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Abstract. In this work we simulate the contaminant transport problem in three 
dimensions that takes place throughout soil of waste disposals. Such problem is 
modeled by a diffusion-dominated equation. The solution is addressed by using 
hybridized mixed finite elements for the spatial discretization of the equation. 
The resulting linear algebraic system is handled by an iterative domain 
decomposition procedure. This procedure is naturally parallelizable, and 
permits to implement an algorithm in distributed memory machines in order to 
save on CPU time. The numerical results from serial and parallel codes are in a 
good agreement with experimental results, and performance measures indicate 
that the parallelizable procedure is able to perform an efficient simulation.  
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1   Introduction 

Parallel simulation can be an efficient way to investigate contaminant transport 
throughout soil of waste disposals. In this paper we apply a parallelizable numerical 
procedure to solving the diffusive transport problem in such porous media. 
Hybridized mixed finite elements are used for the spatial discretization of the 
governing equation. The resultant linear algebraic problems from this discretization 
are accomplished by an iterative domain decomposition procedure [1]. 

This paper is an extension of the work devised in [2], in which the parallelizable 
procedure was applied to approximating the solution of 2D-diffusive problems. Now, 
simulation results using the parallel code developed for three-dimensional problems 
are presented. The procedure permits to implement a parallel processing in order to 
obtain efficiency. It is naturally parallelizable in machines with distributed memory 
and allocates small memory space. Once it does not require the resolution of large 
linear equation systems, it is rapid. And it is of simple implementation concerning its 
code development. 

Numerical results from serial and parallel codes are compared with experimental 
data. Both the serial and the parallel codes are able to reproduce the transport 
processes, but the parallel is the most efficient in a computational point of view. 



2   The Governing Equations 

The contaminant transport is described by the partial differential equation that 
considers the mechanisms of advection, dispersion and chemical reaction. The 
chemical reaction is modeled as a sorption process. Sorption means the mass transfer 
between the contaminants dissolved in water and the contaminants sorbed in the 
porous medium. In this model, the hydrodynamic dispersion is set close to molecular 
diffusion, since mechanical dispersion is introduced through contaminant mass 
transfer between the aqueous and the solid domains [3].  

Assuming that the advection process can be neglected, contaminant transport can 
be described by the following equation: 
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where ρw is the water density, ε the porosity, cw be the contaminant concentration in 
the water phase, Dw is the molecular diffusion coefficient in the water phase, S is the 
source/sink term. 

The source/sink term is assigned to the mass transfer kinetic of the contaminant 
solute as a function of time. The mass transfer kinetic of the contaminant solute can 
be expressed by the following relation [4,5]:  
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where k is the kinetic constant, βe is the mass transfer coefficient, Asw is the contact 
area between the water and the porous medium, ceq is the equilibrium concentration of 
the contaminant solute in the leakage within the granular soil, and α is an exponent of 
the equation. 

3   Numerical Procedure 

For approximating the parabolic problem given by Eq. (1), we employ an implicit 
scheme for the discretization in time along with hybridized mixed finite elements for 
the spatial discretization [6,7]. This technique is appropriate to obtain accurate 
diffusion flux computations. A domain decomposition procedure is applied towards 
the solution of the algebraic system resulting from the spatial discretization. 



3.1   Time and Spatial Discretization 

Let t∆  denote the time step. Define tnt n ∆= , and we shall denote that the 
approximate solution for variables at times nt by )( nn tββ ≅ . 

With an implicit scheme for the time discretization, we rewrite the Eq. (1) using a 
mixed formulation: 
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where d

r
 is the diffusive flux. 

An approximate solution to the system (3) and (4) is achieved through a spatial 
discretization as follows. Let ],0[],0[],0[ LzLyLx ××=Ω  be a domain with a boundary 
Ω∂ , on which Ω∂=Γ , jj Ω∂∩Γ=Γ , kjkjjk Ω∂∩Ω∂=Γ=Γ . Set },,{ hzhyhxH = , 

where NxLxhx = , NyLyhy =  and NzLzhz = . Then, let },...,1,{ Njj =Ω  be a 
partition of Ω , where NzNyNxN ××= . 

For simplicity in presentation, we shall treat the case in which }{ jΩ is a partition 
of Ω  into individual elements used to discretize the system (3) and (4). In addition to 
requiring that j

nn
w dc },{ 11 ++

r
 be a solution in the element jΩ , it is necessary to impose 

the consistency conditions 
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where jn

r  is the unit outer vector normal to jΩ . 

3.2   Mixed Finite Elements and Iterative Procedure 

Let ),( jj divHV Ω= and )(2
jj LW Ω=  for Nj ,...,1= . The weak formulation of system 

(3) and (4) with the domain decomposed according to the discussion above is given 
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where jVv ∈

r and jWw∈ . 
Let us introduce Lagrange multipliers as contaminant concentrations on the edges 

{ jkΓ } and replace Eq. (5) and (6) by equivalent Robin transmission boundary 
conditions. Thus, consistency conditions for the contaminant concentration will be 
given by 
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where χ  is a positive function on jkΓ∪ , and jkl  is the Lagrange multiplier defined 
on jkΓ , as seen from jΩ . 

We shall consider lowest index Raviart-Thomas spaces for the spatial 
discretization of the system (3) and (4).  The element jΩ  will be taken to be a cube of 
side length hhzhyhx === . For simplicity in the presentation, we suppress the 
subscript j. Then, the system of equations in discretized form can be written as 
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and 
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with the consistency conditions written as 
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where β  denotes the six edges of a cubic element, with BFDURL ,,,,,=β . We 
introduce the superscript “~” to denote variables of adjacent elements and β’ denote 
the corresponding edge of the adjacent element under consideration.  

The resulting linear algebraic system (10), (11) and (12) consists of 13 variables 
},,{ 111 +++ nnn

w ldc ββ  and 13 equations for each element jΩ .We use an iterative domain 
decomposition procedure in order to localize the calculations to problems over 
smaller domains than Ω . Here, it is feasible to localize to each jΩ . The Eq. (12) is 
used in the above system to express all Lagrange multipliers at the new iteration level 
in terms of the Lagrange multipliers and diffusive fluxes of the adjacent elements at 
the previous iteration level. Then the Eq. (11) takes the form 
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where 2 w wD
h

ρ εξ = . We refer to [8] for details about this iterative procedure. 

Substituting Eq. (13) into Eq. (10), we have 
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Considering a linearization procedure for computing the mass transfer rate, the 

source/sink term is evaluated by the following scheme: 
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where an extrapolation operator is defined as follows: 
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4   Parallel Implementation 

The parallel technique applied in this work, previously proposed by Vatsa and co-
workers [9], establishes the distribution of computational load equally among all 
nodes belonging to the computational grid. Particular care was taken during the 
parallelization process concerning the domain division algorithm implementation and 
the parallel routines to keep the original code structure.  
 In order to achieve a good load balance distribution, an algorithm was 
implemented by decomposing the physical domain into subdomains (which contain 
several elements) which are assigned to distinct processors. Each processor allocates 
memory for the elements contained in its subdomain and for a buffer zone consisting 
of one layer of elements outside the subdomain. Data on the boundary of a subdomain 
is sent (received) to (from) neighboring subdomain using the buffer zones to perform 
the data transfer. Thus, local problems in each subdomain are solved at new levels, 
while quantities related to neighboring subdomains are evaluated at old levels. 
 This technique assures that each computing node solves parts of physical domain 
individually. Besides the gain in computational speed, the size of the problem or the 
number of maximum control volumes can be increased as far as the number of 
processors in the computational grid is linearly increased. The generic physical sub-
domain division is presented in Figure 1, illustrating the data transmission pattern. 
 

 
Fig. 1. Physical subdomain division and data transmission pattern. 

 
 The computer code is written in the FORTRAN language and the library 
adopted is the public domain version of MPI (Message Passing Interface). The 
communication technique adopted among computers was the blocking and the 
standard mode. 



5   Numerical Simulation 

Our numerical experiments were performed in a physical domain with impermeable 
boundary conditions. A cubic domain has 0.1 m ×  0.1 m ×  0.1 m discretized by 
50× 50× 50 computational grid. We ran the code using one, 2, 4, 6, 8, 10, 12, 14, and 
16 processors on CPU Pentium IV workstation system. We considered the time step 
equal to =∆t 15 s. The following data were held fixed in our experiments: porosity 
ε = 0.76, molecular diffusion coefficient in the water wD =  6.342× 10-10 m2/s, kinetic 
constant k = 2.5× 10-2, equilibrium concentration eqc = 7.544× 10-1 kg/m3, exponent 
number α = 1.75. 

5.1   One-Dimensional Problem 

The initial condition was specified as follows. NH4
+ concentrations of 9.2× 10-2 kg/m3 

and 1.815 kg/m3 were assigned on [0.0 m, 0.05 m] and [0.05 m, 0.1 m], respectively 
along the depth direction. Numerical results using the serial code and the parallel code 
using two processors are presented in Figure 2, at 72 hours of simulation. A 
concentration profile can be observed as a consequence of the NH4

+ contaminant 
transport that takes place in the cell.  We can note that numerical results are in good 
agreement with the experimental data. 

 
Fig. 2. Concentration profiles by using the serial and parallel codes. 

 
In Figure 3 we present the CPU time needed to run the serial and parallel codes at 

24, 48 and 72 hours of simulation. We can see that the decrease in time is not so much 
as expected, because some time is wasted by the communication among processors in 
parallel simulations.  

 



 

 

 

 

 

Fig. 3. CPU time for the serial and parallel codes. 

5.2   Three-Dimensional Problem 

We illustrate the diffusive transport in three space dimensions by using only the 
parallel code. The initial condition is depicted in Figure 4: NH4

+ concentration of 
1.815 kg/m3 is assigned in the red box and 9.2× 10-2 kg/m3 elsewhere. Concentration 
surfaces at 72 hours are also presented in this picture. The numerical result indicates 
that the parallel code is able to simulate properly the diffusive problem. 
 

 
Fig. 4. Concentration surfaces at initial condition (left) and at 72 hours (right). 

As a result, the total time needed to perform the simulation is almost 800 seconds 
for a single workstation, while 100 seconds is required if 16 processors are used. The 
corresponding measured speedup (the ratio of the time spent by a single workstation 
to perform a task to the time spent by N processors of the system to perform the same 



task is plotted against N) and the linear speedup appear in Figure 5. Note that the 
speedup for the parallel code does not increase from 12 processors on. 

 
Fig. 5. Speedup curves. 

5   Conclusions 

A 3-D parallel code has been developed to solve accurate and efficiently the 
contaminant transport problem in experimental cells, considering diffusion and 
sorption processes as the environmental driven forces. 

The iterative procedure permits naturally to implement an algorithm in distributed 
memory machines in order to save on execution time. The parallel code implemented 
for solving the diffusion problem has presented advantages in relation to the serial 
code. Thus, the parallel code has proved to be an efficient way to simulate the 
contaminant transport in experimental cells. 
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