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Clustering

o Goal:
Partition a n X p data set in K clusters to obtain larger within-cluster
affinity and lower between-clusters affinity

@ Some clustering methods based on:

e geometrical properties: K-means...

o spectral properties: Spectral clustering...

Example of data set K-means method Clustering results :




Spectral Clustering: introduction

Spectral Clustering

select dominant eigenvectors of a parametrized affinity matrix A in order to
build a low-dimensional data space wherein data points are grouped into
clusters

Main difficulties :
@ How to (automatically) separate clusters one from the other?
— Look for some full-unsupervising process

@ How to perform clustering on large datasets (image segmentation)?
— Parallelization using domain decomposition



Spectral Clustering

@ Introduction

@ Spectral Clustering : theoretical points and through a parallel
implementation

© Parallel strategy 1: disjointed subdomains with interface coupling
Q Parallel strategy 2: decomposition with overlaps
O Application on image segmentation

@ Conclusion and further investigations



Algorithm Ng, Jordan and Weiss

— Spectral Clustering : theoretical points and through a parallel
implementation J

© Form the Gaussian affinity matrix A € R™*™ defined by:

e {exp( Ixi = %1% /202) if i # J,
=

0 otherwise

@ Construct the normalized matrix : L = D™'A with D; ; = i1 Aij

© Construct the matrix X = [X1Xa..X] € R™*k by stacking the k “largest”
eigenvectors of L. (k to be defined)

@ Form the matrix Y by normalizing each of the X's rows, and treat each row
of Y as a point in R¥ and cluster them in k clusters via K-means method

@ Assign the original point x; to cluster j if and only if row i of the matrix Y
was assigned to cluster j.



Spectral Clustering: example (ideal case)

Affinity matrix sparsity

(a) Data set (n=300) (b) Near block-diagonal affinity

matrix (step 1)

Spectral Embedding :

(c) Y's rows (step 4) (d) 3 well-separated clusters
(step 5)



Interpretation of Gaussian affinity matrix as discretization of Heat kernel

Affinity between two data points x; and x; Heat kernel in free space

ay = ey (30 Kelx — ) = (art) % exp (~ Li21%)
Eigenfunctions for Heat equation with Dirichlet boundary conditions:
Eigenvectors of the affinity matrix A:

-



Interpretation of Gaussian affinity matrix as discretization of Heat kernel

We can prove that:

@ eigenfunctions for bounded and free space Heat equation are
asymptotically close when t goes to 0,

@ difference between eigenvectors of A and discretized eigenfunctions of K
is in O of the distance between points inside the same cluster.

Conclusion: Spectral Clustering as a "connected components" method

Applying Spectral Clustering into subdomains resumes in restricting the
support of L? particular eigenfunctions.

Two main problems arise:

@ Choice of the Gaussian affinity parameter o

e Estimating the number of clusters k




Asymptotical condition on parameter o : a geometric point of view

1. Choice of the Gaussian affinity parameter o

Given a data set of points S = {x;, 1 < i < n}, every element of S is included

in a p-dimensional box of edge Dmax = max ||xi — x;]|.
1<i,j<n

Let & the reference distance defined by:

Dmax
nl/p

d =

where n is the number of data points and p the data dimension.

Global heuristic parameter

a o 2
Estimation of parameter o: 0° = —.

(homogeneity of o with respect to § obtained by previous theoretical analysis)

— Automatic estimation of affinity parameter is performed.



Estimation of the number of clusters

2. Estimating the number of clusters k
In general cases, A's off-diagonal blocks are non-zero so, with k = 3:

L(ll) L(12) L(13)
z — L(21) L(22) L(23)
L(31) L(32) L(33)

Evaluate the ratio between off-diagonal-blocks in Frobenius norm and
diagonal-blocks one, for i # j and i,j € 1, .., k:

)
TG

Criterion for determining k

. 2
k—argn’)(l/nm Z rij. (1)

i=1

— Automatic determination for the number of clusters k



Estimation of the number of clusters: examples

Example smiley: Example with multiple close clusters:

B s O
Number of clusters k

5 4 45 5 55
Number of clusters k

— Minimum for ratio function reached for optimal k



Domain decomposition strategy: implementation

— Parallel strategy 1: disjointed subdomains with interface coupling

Pre—processing step
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Figure: Target example: interface and
subdomains

Figure: Principle of parallel Spectral
clustering for g = 2

— Total number of processes = q+1.



Domain decomposition strategy: parallel experiments

Figure: Geometrical example and zooms: n = 4361

n Number Number of data Total Time | % of Total Time for
of processors in the interface (sec) spectral clustering

1 - 2930.3 99.9

9700 5 3601 21447 99.4

9 4868 354.77 99.3

13 5738 628.81 99.6

1 - > 3h -

15247 3 695.41 99.6

9 1289.43 99.6

13 2394.01 99.8

'

— Test on Hyperion supercomputer with 352 nodes (bi-Intel “Nehalem’
EP quad-core), 4.5GB per core, 33TFlops



Domain decomposition strategy: parallel experiments

Observations

@ Main part of algorithm is dedicated to spectral clustering on subdomains;

o Speed-up is larger than the ratio between total number of points to the
maximum data on one subdomain;

@ Spectral clustering on subdomains is faster than considering the whole
data set.

o Computation of a particular Gaussian parameter for the interface;

o Interface becomes the most time consuming computational task in case of
larger number of subdomains.




Domain decomposition strategy: implementation

— Parallel strategy 2: decomposition with overlaps

Pre—processing step

Spectral clustering
Subd

‘ Grouping Step

Figure: Principle of parallel Spectral
clustering for g = 2

— Total number of processes = q.
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Figure: Target example: intersection and
subdomains



Discussion and alternative

Figure: Geometrical example on Hyperion: n = 4361

n Number Maximum of data Total Time | % of Total Time for
of processors by processor (sec) spectral clustering

1 - 2930.3 99.9

9700 4 3712 304.71 99.6

8 2265 70.35 98.1

12 2283 67.27 96.6

1 - > 3h -

15247 4 5760 1034.09 99.8

8 3531 247.16 98.9

12 3517 231.71 97.9




Domain decomposition strategy: parallel experiments

Summary:

o Speed-up » (total number of data) / (the maximum number of data on a
subdomain);

o Overlapping strategy faster than interface one for equivalent number of
processors;

o Computational time decreases with the maximal number of data points on
a processor.

— Overlapping strategy more relevant for image segmentation applications



Application on image segmentation

— Application on image segmentation )

Application 1: Image segmentation including both geometrical and brightness
in affinity definition

cluster

10

(a) Original data set (b) Clustering result

Figure: Example of image segmentation tested on Hyperion

Total time: 675.67 seconds for n = 42780 points



Image segmentation

Application 2: larger dataset with more constrasts

Clusters number = 201

Original data

Figure: Example: original data (left) and clustering result (right)

Total time: 5145.05 seconds for n = 64000 points



Conclusion and further investigations

o Parallel strategies of Spectral clustering proposed and tested on
geometrical and imaging examples;

o Method fully unsupervised.

@ Study of the robustness : sparsification techniques, techniques for
distributing uniformly the data per processor;

o Image segmentation : study descriptive parameters in affinity definition
(brightness, color, geometrical information...);

o Genomic perspective : how to divide into subdomains for time-dependent
applications?




Thank you for your attention.

DA



