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Abstract. Designing algorithms for data parallelism can create signif-
icant gains in performance on SIMD architectures. The performance of
General Purpose GPU’s can also benefit from careful analysis of memory
usage and data flow due to their large throughput and system memory
bottlenecks. In this paper we present an algorithm for template match-
ing that is designed from the beginning for the GPU architecture and
achieves greater than an order of magnitude speedup over traditional
algorithms designed for the CPU and reimplemented on the GPU. This
shows that it is not only desirable to adapt existing algorithms to run
on GPUs, but also that future algorithms should be designed with their
architecture in mind.

1 Introduction

The advent of massively multiprocessor GPUs has opened a floodgate of oppor-
tunities for parallel processing applications, ranging from cutting-edge gaming
graphics to the efficient implementation of classic algorithms [1]. In this paper
we refer to the desktop machine containing the GPU as the “host”.

Figure 1 depicts the structure of the NVIDIA GeForce 8800 series as an ex-
ample of a typical GPGPU (General Purpose GPU) device. The GeForce 8800
contains 16 multiprocessors, each containing 8 semi-independent cores for a to-
tal of 128 processing units. Each of the 128 processors can run as many as 96
threads concurrently, for a maximum of 12,288 threads executing in parallel.
The computing model is SIMD (single instruction multiple data), and the mem-
ory model is a NUMA (non-uniform memory access) with a semi-shared address
space. This stands in contrast to a modern desktop or server PC’s CPU, which is
typically either SISD (single instruction single data) or MIMD (multi-instruction
multiple data), in the case of a multi-processor or multi-core machine. Addition-
ally, from the perspective of the programmer, all memory is explicitly shared (in
multi-threading environments) or explicitly separate (in multi-processing envi-
ronments) on a desktop machine.

These differences in processor architectures lead to different programming
models, with different optimal algorithm designs. For an example of an algo-
rithm design under similar architectural constraints, see [2]. Likewise, for a good
introduction to the differences in algorithm analysis for various architectures,



which must take into account not only running time, but also the amount of idle
processing power and the amount of extra work done in a parallel setting over
the best serial algorithms, see [3].

In addition to these considerations, the GPGPU has one more unique con-
straint: the connection bandwidth between the CPU and the GPU is quite lim-
ited compared to the bandwidth of the GPU’s internal memory [4, 5]. In fact,
given that the GPU cannot directly access the host’s main memory, hard drives,
or peripherals, and modern hosts can contain multiple interconnected GPU units,
dealing with the GPU can be thought of as distributed computation on a small
local network with the host acting as a control node.

In this paper we present a GPU-based algorithm design for image template
matching, which is a building block for many high-level Computer Vision ap-
plications, such as face and object detection [6, 7], texture synthesis [8], image
compression [9, 10], and video compression [11, 10]. Algorithms of this type are
often infeasibly slow in raw form [12], and there has been much research into
methods for accelerating template matching for various applications.

Fig. 1: NVIDIA GeForce 8800 Architecture

To date, there have been several attempts at adapting sequential algorithms
to the data-parallel GPU architecture [13–16] rather than designing with data-
parallelism in mind. In contrast, we designed an algorithm for GPGPU execution
from the ground up, while analyzing the unique steps taken in the design process.

1.1 Template Matching Background

Some template matching acceleration methods ignore image information deemed
irrelevant or unnecessary to reduce run time, or make use of statistical analysis
to produce a likely answer, but are unable to guarantee finding the best match



according to the chosen error measure e.g. [17–19]. A second set of methods
which has emerged recently makes use of bounds on the error measure to achieve
acceleration without sacrificing accuracy, although the choice in error measures
is somewhat more limited [12, 20, 21]. Our proposed algorithm falls into this
second set.

Throughout this paper we make use of the l1 norm-based distance measure
(i.e. the sum of absolute differences) between the template and the image sub-
window. We denote the l1 norm of a vector x by |x|.

Let vector x ∈ <n represent the template we are matching. This vector is
formed by concatenating the rows of the template image together into one long
sequence. Let I represent the image we are searching, which is larger in all di-
mensions than the template image. We consider each template-sized subwindow
yi in I a potential match. The subwindows often overlap, and each of them
contains n pixels. Each of these subwindows is converted into a vector using
the same process as for x. For convenience we define Y = {y1, y2, . . . ym} to be
the set of all potential match vectors. In practice, m (the number of potential
matches) is slightly less than the number of pixels in I.

The error for the ith candidate (or sub-window) is: Ei = |x − yi|. Given x
and I, a template matching algorithm attempts to find the yi which minimizes
Ei. In accelerating template matching, we place bounds on the value of Ei,
which we denote as li ≤ Ei ≤ ui. We define those bounds using the triangle
and Cauchy-Schwarz inequalities: |yi| − |x| ≤ |yi − x| ≤ |yi| + |x| Note that if
we define an orthogonal set of masking vectors mj , described in Fig. 2, we can
define a tightening series of bounds on Ei by taking the major diagonal of the
outer product of mj with x and yi to get xj and yji , where j is the index of the
masking vector m. This is analogous to the “image strips” of [12]. Using these
values we define a recursive relation on the series of bounds on Ei in Fig. 3.

2 Case Study: Full Search and On-Card Memory

We first consider the case of the Full Search Method of template matching, oth-
erwise known as a brute force method. We have selected as that feature set the
pixel values of x and yi. For our purposes, we define Ei as the distance between
the total pixel values of x and yi. The traditional Full Search Method calculates

m0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
m1 1 1 1 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
m2 0 0 0 · · · 1 1 1 · · · 0 0 0 · · · 0 0 0 · · ·
m3 0 0 0 · · · 0 0 0 · · · 1 1 1 · · · 0 0 0 · · ·
...

Fig. 2: The set of masking vectors mj . The length of the sections of 1s and 0s is typically
some constant fraction of image width * image height.



diff0 = |x0 − y0i |
s0x = x0

s0y = y0i

u0
i = diff0 + |x− s0x|+ |yi − s0y|
l0i = diff0 + |x− s0x|+ |yi − s0y|

diffj = diffj−1 + |xj − yji |
sjx = sj−1

x + xj

sjy = sj−1
y + yji

uj
i = diffj + |x− sjx|+ |yi − sjy|
lji = diffj + |x− sjx| − |yi − sjy|

Fig. 3: Definition of the progressive bounds on Ei.

Ei for all yi ∈ Y , and returns yopt = arg minyi
Ei. The algorithm is straightfor-

ward: as each Ei is calcuated, the algorithm compares it to a global minimum,
updating as necessary. The first step in adapting an existing serial algorithm for
implementation on a GPU is to analyze the algorithm and determine which parts
(if any) can benefit from parallelization. Our GPU adaptation is very similar to
the original, with the exception that after computing Ei at all locations simu-
latenously, the algorithm uses the ‘reduce’ subroutine [2, 16], commonly used in
data parallel environments, to find a minimum or maximum. Given that m is
the number of subwindows, and the template x contains n pixels, this approach
runs in O(mn) time, which comes to ≈ 4 ∗ 1010 operations. GPU implemen-
tation of similar methods has been explored in [16]. The straightforward GPU
implementation should run in O(mn

p + logm) time, where p is the number of
processors, assuming that 1 � n. This bound comes from mn work being done
on p processors, and the reduction step which takes log m time. We present the
actual results in Table 1. Compilation of the CPU code was performed by MS
Visual C++ 2008 with all optimzations turned on, while the GPU code was
compiled by NVIDIA’s nvcc and optimized by open64 [22]. One can see that
the ratio of runtimes of the CPU to naive GPU implementation (or “speedup”,
S) is only 7.14. Given the number of processing units p is 128, this is clearly
not a cost optimal solution, as it yields an efficiency of .056 (from E = S

p ). The
majority of this is due to communication overhead, as main memory on the GPU
is uncached. Experimentation confirms that the instruction throughput is only
.034.

Most GPGPU architectures include a limited, local, user controlled cache.
This local cache (which is called “shared memory”) is typically too small to hold
an entire image (in our case it is 16KB in size). Therefore the image must be
loaded a portion at a time, and the threads sharing a given piece of memory
synchronized. The groups of threads which can access a given piece of shared



memory are organized into “blocks”. Threads within a block can typically use
shared memory to communicate and synchronize with one another, but are un-
able to do so (directly) with threads outside of that block. Therefore, the input
data should be broken up according to thread blocks when possible. In the case
of template matching this is relatively easy, given that inputs yi though yi+n are
the only information required to compute Ei through Ei+n. However, the values
yi and yi+1 overlap considerably, leading to a certain amount of replication. The
results of this approach appear in Table 1 as “GPU Shared”. While it repre-
sents a vast improvement, the instruction throughput (processor utilization) is
still only around .5 due to synchronization, bank conflict, and redundant loading
issues.

A fast, cached, read-only memory called “texture memory” is also available
on most GPUs, which in practice operates at nearly the speed of the shared
memory. This memory is effectively a cached version of the the GPU’s main
memory, which becomes read-only to prevent cache inconsistency. Using this
memory eliminates the expensive synchronization step and its associated pro-
cessor idle time. Using the texture memory to hold the template and the image,
we see a speedup of S = 212.23. 1 Furthermore, the instruction throughput of
this approach is .966, and given that this method has only a factor of log m ex-
cess computation over the serial algorithm, this means that theoretical efficiency
is near 1. This also gives us our theoretical run time of O(mn

p + logm). This

Run Time Copy Time

CPU 23290 N/A
GPU 3042 217.7
GPU Shared 200.68 217.7
GPU Text. 107.38 2.361

Table 1: Run time in ms for Full Search Method template matching on a 512x512 image
and a 64x64 template. Times are in ms.

texture method is fast when compared to Full Search Methods on the CPU, but
performs a great deal of excess computation when compared to the best serial
methods (i.e. accelerated methods), giving it a low efficiency E = S

p = Ts

pTp
,

where Ts is serial execution time, and Tp is parallel execution time. In other
words, it is not strictly necessary to compute Ei at all locations. Our algorithm
attempts to address this fact, while maintaining efficient parallel execution.

The third column in Table 1 represents the amount of time required to copy
the image data from the host to the GPU under these various approaches. As
can be seen, the copy time of this step cannot be ignored. We further explore

1 Noting again that p = 128, this would appear to be super-linear, especially consid-
ering that the clock speed of the GPU is considerably slower than that of the CPU.
This is likely due to CPU cache-miss issues.



this issue in Table 2, where we compare the memory allocation and copy times
for varying sizes of data. We conclude from this that it may be beneficial to
perform some tasks serially on the host if they can reduce the amount of data
that must be transferred to the GPU.

size malloc copy malloc 2D copy 2D

4 ∗ 103 0.067567 0.005253 0.116700 0.014929
4 ∗ 105 0.118616 0.291486 0.122187 0.296680
4 ∗ 106 0.141160 2.576290 0.180513 2.713126
4 ∗ 107 0.241793 23.344471 0.629537 24.801236

Table 2: Average results over 1000 trials of basic CUDA memory operations. “malloc”
and “malloc 2D” refer to allocating an array and a byte aligned 2 dimensional array
on the GPU, respectively. “copy” and “copy 2D” refer to copying data from the CPU’s
global memory to the GPU’s global memory into the respective data structures. The
first column refers to the amount of data used for that experiment, in bytes. All times
are in ms.

3 GPU Acceleration Method

In designing the algorithm in Figure 4, we wanted to off-load as much of the
computation that could be conducted in parallel onto the GPU as possible,
while still minimizing the amount of memory transfer that had to be done. In
addition, we wanted to minimize the total work done by the algorithm, to reduce
the level of excess computation as compared to the best serial algorithms. Lastly,
but with equal importance, we needed to use data parallel design methodologies
in the algorithm.

The unique points of our algorithm when compared to the Full Search Method
are a) the combination of the upper bounds of [21] with the very fast bounding
methods of [12], and more importantly b) the division of steps between the CPU
and GPU such that the CPU deals with the largest amount of memory, and
the largest number of subwindows, while also doing as little real computation
as possible, leaving the GPU to do extensive computation on only a minimal
number of subwindows. The second point has the combined effect of minimizing
memory transfer and excess computation.

Essentially, the algorithm begins by performing an initial scan of the data on
the CPU, performing approximately 5 operations per subwindow to find initial
upper and lower bounds on the match value of each location in the image using
the base case of Fig. 3, as explained in Sectin 1.1. The image-strips (or masking
vectors) were chosen in particular because they reduce the amount of excess
computation over other bounding methods used in template matching, i.e. [21,
20, 17]. Every time the bounds of yi are updated, the computed values can be
reused directly for computing Ei. Reduction of excess computation is especially
important in GPU programming, as it is replicated over each processor.



ParallelTemplateMatch(x, Y )

1 InitBounds(Y, x)
2 Eguess, ybest ← FindBestInitMatch(Y, x)
3 Y ← Prune(Y,Eguess)

� From here onwards, the code is executed on the GPU by many
� threads in parallel.

4 while |Y | > 1
5 do

� Tighten the bounds on the remaining members of Y .
6 i← ThreadID
7 UpdateBounds(yi, x)
8 if li < Eguess

9 then
10 if ui < Eguess

11 then li, ui ← ComputeE(yi, x)
12 Eguess ← ui

13 ybest ← yi
14 else break
15 if Ei < Eguess

16 then Eguess ← Ei, ybest ← yi
17 return ybest, Eguess

Fig. 4: The main method of our GPU based template matching algorithm.



The next step is a single run of the “Prune” method (see Figure 5) on the
CPU before beginning the run of the algorithm on the GPU. The Prune step
reduces execution time because it drastically reduces the number of locations
that the GPU must consider (and therefore the amount of data transfer from
host to GPU), often by 99% or more. Yet this step does only a very small
fraction of the overall work of the algorithm (on the order of a single comparison
operation per yi). Experimentation has shown, however, that as image noise
levels increase, fewer candidates are pruned, resulting in more calculations to be
done, which requires the remaining calculations to be done on the GPU versus
the CPU.

FindBestInitMatch(Y, x)

1 lmin , ymin

2 for yi ∈ Y
3 do
4 if li < lmin

5 then lmin ← li
6 ymin ← yi
7 lmin, umin ← ComputeE(ymin, x)
8 return lmin, ymin

Prune(Y,Eguess)

1 for yi ∈ Y
2 do
3 if li > Eguess

4 then Y ← {Y − yi}
5 return Y

Fig. 5: The relevant subroutines called by our main method.

Some of these initial steps could benefit from parallel execution, except that
in our experiments the cost of transferring the full image meta-data from host
to GPU memory more than cancels the benefits. These steps could, however,
be implemented to run on a multicore CPU and one should expect to see a
significant increase in speed. The pruning method is examined in more depth in
Figure 5. All steps after this point take place on the GPU.

We chose to transfer to GPU at this point because the workload increases
dramatically here, as the algorithm begins comparing pixel values directly to
tighten the bounds on the individual yi. The pixel values of the yi are held in
texture memory as opposed to shared memory, as are those of the template,
since they are not modified during the run of the algorithm. This allows for a
great increase in access and copy speeds. Furthermore, very little data is actually
shared between concurrent threads at run time. This, combined with the very



limited size of the shared memory, led to our decision to only use it to store
pointers to the candidates. The upper and lower bounds of the candidates are
held in global memory initially, but since we have chosen a one-to-one candidate-
to-thread mapping, each thread copies the bounds to local memory (registers)
and performs their calculations there, avoiding costly global memory access.
With the CUDA architecture, threads are organized into blocks that can be
of one, two or three dimensions in geometry. These blocks are then organized
into grids that can likewise be one, two, or three dimesions. Our grids of thread
blocks are two-dimensional grids consisting of three-dimensional thread blocks.
Experimentally we did not notice any significant difference in performance due to
differences in grid and thread block geometries. The sizes of our grids and blocks
were determined based upon the size of the input data. Although branching is
typically avoided in SIMD programming, we stop those threads whose candidates
are no longer possible matches (that is, li > Eguess). These threads wait at a
synchronization barrier, allowing the multiprocessor to allocate more time to
the threads that still contain potential matches. Each thread then compares
its current distance value against a global minimum to allow for a degree of
synchronization between multiprocessors.

The combination of these steps to reduce the memory footprint, memory copy
time, and execution workload on the GPU result in our algorithm’s accelerated
performance. This design is scalable and not hardware specific, and can be ported
to any CUDA GPU with similar results.

4 Results

Our experimental design consisted of averaging the results of running our al-
gorithm over a number of trials with a variety of images of different sizes and
resolutions. We first tested with a few standard images (“pentagon” at 512x512,
“airport” at 512x512, and “man” at 1024x1024), and then considered a few im-
ages captured on a modern digital camera. We extracted a template from each
and tested with noise levels ranging from noiseless to very noisy (σ = 70).

We then ran the Full Search Method (using textures as described above) for
the same number of trials on the same GPU using the same input.

Our experimentation yielded the following performance results: When com-
paring the performance of our algorithm to the Full Search Method on small
images (512 x 512) at zero to low noise levels, our algorithm has better perfor-
mance than the Full Search Method. However, as the amount of noise increases to
extreme levels, our algorithm begins to slow down, while the Full Search Method
remains unchanged. This is due to the fact that at high noise levels, the Prune
step executed on the CPU eliminates fewer candidates and effectively becomes
excess computation or overhead instead of contributing efficiently to returning
a result. The results for these experiments run with the pentagon and airport
images are shown in Figure 6, where we report on the speedup factor compared
to increasing noise levels.
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Fig. 6: Ratio of speedup versus noise level σ of our algorithm for different images of
different sizes.

When comparing our algorithm’s performance to that of the Full Search
Method on medium to large images one can see the tremendous performance
increase of our algorithm. With an image size of 1024x1024 and a template size of
128x128, our algorithm experiences a 12 times performance increase over the Full
Search Method. The comparison of the performance increase for the 1024x1024
man image to the performance increase of the smaller 512x512 images can also
be seen in Figure 6. Furthermore, with a noiseless image size of 2306x1535 and a
template size of 304x280, our algorithm performed 7 times faster, and nearly 39
times faster with a noiseless 3072x2304 image and a template size of 584x782.
The results for the runnning times on these large images are summarized in
Table 3.

Image Noise Parallel Full Search Improvement

second 0 3979.879 27930.175 7.018
rob ref 0 6123.839 237215.515 38.736

Table 3: The images “second” and “rob ref” were taken with a modern digital camera,
and are of size 2306x1535 and 3072x2304 respectively. These larger images allow for
comparatively large improvements in run time. The run times for the Parallel and Full
Search algorithm implementations are expressed in milliseconds.



4.1 Analysis

The worst case run time of the algorithm is actually no better than the naive al-
gorithm described in Section 2. In practice, however, the expected run time of the
algorithm is significantly lower than this. This is not uncommon in accelerated
template matching techniques, GPU or host based [12, 20, 21].

Along similar lines, the fact that our algorithm does not make use of a great
deal of the GPU during the final stages of its runtime to avoid excess comptuation
means that the instruction throughput is actually quite low (around .05). This
has positive and negative consequences. The obvious negative is that much of
the GPU is idle, and current GPUs do not allow multiple host threads to use the
GPU simultaneously. The positive consequence is that it means the algorithm is
very efficient, and since next generation GPU architectures do allow multiple host
threads to use the GPU simultaneously [23, 24], our algorithm will leave more of
the GPU open to other threads. This would be advantageous in machine vision
settings where template matching is used as a low level algorithm since it would
“leave room” on the GPU for higher level processes.

5 Conclusions and Future Work

We have shown here that while adapting existing algorithms to run on GPUs
can provide considerable increases in performance, an algorithm that is designed
specifically to run on a GPU can have a nearly 39 times performance increase
over algorithms that are simply adapted to run on GPUs. We have shown that
in addition to considerations of data parallel algorithm design and analysis, one
must also carefully consider the unique memory structure and transfer costs of
GPUs to fully harness their power. That power is increasing, with CPU and GPU
manufacturers preparing to release next generation GPU architectures, which
will include features such as C++ support, error correcting memory, double
precision support, and a chip-wide high-speed communication [23, 24].

The work done here could very well be extended to multimedia database
search, as our algorithm’s ability to eliminate many candidates before calling
the GPU would allow searching a very large database without overwhelming the
GPU’s limited memory. Additionally, using a clever memory copy algorithm,
one could adapt this algorithm to search extremely large images, such as those
generated by astronomical surveys, by loading only image regions representing
likely matches onto the GPU.
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