
Applying Process Migration on a
BSP-Based LU Decomposition Application

Rodrigo da Rosa Righi1, Laércio Lima Pilla1, Alexandre Carissimi1,
Philippe Olivier Alexandre Navaux1 and Hans-Ulrich Heiss2

1 Institute of Informatics - Federal University of Rio Grande do Sul - Brazil
2 Kommunikations- und Betriebssysteme - Technical University Berlin - Germany

Abstract. Process migration is an useful mechanism to offer load bal-
ancing. In this context, we developed a model called MigBSP that con-
trols processes rescheduling on BSP applications. MigBSP is especially
pertinent to obtain performance on this type of applications, since they
are composed by supersteps which always wait for the slowest process. In
this paper, we focus on the BSP-based modeling of the widely used LU
Decomposition algorithm as well as its execution with MigBSP. The use
of multiple metrics to decide migrations and adaptations on reschedul-
ing frequency turn possible gains up to 19% over our cluster-of-clusters
architecture. Finally, our final idea is to show the possibility to get per-
formance in LU effortlessly by using novel migration algorithms.

1 Introduction

A possibility to increase performance on dynamic and heterogeneous environ-
ments comprises the processes’ relocation. Generally, process migration is im-
plemented within the application. This organization results in a close coupling
between the application and the algorithms’ data structures, which makes this
approach non-extensible. Even more, some initiatives use explicit calls in the
application code [2]. A different approach for migration happens at middleware
level, linking the balancer tool with the programming library directly /[15]. Com-
monly, this approach does not require changes in the application code nor pre-
vious knowledge about the system.

A typical scheduling middleware applies mechanisms to allocate the processes
with longer computing times to faster machines. Nevertheless, this approach is
not the best one for irregular applications and dynamic distributed environments,
because a good process-resource assignment performed in the beginning of the
application may not remain efficient with time [1, 12, 14]. At this moment, it is
not possible to recognize either the amount of computation of each process nor
the communication patterns among them. Besides fluctuations in the processes’
computation and communication actions, the processors’ load may vary and
networks can become congested while the application is running. Therefore, an
alternative is to perform process rescheduling through their migration to new
resources, offering application runtime load balancing [7, 10].

In this context, we designed a process rescheduling model called MigBSP
that works over BSP (Bulk Synchronous Parallel) applications [18, 8]. It explores
the automatic and transparent load (processes) balancing at middleware level.
To make decisions about load balancing, the model considers data about the
infrastructure, the processes’ behavior as well as migration costs. MigBSP was
organized to work with BSP applications, once they are based on synchronous
phases (supersteps). Thus, the main idea of the model is to reduce the duration of
each superstep, decreasing the application time as well. MigBSP contributions
are twofold: (i) combination of multiple metrics to select the candidates for
migration and; (ii) minimization of the model’s overhead with adaptation that
act over the rescheduling frequency.

The BSP model is mainly used for the development of scientific applica-
tions such as data mining, sorting and fluid dynamics [4]. Particularly, this pa-
per presents the modeling of a parallel BSP-based version of the widely used
LU Decomposition method [3]. In addition, it describes the execution of this
application when linked to MigBSP over a cluster-of-clusters environment. The
LU decomposition splits a matrix A in the product of a lower triangular ma-
trix L and an upper triangular matrix U . LU is employed to turn the calculation
of linear equations easier, since the solution of a triangular set of equations is
trivial. Besides its usage, we choose LU because some initiatives impose changes
in the code and/or extra executions when offering load balancing for this appli-
cation[2, 11, 17]. Thus, the paper’s final idea is to show the possibility for getting
performance in LU application effortlessly by using novel migration algorithms.

2 MigBSP: Process Rescheduling Model

MigBSP manages load balancing issues, where the load is represented by BSP
processes, aiming to reduce each superstep time of the application. Its key idea
is to migrate processes which have a long computation time, perform several
communication actions with other processes whose belong to a same site (e.g., a
cluster) and present low migration costs. Figure 1 (a) illustrates a superstep k of
a BSP application in which the processes are not balanced among the resources.
Figure 1 (b) shows the expected result with the rescheduling of the processes
after superstep k, which will influence the execution of the next supersteps,
(including k+1, k+2 and so on).

MigBSP’s architecture is heterogeneous and composed by clusters and super-
computers. This architecture is assembled with the abstractions of Sets (different
sites) and Set Managers. Set Managers are responsible for scheduling, capturing
data from a specific Set and exchanging it among other managers. MigBSP can
be seen as a scheduling middleware. There is no need for changes in the appli-
cation code. All data necessary for its functioning may be captured directly in
both communication and barrier functions as well as in other sources like the
operating system. We described the first ideas of MigBSP in [16]. However, such
work presents an evaluation with a synthetic application with a reduced number
of supersteps (up to 400) and processes (up to 10).

BSP Processes

BSP Processes

Global

Communication

Local

Computation

Barrier

(a) Superstep k: Processes are not balanced among the resources

(b) Superstep > k: Situation after applying the processes reassignment model

Time

Local

Computation

Barrier

Global

Communication

Fig. 1. BSP Supersteps in two different situations

The decision for process remapping is taken at the end of a superstep, after
the barrier. At this moment, we can analyze data from all BSP processes. Aim-
ing to generate as less intrusiveness in application as possible, we applied two
adaptations that control the value of α - the adaptive period between reschedul-
ing calls. The adaptations’ ideas are: (i) to postpone the rescheduling call if the
system is stable (processes are balanced) or to turn it more frequent, otherwise;
(ii) to delay this call if a pattern without migrations in ω calls is observed. A
variable D is used to indicate a percentage of how far the slowest and the fastest
processes may be from the average. Our second adaptation works on increasing
D. The higher its value, the greater the odds to increase α.

We employed a decision function called Potential of Migration (PM) to se-
lect the candidates for migration. Each process i computes q functions PM(i, j),
where q is the number of Sets and j means a specific Set. The main idea con-
sists in performing a subset of the processes-resources tests at the rescheduling
moment. PM(i, j) is found using the Computation, Communication and Mem-
ory metrics (see Equation 1). Computation metric - Comp(i, j) - considers a
Computation Pattern Pcomp(i) that measures the regularity of a process i at
its computation phase. This value is close to 1 if the process performs a similar
number of instructions at each superstep and close to 0 otherwise. This metric
also performs a computation time prediction based on data between reschedul-
ing calls. In the same way, Communication metric - Comm(i, j) - computes the
Communication Pattern Pcomm(i, j) between processes and Sets. Furthermore,
it uses a communication time prediction considering data between the rebalanc-
ing calls. Memory metric - Mem(i, j) - considers process memory, transferring
rate between the process and the manager of target Set, as well as migration
costs.

PM(i, j) = Comp(i, j) + Comm(i, j)−Mem(i, j) (1)

Computation Metric

BSP Processes
Migration

Communication Metric

Memory Metric

FavourOpposite

Fig. 2. Operation of the metrics to evaluate the Potential of Migration (PM) of a
process: (i) Computation and Communication metrics act in favor of migration; (ii)
Memory metric works in the opposite direction as migration costs

Figure 2 depicts the operation of the considered metrics on process migration.
Firstly, the BSP processes calculate PM(i, j) locally. At each rescheduling call,
each process passes its highest PM(i, j) to its Set Manager which exchanges the
PM of its processes among other managers. We used a heuristic to choose the
candidates which is based on a decreasing ordered list of PMs. The processes
with PM higher than MAX(PM).x are candidates, where x is a percentage.
The PM(i, j) of a candidate process i is associated to a Set j. Therefore, the
manager of Set j will select the most suitable processor to receive this process.
Before a migration, its viability is verified by computing two times: tl and td.
tl means the local execution of process i, while td encompasses its prediction
of execution on the destination processor and includes the migration costs. For
each candidate is chosen a new resource (if tl > td) or its migration is canceled.

3 LU Decomposition Application

Consider a system of linear equations A.x = b, where A is a given n × n non
singular matrix, b a given vector of length n, and x the unknown solution vector
of length n. One method for solving this system is by using the LU Decomposition
technique. This technique comprises the decomposition of the matrix A into a
lower triangular matrix L and an upper triangular matrix U such that A = LU .
A n × n matrix L is called unit lower triangular if li,i = 1 for all i, 0 ≤ i < n,
and li,j = 0 for all i, j where 0 ≤ i < j < n. An n× n matrix U is called upper
triangular if ui,j = 0 for all i, j with 0 ≤ j < i < n.

On input, A contains the original matrix A0, whereas on output it contains
the values of L below the diagonal and the values of U above and on the diagonal
such that LU = A0. Figure 3 (a) illustrates the organization of LU computation.
The values of L and U computed so far and the computed sub-matrix Ak may
be stored in the same memory space of A0. Algorithm 1 presents a sequential
algorithm for producing L and U in stages. Stage k first computes the elements

0 1 2 3 4

0

1

2

3

4

U

L

5 6

5

6

k
A

Fig. 3. L and U matrices decomposition using the same memory space of the original
matrix A0

Algorithm 1 Algorithm for LU Decomposition
1: for k=0 to n-1 do
2: for j=k to n-1 do
3: uk,j = ak

k,j

4: end for
5: for i=k+1 to n-1 do

6: lki,k =
ak

i,k

uk,k

7: end for
8: for i=k+1 to n-1 do
9: for j-k+1 to n-1 do

10: ak+1
i,j = ak

i,j − li,k . uk,j

11: end for
12: end for
13: end for

Algorithm 2 Algorithm for LU Decomposition using the same matrix A
1: for k=0 to n-1 do
2: for i=k+1 to n-1 do
3: ai,k =

ai,k

ak,k

4: end for
5: for i=k+1 to n-1 do
6: for j-k+1 to n-1 do
7: ai,j = ai,j − ai,k . ak,j

8: end for
9: end for

10: end for

uk,j , j ≥ k, of row k of U and the elements li,k, i > k, of column k of L.
Then, it computes Ak+1 in preparation for the next stage. Algorithm 2 presents
the functioning of the previous algorithm using just the elements from matrix
A. Figure 3 (b) presents the data that is necessary to compute ai,j in the last
statement of the Algorithm 2. Besides its own value, ai,j is updated using a value
from the same line and another from the same column.

4 BSP-based LU Application Modeling

This section explains how we modeled the LU sequential application on a BSP-
based parallel one. Firstly, the bulk of the computational work in stage k of
the sequential algorithm is the modification of the matrix elements ai,j with
i, j ≥ k + 1. Aiming to prevent communication of large amounts of data,
the update of ai,j = ai,j + ai,k.ak,j must be performed by the process whose
contains ai,j . This implies that only elements of column k and row k of A need
to be communicated in stage k in order to compute the new sub-matrix Ak.

An important observation is that the modification of the elements in row
A(i, k+1 : n−1) uses only one value of column k of A, namely ai,k. The provided
notation A(i, k+1 : n−1) denotes the cells of line i varying from column k+1 to
n− 1. If we distribute each matrix row over a limit set of N processes, then the
communication of an element from column k can be restricted to a multicast toN
processes. Similarly, the modification of the elements in column A(k+1 : n−1, j)
uses only one value from row k of A, namely ak,j . If we distributed each matrix
column over a limit set of M processes, then the communication of an element
of row k can be restricted to a multicast to M processes.

Considering the statements above, we are using a Cartesian scheme for the
distribution of matrices. The square cyclic distribution is used as particularly
suitable for matrix computations such as LU decomposition [3]. For them, it
is natural to organize the processes by two-dimensional identifiers P (s, t) with
0 ≤ s < M and 0 ≤ t < N , where the number of processes p = M.N . Figure
4 depicts a 6 × 6 matrix mapped to 6 processes, where M = 2 and N = 3.
Assuming that M and N are factors of n, each process will store nc (number of
cells) cells in memory (see Equation 2).

0 1 2 0 1 2

0

1

0

1

0

1

00 01 02 00 01 02

10 11 12 10 11 12

00 01 02 00 01 02

00 01 02 00 01 02

10 11 12 10 11 12

10 11 12 10 11 12

M

N

n

Fig. 4. Cartesian distribution of a 6×6 (n× n) matrix over 2×3 (M ×N) processors.
The label ”st” in the cell denotes its owner, process P (s, t)

nc =
n

M
.
n

N
(2)

A parallel algorithm uses data parallelism for computations and the need-to-
know principle to design the communication phase of each superstep. Following
the concepts of BSP, all communication performed during a superstep will be
completed when finishing it and the data will be available at the beginning of
the next superstep [4]. Concerning this, we modeled our algorithm using three
kinds of supersteps. They are explained in Table 1. The element ak,k is passed
to the process that computes ai,k in the first kind of superstep.

Table 1. Modeling three types of supersteps for LU computation

Type of su-
perstep

Steps and explanation

First
Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k (k + 1 ≤
i < n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own them
Step 2.2 : For each i (k + 1 ≤ i < n), pass the element ai,k to other ai,j

elements in the same line (k + 1 ≤ j < n)
Step 2.3 : For each j (k + 1 ≤ j < n), pass the element ak,j to other ai,j

elements in the same column (k + 1 ≤ i < n)

Third

Step 3.1 : For each i and j (k+1 ≤ i, j < n), calculate ai,j as ai,j +ai,k.ak,j

Step 3.2 : k = k + 1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k (k + 1 ≤
i < n)

The computation of ai,k is expressed in the beginning of the second superstep.
This superstep is also responsible for sending the elements ai,k and ak,j to ai,j .
First of all, we pass the element ai,k, k+ 1 ≤ i < n, to the N − 1 processes that
execute on the respective row i. This kind of superstep also comprises the passing
of ak,j , k+1 ≤ j < n, to M−1 processes which execute on the respective column
j. The superstep 3 considers the computation of ai,j , the increase of k (next stage
of the algorithm) and the transmission of ak,k to ai,k elements (k + 1 ≤ i < n).
The BSP application will execute one superstep of type 1 and will follow with the
interleaving of supersteps 2 and 3. Concerning this, a n × n matrix will trigger
2n+ 1 supersteps in our LU modeling.

5 Evaluation Methodology

We applied simulation in three scenarios: (i) Application execution simply; (ii)
Application execution with MigBSP without applying migrations; (iii) Appli-
cation with MigBSP allowing migrations. Scenario ii consists in performing all
scheduling calculus and all decisions about which processes will really migrate,
but it does not comprise any migrations actually. Scenario iii enables migrations
and adds the migrations costs on those processes that migrate from one proces-
sor to another. The difference between scenarios ii and i represents exactly the

overhead imposed by MigBSP. The analysis of scenarios i and iii will show the
final gain or loss of performance when process migration is applied.

We are using the SimGrid Simulator [6] (MSG module), which makes pos-
sible application modeling and process migration. This simulator is determin-
istic, where a specific input always results in the same output. We assembled
an infrastructure with five Sets, which is depicted in Figure 5. Each node has a
single processor. These Sets are based on a real cluster-of-clusters infrastructure
located at Federal University of Rio Grande do Sul, Brazil. Clusters Labtec,
Corisco and Frontal have their nodes linked by Fast Ethernet, while ICE and
Aquario are clusters with a Gigabit connection. The migration costs are based
on real executions with AMPI [12].

!"

#$%&'()*+#,
+-...+--/

#$%&'()*0)12'3$
0-...04

#$%&'()*#1)5&61
7#-...#-47

#$%&'()*89%3)51
8-...8/:

!- !/

#$%&'()*;3<'(6
7;-*===*;/:7

7;-...;/:7*>?@*7!-7*A*-*B<C&
7#-...#-47*>?@*7!-7*A*-::*D<C&

70-...047*>?@*7!/7*A*-::*D<C&

7+-...+--/7*>?@*7!/7*A*-*B<C&

78-...8/:7*>?@*7!"7*A*-*B<C&

7!-7*>?@*7!/7*A*-*B<C&

7!/7*>?@*7!"7*A*-*B<C&

7;-...;/:7A*-.E*BFG

7#-...#-47A*-*BFG

7+-...+--/7A*-.4*BFG

70-...047A**-*BFG

H('I1)J*#122(6'512&
K)16(&&52L*#3C365'MN('*-

N('*/

N('*"

N('*O

N('*E

78-...8/:7A**/*BFG

+25'53$*K)16(&&(&?!(&1%)6(&*D3CC52L

-:*C)16(&&(&***A*;*P-?-:Q

/::*C)16(&&(&*A*;*P-?/:Q=*#*P-?-4Q=*0*P-?4Q=*+*P-?--/Q=*8*P-?/:Q=*;*P-?/:Q=*#*P-?4Q

/E*C)16(&&(&***A*;*P-?/:Q=*#*P-?EQ

E:*C)16(&&(&***A*;*P-?/:Q=*#*P-?-4Q=*0*P-?4Q=*+*P-?RQ

-::*C)16(&&(&***A*;*P-?/:Q=*#*P-?-4Q=*0*P-?4Q=*+*P-?ERQ

Initial Processes-Resources Mapping

25 processes = L{1-20}, C{1-5}
50 processes = L{1-20}, C{1-5}, F{1-6}, I{1-8}
100 processes = L{1-20}, C{1-5}, F{1-6}, I{1-58}
200 processes = L{1-20}, C{1-5}, F{1-6}, I{1-112}, A{1-20}, L{1-20}, C{c-6}

Fig. 5. Cluster-of-clusters environment with five Sets and the initial-processes mapping

Figure 5 presents the initial processes-resources mappings for each number
of BSP processes. When the number of processes is greater than processors, the
mapping begins again from the first Set. We modeled the Cartesian distribution
M ×N in the following manner: 5 × 5, 10 × 5, 10 × 10 and 20 × 10 for 25, 50,
100 and 200 processes, respectively. Moreover, we are applying simulation over
square matrices with orders 500, 1000, 2000 and 5000. Lastly, the tests were
executed using α = 4, ω = 3, D = 0.5 and x = 80%.

6 Results Analysis

Table 2 presents the results when evaluating the 500 × 500, 1000 × 1000 and
2000×2000 matrices. The tests with the first matrix size show the worst results.
Formerly, the higher the number of processes, the worse the performance, as we
can observe in scenario i. The reasons for the observed times are the overheads
related to communication and synchronization. Secondly, MigBSP indicated that
all migration attempts were not viable due to low computing and communication
loads when compared to migration costs. Considering this, both scenarios ii and
iii have the same time results.

When testing a 1000× 1000 matrix with 25 processes, the first rescheduling
call does not cause migrations. After this call at superstep 4, the next one at su-
perstep 11 informs the migration of 5 processes from cluster Corisco. They were
all transferred to cluster Aquario, which has the highest computation power.
MigBSP does not point migrations in the future calls. α always increases its
value at each rescheduling call since the processes are balanced after the men-
tioned relocations. MigBSP obtained a gain of 12% of performance with 25
processes when comparing scenarios i and iii. With the same size of matrix and
50 processes, 6 processes from Frontal were migrated to Aquario at superstep
9. Although these migrations are profitable, they do not provide stability to the
system and the processes remain unbalanced among the resources. Migrations
are not viable in the next 3 calls at supersteps 15, 21 and 27. After that, MigBSP
launches our second adaptation on rescheduling frequency in order to alleviate
its impact and α begins to grow until the end of the application. The tests with
50 processes obtained gains of just 5% with process migration. This is explained
by the fact that the computational load is decreased in this configuration when
compared to the one with 25 processes. In addition, the bigger the number of
the superstep, the smaller the computational load required by it. Therefore, the
more advanced the execution, the lesser the gain with migrations. The tests with
100 and 200 processes do not present migrations owing to the forces that act in
favor of migration are weaker than the Memory metric in all rescheduling calls.

Table 2. First results when executing LU linked to MigBSP (time in seconds)

Processes
500×500 matrix 1000×1000 matrix 2000×2000 matrix

Scen. i Scen. ii Scen. iii Scen. i Scen. ii Scen. iii Scen. i Scen. ii Scen. iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20

50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18

100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87

200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

The execution with a 2000× 2000 matrix presents good results because the
computational load is increased. We observed a gain of 15% with process reloca-
tion when testing 25 processes. All processes from cluster Corisco were migrated
to Aquario in the first rescheduling call (at superstep 4). Thus, the application
can take profit from this relocation in its beginning, when it demands more com-
putations. The time for concluding the LU application is reduced when passing
from 25 to 50 processes as we can see in scenario i. However, the use of MigBSP
resulted in lower gains. Scenario i presented 60.23s while scenario iii achieved
56.18s (9% of profit). When considering 50 processes, 6 processes were trans-
ferred from cluster Frontal to Aquario at superstep 4. The next call occurs at
superstep 9, where 16 processes from cluster Corisco were elected as migration
candidates to Aquario. However, MigBSP indicated the migration of only 14
processes, since there were only 14 unoccupied processors in the target cluster.

The execution of 100 processes presented the same behavior of the execution
with 50 processes. Nevertheless, the performance gain was reduced to 4% with
100 processes given the reduction of the workload per process.

400

600

800

1000

1200

1400
Scenario i - LU application simply

Scenario ii - App. with MigBSP without migrations

Scenario iii - App. with MigBSP allowing migrations

T
im
e
 i
n
 s
e
c
o
n
d
s

25
processes

50
processes

100
processes

200
processes

Fig. 6. Performance graph with our three scenarios for a 5000× 5000 matrix

We observed that the higher the matrix order, the better the results with
process migration. Considering this, the evaluation of a 5000×5000 matrix can be
seen in the Figure 6. The simple movement of all processes from cluster Corisco
to Aquario represented a gain of 19% when executing 25 processes. The tests
with 50 processes obtained 852.31s and 723.64s for scenario i and iii, respectively.
The same migration behavior found on the tests with the 2000 × 2000 matrix
was achieved in Scenario iii However, the increase of matrix order represented
a gain of 15% (order 5000) instead of 10% (order 2000). This analysis helps
us to verify our previous hypothesis about performance gains when enlarging
the matrix. Finally, the tests with 200 processes indicated the migration of 6
processes (p195 up to p200) from cluster Corisco to Aquario at superstep 4.
Thus, the nodes that belong to Corisco just execute one BSP process while
the nodes from Aquario begin to treat 2 processes. The remaining rescheduling
calls inform the processes from Labtec as those with the higher values of PM .
However, their migrations are not considered profitable. The final execution with
200 processes achieved 460.85s and 450.33s for scenarios i and iii, respectively.

7 Related Work

Bhandarkar, Brunner and Kale presented a support for adaptive load balanc-
ing in MPI-based LU application [2]. Periodically, the MPI application transfers
control to the load balancer using a special call MPI Migrate(). Processes reorga-
nization on LU application is proposed by Ennes et al [17]. Such work imposes an
extra execution for getting parameters for a communication-graph construction.

Concerning the BSP scope, Jiang, Tong and Zhao presented resource load
balancing based on agents [13]. Load balancing is launched when a new task is
inserted and it is based on the load rank of the nodes. Scheduling service sends
this new task to the current lightest node. Load value is calculated taking such
information: CPU, memory resource, number of current tasks and number of

network links. In addition, we can cite two works that present migration on BSP
applications. The first one describes the PUBWCL library, which exploits the
computing cycles of idle computers [5]. PUBWCL can migrate a process during
its computation phase and after the barrier. All algorithms just use data about
the nodes and consider the computation times from each process.

Other work on BSP context comprises the implementation of the PUB li-
brary [4]. The author explains that a load balancer decides when to launch the
processes migration, but this issue is not addressed in [4]. He proposed both
centralized and distributed strategies for load balancing. In the distributed ap-
proach, every node chooses c nodes randomly and asks for their load. One process
is migrated if the minimum load found is smaller than the load of its current
node. Both strategies take into consideration neither the processes communica-
tion nor the migration costs.

8 Concluding Remarks

Scheduling schemes for multi-programmed parallel systems can be viewed in two
levels [9, 19]. In the first level processors are allocated to a job. In the second
level processes from a job are (re)scheduled using this pool of processors. MigBSP
can be included in this last scheme, offering algorithms for load (BSP processes)
rebalancing among the resources during application runtime. Our model can be
seen as a scheduler middleware that does not need changes neither in application
code nor knowledge about it and the system infrastructure. Especially, this paper
presented MigBSP shortly as well as a modeling and an execution of a BSP-
based LU application. The tests when linking it to the LU application enabled
us to conclude encouraging results: gains of performance and a short overhead of
MigBSP. Contrary to existing works[2, 11, 17], these results are obtained without
modifying the application code and without extra executions to feed the load
balancing model.

The short overhead of MigBSP is enabled mainly by using efficient adap-
tations and through the rapid calculus of the scheduling decisions. Firstly, PM
(Potential of Migration) considers processes and Sets (different sites), not per-
forming all processes-resources tests at the rescheduling moment. Meanwhile,
our adaptations were crucial to enable MigBSP as a viable scheduler. Instead of
performing the rescheduling call at each fixed interval, they manage a flexible
interval between calls based on the behavior of the processes. Their concepts are:
(i) to postpone the rescheduling call if the system is stable (processes are bal-
anced) or to turn it more frequent, otherwise; (ii) to delay this call if a pattern
without migrations in ω calls is observed.

For example, the low overhead of MigBSP may be expressed when executing
50 processes and a 2000 × 2000 matrix. In this context, it adds 3% of costs
(MigBSP algorithms are enabled but no migrations are performed). Formerly,
this feature is due to the simplicity of the PM evaluation, since it considers the
hierarchy notion and employs heuristics. Secondly, MigBSP adaptations work
to turn the model viable, especially when migrations cause performance gains

but the system remains unbalanced. This occurred with a matrix of order 1000
and 50 processes. Besides this, we observed that the larger the matrix size, the
bigger the gain with migrations. Thus, MigBSP obtained the best results with a
5000×5000 matrix. In this situation, we can observe gains larger then 15% when
applying our migrations decisions on application execution. Gains of 19% and
15% were obtained when running 25 and 50 processes with migrations to the
fastest cluster. Moreover, contrary to other situations, this matrix size enables
migrations when using 200 processes due to its larger computing grain.

Acknowledgements

This work was funded by the following Brazilian Agencies: CNPq (Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico) and CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior).

References

1. G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem. In SPAA
’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms
and architectures, pages 258–265, New York, NY, USA, 2003. ACM Press.

2. M. A. Bhandarkar, R. Brunner, and L. V. Kale. Run-time support for adaptive load
balancing. In IPDPS ’00: Proceedings of the 15 IPDPS 2000 Workshops on Parallel
and Distributed Processing, pages 1152–1159, London, UK, 2000. Springer-Verlag.

3. R. H. Bisseling. Parallel Scientific Computation: A Structured Approach Using
BSP and MPI. Oxford University Press, 2004.

4. O. Bonorden. Load balancing in the bulk-synchronous-parallel setting using process
migrations. In 21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–9. IEEE, 2007.

5. O. Bonorden, J. Gehweiler, and F. M. auf der Heide. Load balancing strategies
in a web computing environment. In Proceeedings of International Conference on
Parallel Processing and Applied Mathematics (PPAM), pages 839–846, Poznan,
Poland, September 2005.

6. H. Casanova, A. Legrand, and M. Quinson. Simgrid: A generic framework for large-
scale distributed experiments. In Tenth International Conference on Computer
Modeling and Simulation (uksim), pages 126–131, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

7. L. Chen, C.-L. Wang, and F. Lau. Process reassignment with reduced migration
cost in grid load rebalancing. Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–13, April 2008.

8. R. da Rosa Righi, L. L. Pilla, A. Carissimi, P. Navaux, and H.-U. Heiss. Migbsp: A
novel migration model for bulk-synchronous parallel processes rescheduling. High
Performance Computing and Communications, 10th IEEE International Conferenc
e on, 0:585–590, 2009.

9. E. Frachtenberg and U. Schwiegelshohn. New Challenges of Parallel Job Schedul-
ing. Job Scheduling Strategies for Parallel Processing, (4942):1–23, May 2008.

10. I. Galindo, F. Almeida, and J. M. Bad́ıa-Contelles. Dynamic load balancing on
dedicated heterogeneous systems. In Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 15th European PVM/MPI Users’ Group Meeting,
Dublin, Ireland, September 7-10, 2008. Proceedings, volume 5205 of Lecture Notes
in Computer Science, pages 64–74. Springer, 2008.

11. F. G. Gustavson. High-performance linear algebra algorithms using new general-
ized data structures for matrices. IBM J. Res. Dev., 47(1):31–55, 2003.

12. C. Huang, G. Zheng, L. Kale, and S. Kumar. Performance evaluation of adaptive
mpi. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 12–21, New York, NY, USA,
2006. ACM Press.

13. Y. Jiang, W. Tong, and W. Zhao. Resource load balancing based on multi-agent
in servicebsp model. In International Conference on Computational Science (3),
volume 4489 of Lecture Notes in Computer Science, pages 42–49. Springer, 2007.

14. M. Y.-H. Low, W. Liu, and B. Schmidt. A parallel bsp algorithm for irregular
dynamic programming. In Advanced Parallel Processing Technologies, 7th Inter-
national Symposium, volume 4847 of Lecture Notes in Computer Science, pages
151–160. Springer, 2007.

15. J. Maassen, R. V. van Nieuwpoort, T. Kielmann, K. Verstoep, and M. den Burger.
Middleware adaptation with the delphoi service. Concurrency and Computation:
Practice & Experience, 2006.

16. R. Righi, L. Pilla, A. Carissimi, and P. O. A. Navaux. Controlling processes re-
assignment in bsp applications. In 20th International Symposium on Computer
Architecture and high Performance Computing (SBAC-PAD 2008), pages 37–44.
IEEE Computer Society, 2008.

17. R. E. Silva, G. Pezzi, N. Maillard, and T. Diverio. Automatic data-flow graph
generation of mpi programs. In SBAC-PAD ’05: Proceedings of the 17th Inter-
national Symposium on Computer Architecture on High Performance Computing,
pages 93–100, Washington, DC, USA, 2005. IEEE Computer Society.

18. L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

19. M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer. Bi-criteria scheduling
of scientific workflows for the grid. ccgrid, 0:9–16, 2008.

