On a strategy for Spectral clustering with parallel computation

Sandrine Mouysset Joseph Noailles Daniel Ruiz Ronan Guivarch

APO Team IRIT-ENSEEIHT, University of Toulouse

VECPAR'10 - 9th International Meeting High Performance Computing for Computational Science

Clustering

Goal:

Partition a $n \times p$ data set in K clusters to obtain larger within-cluster affinity and lower between-clusters affinity

- Some clustering methods based on:
 - geometrical properties: K-means...
 - spectral properties: Spectral clustering....

Spectral Clustering

select dominant eigenvectors of a parametrized affinity matrix A in order to build a low-dimensional data space wherein data points are grouped into clusters

Main difficulties :

- How to (automatically) separate clusters one from the other?
 - \rightarrow Look for some full-unsupervising process
- How to perform clustering on large datasets (image segmentation)?
 → Parallelization using domain decomposition

Introduction

- Spectral Clustering : theoretical points and through a parallel implementation
- Parallel strategy 1: disjointed subdomains with interface coupling

・ロト ・ 同ト ・ ヨト ・ ヨー・ りゃう

- Parallel strategy 2: decomposition with overlaps
- O Application on image segmentation
- **o** Conclusion and further investigations

Algorithm Ng, Jordan and Weiss

\rightarrow Spectral Clustering : theoretical points and through a parallel implementation

() Form the Gaussian affinity matrix $A \in \mathbb{R}^{m \times m}$ defined by:

$$A_{ij} = \begin{cases} exp(-\|x_i - x_j\|^2 / 2\sigma^2) \text{ if } i \neq j, \\ 0 \text{ otherwise} \end{cases}$$

2 Construct the normalized matrix : $L = D^{-1}A$ with $D_{i,i} = \sum_{j=1}^{m} A_{ij}$

- **③** Construct the matrix $X = [X_1 X_2 .. X_k] \in \mathbb{R}^{m \times k}$ by stacking the k "largest" eigenvectors of L. (k to be defined)
- Form the matrix Y by normalizing each of the X's rows, and treat each row of Y as a point in \mathbb{R}^k and cluster them in k clusters via K-means method
- Assign the original point x_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Spectral Clustering: example (ideal case)

Interpretation of Gaussian affinity matrix as discretization of Heat kernel

Affinity between two data points
$$x_i$$
 and x_j

$$A_{ij} = \exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma^2}\right)$$
Heat kernel in free space
 $\mathcal{K}_t(x - y) = (4\pi t)^{-\frac{p}{2}} \exp\left(-\frac{\|x - y\|^2}{4t}\right)$

Eigenfunctions for Heat equation with Dirichlet boundary conditions:

We can prove that:

- eigenfunctions for bounded and free space Heat equation are asymptotically close when t goes to 0,
- **2** difference between eigenvectors of A and discretized eigenfunctions of K_t is in \mathcal{O} of the distance between points inside the same cluster.

Conclusion: Spectral Clustering as a "connected components" method

Applying Spectral Clustering into subdomains resumes in restricting the support of L^2 particular eigenfunctions.

Two main problems arise:

- ullet Choice of the Gaussian affinity parameter σ
- Estimating the number of clusters k

1. Choice of the Gaussian affinity parameter σ

Given a data set of points $S = \{x_i, 1 \le i \le n\}$, every element of S is included in a p-dimensional box of edge $D_{max} = \max_{\substack{1 \le i, j \le n}} ||x_i - x_j||$. Let δ the reference distance defined by:

$$\delta = \frac{D_{max}}{n^{1/p}}$$

where n is the number of data points and p the data dimension.

Global heuristic parameter

Estimation of parameter σ : $\sigma^2 = \frac{\delta^2}{2}$.

(homogeneity of σ with respect to δ obtained by previous theoretical analysis)

 \rightarrow Automatic estimation of affinity parameter is performed.

2. Estimating the number of clusters k

In general cases, A's off-diagonal blocks are non-zero so, with k = 3:

$$\hat{L} = \begin{bmatrix} L^{(11)} & L^{(12)} & L^{(13)} \\ L^{(21)} & L^{(22)} & L^{(23)} \\ L^{(31)} & L^{(32)} & L^{(33)} \end{bmatrix}$$

Evaluate the ratio between off-diagonal-blocks in Frobenius norm and diagonal-blocks one, for $i \neq j$ and $i, j \in 1, .., k$:

$$r_{ij} = \frac{\|L^{(ij)}\|_F}{\|L^{(ii)}\|_F}$$

Criterion for determining k

$$k = \arg\min_{k'} \frac{2}{k'(k'-1)} \sum_{\substack{i=1\\j=i+1}}^{k'} r_{ij}.$$
 (1)

 \rightarrow Automatic determination for the number of clusters k

Estimation of the number of clusters: examples

 \rightarrow Minimum for ratio function reached for optimal k

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Domain decomposition strategy: implementation

ightarrow Parallel strategy 1: disjointed subdomains with interface coupling

Figure: Principle of parallel Spectral clustering for q = 2

Figure: Target example: interface and subdomains

 \rightarrow Total number of processes = q+1.

Domain decomposition strategy: parallel experiments

Figure: Geometrical example and zooms: n = 4361

n	Number	Number of data	Total Time	% of Total Time for
	of processors	in the interface	(sec)	spectral clustering
	1	-	2930.3	99.9
9700	5	3601	214.47	99.4
	9	4868	354.77	99.3
	13	5738	628.81	99.6
	1		> 3h	-
15247	3	5532	695.41	99.6
	9	7531	1289.43	99.6
	13	8950	2394.01	99.8

→ Test on Hyperion supercomputer with 352 nodes (bi-Intel "Nehalem" EP quad-core), 4.5GB per core, 33TFlops

Observations

- Main part of algorithm is dedicated to spectral clustering on subdomains;
- Speed-up is larger than the ratio between total number of points to the maximum data on one subdomain;
- Spectral clustering on subdomains is faster than considering the whole data set.

Limitations

- Computation of a particular Gaussian parameter for the interface;
- Interface becomes the most time consuming computational task in case of larger number of subdomains.

Domain decomposition strategy: implementation

Figure: Principle of parallel Spectral clustering for q = 2

 \rightarrow Total number of processes = q.

Figure: Target example: intersection and subdomains

Figure: Geometrical example on Hyperion: n = 4361

n	Number of processors	Maximum of data by processor	Total Time (sec)	% of Total Time for spectral clustering
	1	170)	2930.3	99.9
9700	4	3712	304.71	99.6
	8	2265	70.35	98.1
	12	2283	67.27	96.6
	1		> 3h	-
15247	4	5760	1034.09	99.8
	8	3531	247.16	98.9
	12	3517	231.71	97.9

Summary:

- Speed-up » (total number of data) / (the maximum number of data on a subdomain);
- Overlapping strategy faster than interface one for equivalent number of processors;
- Computational time decreases with the maximal number of data points on a processor.

 \rightarrow Overlapping strategy more relevant for image segmentation applications

\rightarrow Application on image segmentation

Total time: 675.67 seconds for n = 42780 points

Application 2: larger dataset with more constrasts

Figure: Example: original data (left) and clustering result (right)

Total time: 5145.05 seconds for n = 64000 points

Conclusion

- Parallel strategies of Spectral clustering proposed and tested on geometrical and imaging examples;
- Method fully unsupervised.

Perspectives

- Study of the robustness : sparsification techniques, techniques for distributing uniformly the data per processor;
- Image segmentation : study descriptive parameters in affinity definition (brightness, color, geometrical information...);
- Genomic perspective : how to divide into subdomains for time-dependent applications?

Thank you for your attention.