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Abstract. As general purpose computing on Graphics Processing Units (GPGPU)
matures, more complicated scientific applications are being targeted to utilize the

data-level parallelism available on a GPU. Implementing physically-based sim-

ulation on data-parallel hardware requires preprocessing overhead which affects

application performance. We discuss our implementation of physics-based data

structures that provide significant performance improvements when used on data-

parallel hardware. These data structures allow us to maintain a physics-based

abstraction of the underlying data, reduce programmer effort and obtain 6x-8x

speedup over previously implemented GPU kernels.

1 Introduction

In any useful surgical simulation system, in order to meet the strict requirements of
proper visual and behavioral illusion of reality, the system must solve a number of
physics-based problems such as cutting and deformation at interactive speeds [12].
However surgical simulation cannot leverage the tricks that are used in “game physics”.
Physics engines for soft body simulation concentrate on real time and visually plausible
results, while surgical simulation requires numerical stability and accuracy due to the
critical nature of the simulation [12].

The present development trend of computational science software libraries is not
driven by changes in problem-specific methodology [9], but by the fundamental shift
of the underlying hardware towards heterogeneity and parallelism. This is particularly
true for data-intensive problems such as finite element analysis. GPUs have become the
technology of choice for data-parallel applications due to their potential for impressive
speedups and their ability to accelerate a range of general purpose programs [3, 5, 10].

Our current work involves accelerating the physics simulation library PhysBAM [19]
using the Compute Unified Device Architecture (CUDA) of NVIDIA GPUs for a real
time surgical simulator. PhysBAM is an object oriented library that works with dy-
namically generated data structures to simplify the modeling of the underlying physics.
Physically-based modeling techniques have been used to properly model time-varying
properties such as geometry and topology [20].



Physics simulation algorithms possess inherent data parallelism, however paralleliz-
ing such algorithms naively leads to high overhead preprocessing since data parallelism
is interspersed throughout the simulation and few compute-intensive “kernels” exist on
which optimization efforts can be concentrated. This leads us to search for optimization
techniques which can be applied more widely across an application and can improve
data parallel performance irrespective of the underlying data structures and algorithms.
In this paper, we describe methods to improve data layout and use them to accelerate
physical simulation. We present a framework for physically- based simulation that au-
tomatically translates dynamic data structures to match the requirements of the GPU
memory subsystem.

2 Related Work

A number of prior studies have addressed acceleration of physics simulation and finite

element analysis using GPUs [6-9]. The GPU implementation of FEAST [8] is based
on a scalable recursive multi-grid algorithm which prevents us from using it for our sur-
gical simulation implementation due to the real time requirements of our environment
and the need to simulate cutting. Farias et al. [16] discuss physically precise defor-
mation and demonstrate very good performance for their particular methodology. Our
work attempts to be agnostic to specific algorithms and provides a framework to imple-
ment different types of data-parallel physics algorithms that can effectively exploit the
resources of a GPU.

The motivation behind our work is to build a simulation engine similar to Bullet [18]
that models soft tissue deformation and cutting accurately enough to be applied to sur-
gical simulation. Physics simulation for game and visual realism has been implemented
using NVIDIA GPUs in PhysX [2] and is available as a middleware for CUDA capa-
ble GPUs. Other physics simulation work for CUDA-based hardware includes [17, 18].
For our simulated environment we need to provide accurate soft tissue deformation, so
our goal is to more closely couple the physics of the problem with our data parallel
implementation.

The implementation described in HONEI [9] is relevant to our work since Dyk et
al. also explored the heterogeneity and parallelism between GPUs and CPUs. Our work
is different from HONEI in the sense that our work is specific to Physics simulation
and the relationship between data-parallel structures and the underlying physics param-
eters. The data structures provided within HONEI are oriented towards finite element
analysis. The Simulation Open Framework Architecture (SOFA) [6] is a framework for
surgical simulation, but does not provide the computational infrastructure that will be
required for our future work. The Fenics Form Compiler [11] is also related to our work
since it deals with the conversion of mathematical expressions into programs that can be
executed using low-level linear algebra libraries for general purpose CPUs. Our method
is complimentary to this compiler since it is related to data structures and is designed to
improve performance for a different computing platform (GPUs).



3 Physically Based Simulation Framework

To describe our data-parallel physics simulation framework, we first discuss how the
memory coalescing requirements for NVIDIA GPUs affect the design of our physics-
based data structures. We then show how our framework can be used to build structures
that exploit the GPU memory sub-system.

3.1 Coalesced Memory Accesses from Arrays of Objects

Physics based data-structures are arrays of dynamically generated objects denoting mul-
tiple instances of physical quantities like force, displacement, etc. Within a generic
physics simulation engine, due to the lack of a prirori knowledge of data layouts, these
arrays do not typically reside in contiguous locations in memory. The typical solution
for working with arrays of objects on the GPU is to allocate a contiguous block of
memory that can hold all the structures, and then copy the complete array of objects
into consecutive locations in memory (Figure 1).

This approach, however, will impede performance due to the CUDA memory coa-
lescing rules. Memory coalescing in CUDA is defined as reads or writes by threads to
consecutive 4-byte elements in memory. If coalescing is not achieved, accesses are se-
rialized and bandwidth degrades significantly. Figure 1 shows memory accesses when
consecutive 3-element data structures try to access memory in CUDA.
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Fig. 1: For data structures stored consecutively, non-coalesced accesses occur.

As shown in Figure 2, we need to rearrange the allocated data in linear memory
locations to map efficiently to the underlying data-parallel hardware.

3.2 Automated Framework for Physics Data Structures

We have implemented a framework that allows us to create data structures for physics
simulation algorithms adhering to the memory coalescing requirements. The motivation
behind our framework is illustrated by listing some calculations and data structures re-
quired for modeling deformation of a silicone cube. The technique used for deformation
modeling is based on [14] and entails three main steps.
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Fig. 2: Data structures that are transformed for coalesced memory access.

1. Singular Value Decomposition(SVD): The SVD of an array of 3x3 matrices is
calculated using approximate methods [14, 13].

2. Stress Derivative: An array of structures of stress parameters denoting the consti-
tutive model. The results are used to update the stiffness matrices for the iterative
solver.

3. Solving Linear System: Arrays of 3x3 matrices and 3x3 symmetric matrices for
stiffness arrays. This step also requires arrays of vectors for force and displacement.

In our simulator, the data structures and parallel algorithms are closely coupled to
the physics theory. The physics based data structures denoted above are only a small
subset of the possible dynamically generated arrays of objects. Due to the variety of al-
gorithms that could be implemented using PhysBAM [19], little information is known
apriori about the data structures and kernels® that will be invoked in a simulation. Due
to this characteristic of our application, providing a limited set of optimized data. struc-
tures is not beneficial.

The architecture of our framework called GPUPhysBAM (GPU Physics Based
Modeling) is shown in Figure 3. The physics simulation library dynamically gener-
ates data whose structure is determined as per the physics algorithm being simulated.
The intermediate layer of GPUPhysBAM will allocate data in the GPU memory while
keeping in mind constraints like alignment and ordering for inter-thread access. These
constraints have to be satisfied in order to take advantage of the high-bandwidth mem-
ory bus between the GPU memory and the GPU’s SIMD processors.

Implementation of data structures that can be reused and adapted to different simu-
lation algorithms without sacrificing performance is key since we wish to maintain the
generic nature of the simulation library and allow our data-parallel structures to impact
a wider range of algorithms.

3.3 Data Transformations and Hierarchically Designed Data Structures

Due to the complicated nature of physics based simulation code where both the CPU
and the GPU play a significant role in computation, data has to be organized such that
computation on both the CPU and the GPU yields optimal performance.

3 We refer to kernels as code that is parallelized and offloaded to the GPU
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Fig. 3: gpuPhysBAM Architecture

A simple example that illustrates the power of properly designed data structures
for the CPU and GPU is shown in Figure 4. We present a simple program ¥ = f(X)
where X and Y are arrays of 3-element vectors indexed as X;[0] — X;[2] and f()
is a function that operates on each element of each vector independently. For the CPU
layout, function f() was applied as in the loop nest in Figure 4. For the loop in Figure 4,
data layout 1 would be optimal. However, as discussed in Section 3.1 such a layout
would prevent coalesced reads and writes on the GPU if each iteration of the loop
maps to a thread. The optimal layout for CUDA (assuming each iteration of the loop is
mapped to 1 thread) is shown in data layout 2, where the access pattern would follow
Figure 2. An alignment factor (pitch) is needed, since GPU memory is divided into
banks and optimized accesses can only begin at the starting location of the first bank.
However, if a large amount of computation is carried out on the CPU as well, we should
transform data from layout 2 back to layout 1. These transformations are automated and
abstracted using our data structures®.

The fundamental structure defined within our framework shown in Figure 3 is
an OBJECT ARRAY which denotes a grouping of similar objects. The term “ob-
ject” in this context refers to any ordering of data such as arrays, vectors, or matrices.
Such structures represent most physics-based simulation data (e.g., force, displacement,
stress, etc.) which consist of arrays of vectors or arrays of matrices. Even for the sim-
plistic simulation discussed in Section 3.2, there exist a large number of different data
structures. To make our data-parallel simulation framework extensible and indepen-
dent of any particular algorithm, we design a framework for dynamically building data
structures such that the data layout generated is always optimal when implemented in
CUDA’.

* We assume no dependencies occur across elements in each vector and no conflicting compiler
optimizations are used

5 Optimal refers to the optimal usage of memory bandwidth which occurs for coalesced data
accesses
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Fig. 4: Optimal data layouts for the CPU and the GPU.

The Single Instruction Multiple Thread (SIMT) model for CUDA requires well-
structured access patterns across threads to coalesce memory accesses. Matching the
memory access patterns to the architecture is critical since GPU performance is de-
pendent on exploiting the high bandwidth present between the device memory and the
Single Instruction Multiple Data (SIMD) units [3, 10, 1].

Figure 5 denotes the layout of our data structures used in the implementation of
our GPUPhysBAM framework. Our underlying base class behaves as a CPU or GPU
memory container. As shown in Figure 5, we abstract out GPU-specific operations in
the 2% level where we store information such as strides, number of elements in an
object and number of objects. The 3" level simply contains indexing functions for
each element within an object.

Next, we demonstrate the benefits and extensibility of this approach. Figure 5 shows
the implementation of an Object Array of 3x3 symmetric matrices which is commonly
used in stiffness matrices. By inheriting from our GPU-generic class and implement-
ing functions (Get() and Put() in SYMMETRIC_MATRIX_ARRAY to access data)
within each object® of the array, we build data-parallel structures that will be efficiently
accessed in a SIMD fashion on a GPU. The lower level getdata() and putdata() func-
tions handle the indexing and the pitch calculations that are done to return data when
given the object number and the element within the object. Thus, we provide the algo-
rithmically relevant “3x3 Symmetric Matrix Array” while exploiting the wide memory
bandwidth and many-core parallelism of a GPU.

A second example (shown in Figure 5) is an Object Array of structs used to describe
a constitutive model. The Constitutive Model Array is also created in a similar fashion
to the Symmetric Matrix Array. We derive the new class and simply write functions
to access the respective value out of 12 elements that make up each object. As shown,
similar to Symmetric Matrices, the lower level base class functions of getdata() and
putdata() implement the required indexing.

By using contiguous memory allocated in base classes and controlling indexing
using derived objects, we maintain the coalescing conditions for SIMT hardware, and
the close coupling of the computation to the original physics theory. The utility of our

® in this case one object is 6 elements of a symmetric matrix considered column major
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Fig. 5: Hierarchically declared data structures for both the CPU and the GPU.

framework lies in the fact that a domain expert could create the appropriate physics
based data structures by simply inheriting the base class for the GPU functionality, and
based on his/her expertise, simply write functions to access data within each object of
the Object Array without knowing how the set of objects are laid out in memory.

4 Performance Results

The datasets used in our work are based on a popular model called the Truth Cube [15].

The Truth Cube serves as a model to validate soft-tissue deformation algorithms by
comparing deformation obtained by any prototype method to known mechanical val-
ues. We use the Truth Cube to verify our data-structures. Figure 6a shows the Truth
Cube in an undeformed position. Figure 6b shows the Truth Cube after the Quasistatic
simulation for deformation
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Fig. 6: Deformation of a Truth Cube

The Quasistatic simulation of the Truth Cube shown in Figure 6 was implemented
by using data-structures created within our framework. We benchmark 3 physics-relevant
kernels from this simulation which take up a majority of the execution time. We com-
pare performance of only the execution time of GPU kernels. Our baseline is naive only
with respect to data layout, it is architecturally aware of the GPU and written using
shared memory, textures and an optimal thread execution configuration. The CPU-GPU
I/0 and memory transformation overhead does not change across data layouts because
the baseline also incurs transformation overhead since data generated is not in contigu-
ous memory. The performance was measured on a system using an NVIDIA GTX-285
GPU, Intel Core 2 Duo with 4GB of RAM running Ubuntu 9.04, and CUDA 2.3.

Table 1: Performance Results and Benchmark Characteristics

Benchmark Coalescing Improvement|  Performance(ms) Speedup
Baseline  |Hierarchial [Baseline |Hierarchial
dP_from_dF 0.031 0.167 20.240 2.430 8.33x

3x3 Matrix, Diagonal Matrices,
1-element vectors

Isotropic Stress Derivative 0.026 0.222 10.480 1.560 6.72x
Constitutive Mode Structs, Di-
agonal Matrices

Add Force Differential 0.013 0.066 1.150 5.900 5.13x
Symmetric Matrices, 3-element
Vectors

The performance improvements of the physics kernels have been denoted in Ta-
ble 1. The performance improvements are substantial even in computationally intensive
kernels like Add Force Differential which use the shared memory of the device to hide
most of device memory latency.



“Coalescing Improvement” in Table 1 denotes ratio of requests to actual memory
transactions measured using the CUDA profiler [1]. The increased ratio when using
our framework denotes the improvement memory access efficiency due to coalescing.
The improvement in kernel performance when using our framework is due to the re-
duction in the number of actual memory transactions that the GPU memory subsystem
processes.

The performance improvements presented here for each physics-based kernel do
translate to an improvement in application level performance because these kernels con-
stitute the bulk of the computation. For eg the Add Force Differential kernel is similar
to a sparse matrix vector multiplication which is known to consume the bulk of the time
spent in the Quasistatic simulation [14, 19]. The performance improvements presented
in Table 1 are obtained for essentially no increase in programming effort or develop-
ment time for an application developer because the same physics-derived data structure
design API is mantained which allows to the improved data strutures to be simply in-
serted from underneath the physics simulator.

5 Conclusion

In this work we describe techniques that allow us to implement physics-based sim-
ulations efficiently on NVIDIA GPUs. Due to the variety of algorithms that can be
implemented using our physics simulator, we focus on implementation techniques and
optimizations that are extensible and generic so that they can have impact on a broader
class of data-parallel physics simulations. Our framework is extendable to different
types of physics-related objects and can also be adapted to other algorithms targeting
NVIDIA GPUs. We have used this same framework to implement other deformation al-
gorithms based on MultiGrid methods and Backward Euler solvers. Our future work in-
cludes supporting more complicated models and evaluating the associated performance
enhancements possible.
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