.64 seconds, and the triangular solvers take 1.51 seconds.

Fig. 5 Multicore factorization time, with and without the GPU.

To understand why there seems to be so little speedup when the GPU-enhanced

solver goes from one core to eight, consider Figure 6. It displays the number of
supernodes per level in the elimination tree for the three cylinder matrix, along with
the number of operations required to factor the supernodes at each level. Notice that
the vast majority of the operations are in the top few levels of the tree, and these are
processed by the GPU.

Figure 7 plots the performance achieved by the multicore host when factoring the
supernodes at each level of the tree. Note, near the leaves, performance is nowhere
near the peak. This is true even for one core, as the supernodes are too small to
facilitate peak SGEMM performance. As multiple cores are used, relatively little
speedup is observed, which is likely due to the relatively low ratio of floating point
operations to memory loads and stores for these small supernodes, leaving them
memory bound on the multicore processor.

Fig. 6 Number of supernodes and factor operations per level in the tree.

Fig. 7 Multicore performance per level in the elimination tree.

6. Summary

This paper has demonstrated that a GPU can in fact be used to significantly accelerate
the throughput of a multi-frontal sparse symmetric factorization code, even when
exploiting shared memory concurrency on the host multicore microprocessor. We
have demonstrated factorization speed-up of 5.91 relative to one core on the host, and
1.34 when using eight cores. This was done by designing and implementing a
symmetric factorization algorithm for the NVIDIA C1060 in the CUDA language and
then offloading a small number of large frontal matrices, containing over 90% the
total factor operations, to the GPU.

The authors have recently received a preproduction NVIDIA C2050 (Fermi) GPU,
which provides double precision at one half the performance of single precision,
much like the Pentium host’s SSE function units. We will rerun the experiments
reported above in double precision and report the results at VecPar 2010. We expect
no change to our overall conclusion that GPUs can accelerate the shared memory
multifrontal code.

We believe that by demonstrating that the GPU can be successfully exploited in a
production quality, double precision multifrontal code, we will have taken the next
logical step towards integrating GPUs into MCAE applications. However, more work
needs to be done before the use of GPUs will be common for the numerical aspects of
such applications. The GPU frontal matrix factorization code implemented for this
experiment should be revisited to make it more efficient in its use of memory on the
GPU. It should be modified to implement pivoting so that indefinite problems can be
factored entirely on the GPU. Further, it should be extended to work on frontal
matrices that are bigger than the relatively small device memory on the GPU, much as
the multifrontal code goes out-of-core when the size of a sparse matrix exceeds the
memory of the host processor.

Finally, if one GPU helps, why not more? Researchers have been implementing
parallel multifrontal codes for over two decades [18]. In fact, the multifrontal code
used in these experiments has both MPI constructs. Therefore exploiting multiple
GPUs is not an unreasonable thing to consider. However, when one considers that
one would have to simultaneously overcome both the overhead of accessing the GPU
as well as the costs associated with communicating amongst multiple processors; it
may be very challenging to efficiently factor one frontal matrix with multiple GPUs.

Acknowledgement

We would like thank Norbert Juffa, Stan Posey, and Peng Wang of NVIDIA for
their encouragement and support for this work. This has included guidance in
performance optimization as well as access to the latest NVIDIA GPUs.

References

[1] Heath, M., E. Ng, and B. Peyton, Parallel algorithms for sparse linear systems,
Society for Industrial and Applied Mathematics Review. 33 (1991), pp. 420-460

[2] Charlesworth, A., and J. Gustafson, Introducing Replicated VLSI to
Supercomputing: the FPS-164/MAX Scientific Computer, in IEEE Computer,
vol. 19, issue 3, pp 10-23, March 1986

[3] Pham, D. C., T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P.
Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J.
Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. L. Stasiak,
M. Suzuoki, O. Takahashi, J. Warnock, Stephen Weitzel, Dieter Wendel, and K.
Yazawa, Overview of the Architecture, Circuit Design, and Physical
Implementation of a First-Generation Cell Processor, IEEE Journal of Solid State
Circuits, Vol. 41, No. 1, January 2006

[4] A. Lastra, M. Lin, and D. Minocha, ACM Workshop on General Purpose
Computations on Graphics Processors. 2004

[5] Duff, Ian and John Reid, The Multifrontal Solution of Indefinite Sparse
Symmetric Linear Systems, ACM Transactions on Mathematical Software, 9
(1983), pp 302-335

 [6] Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff A Set of Level 3 Basic
Linear Algebra Subprograms, , ACM Transactions on Mathematical Software
16(1):1-17, March 1990

[7] E. Scott Larson and David McAllister, Fast matrix multiplies using graphics
hardware, In Proceedings of the 2001 ACM/IEEE conference on Supercomputing,
pages 55-55, ACM Press, 2001

[8] Fatahalian, K., J. Sugarman, and P. Hanrahan, Understanding the Efficiency of
GPU Algorithms for Matrix-Matrix Multiplication, In Proceedings of the ACM
Sigraph/Eurographics Conference on Graphics hardware, pages 133-138,
Eurographics Association, 2004

[9] Govindaraju, N. and D. Manocha, Cache-Efficient Numerical Algorithms Using
Graphics Hardware, University of North Carolina Technical Report, 2007.

[10] Lucas, R.F., GPU-Enhanced Linear Solver Results, in the proceedings of
Parallel Processing for Scientific Computing, SIAM, 2008

[11] Private communication with Gene Poole, ANSYS Inc., at SC|08, Nov 2008,
Austin, TX

[12]
[13] Karypis G. and V. Kumar, A fast and high quality multilevel scheme for

partitioning irregular graphs, International Conference on Parallel Processing,
pp. 113-122, 1995

cqse.ntu.edu.tw/cqse/download_file/DPierce_20090116.pdf

 [14], Cleve Ashcraft and Roger Grimes, The Influence of Relaxed Supernode
Partitions on the Multifrontal Method, ACM Transactions in Mathematical
Software, 15 (1989), pp. 291-309

[15] Cleve Ashcraft and Robert Lucas, A Stackless Multifrontal Method, Tenth SIAM
Conference on Parallel Processing for Scientific Computing, March, 2001

[16] Arnold, M.G., T.A. Bailey, J.R. Cowles & M.D. Winkel, Applying Features of
IEEE 754 to Sign/Logarithm Arithmetic, IEEE Transactions on Computers,
August 1992, Vol. 41, No. 8, pp. 1040-1050

[17] Buck, I. GPU Computing: Programming a Massively Parallel Processor,
International Symposium on Code Generation and Optimization, San Jose,
California

 [18] Duff, Ian, Parallel Implementation of Multifrontal Schemes, Parallel
Computing, 3 (1986), pp 193-204.

	Method Name
	Acknowledgement
	References

