

The High Performance Solution of Sparse Linear Systems and its application to large 3D Electromagnetic Problems

David GOUDIN CEA/DAM/CESTA

Introduction : The Electromagnetic problem

The simulation of the electromagnetic behavior for a complex target in the frequency domain formulation

→ Numerical solution of Maxwell's equations in the free space

 \square RCS (Radar Cross Section) computation

 \Box Antenna computation

The 2 big « families » of numerical methods for EM

Partial Differential Equations Methods = PDE

- □ Volumic description
- □ the unknowns : fields in the computational
- volume : E and/or H
- □ formulations
 - → 2^{nd} order on E
 - → 2^{nd} order on H
 - Discretization by volumic finite elements
 H(rot)

Boundary Integral Equations Methods = BIEM

□ surfacic description

the unknowns : equivalent currents on the

surface : *J* et *M*

□ formulations

- → EFIE
- $\rightarrow CFIE$
- \rightarrow EID (CEA originality)

Integral representation :

 $E^{d} = i \,\omega\mu \, L_{\omega} \Box J \boxdot \frac{1}{i \,\omega\varepsilon} \, grad \Box_{\omega} \Box div_{\Gamma} J \Box \Rightarrow ro$ $H^{d} = i \,\omega\varepsilon \, L_{\omega} \Box M \boxdot \frac{1}{i \,\omega\mu} \, grad \Box_{\omega} \Box div_{\Gamma} M \Box \Box_{\omega}$

Discretization by surfacic finite elements H(div)

 \implies IN BOTH CASE it leads to solve a linear system $A \cdot x = b$ with A dense or sparse

The CESTA Full BIEM 3D Code

□ Fully BIEM

- □ Meshes at the surface and on interfaces between homogeneous isotropic medium
- number of DOF (Degrees of Freedom) reasonable
- leads to a <u>full matrix</u>

$$\begin{bmatrix} A^{s}_{22} & A^{s}_{23} \\ A^{s}_{23} & A^{s}_{33} \end{bmatrix} \begin{bmatrix} M \\ J \end{bmatrix}$$

Parallelization : very efficient

□ Solver

In house parallel Cholesky-Crout solver. The matrix is :

- symmetric
- complex
- non hermitian

For some applications, the matrices are non symmetric so we use

- The ScaLapack LU solver

Some results with the 3D BIEM code

Complete geometry and plane symmetries

Parallel Direct solver for dense systems, the matrix is complex and symmetric

N=486 636, size 1895 Gbytes, LDLt factorization

Number of Proc	CPU time (s)	% / peak power	Tflops
1024	39 642	60 %	3.87

Unvarious geometry under rotation

Parallel Direct solver for dense systems, the matrix is complex and non symmetric (ScaLapack)

Number of Proc	CPU time (s)	% / peak power
128	1809	76 %
256	968	70%
512	507	68%

N=285 621, size 1306 Gbytes, LU factorization

Number of proc	CPU time (s)	% / peak power	Tflops
1600	8315	73 %	7.47

A test case for the 3D BIEM code

œ

□ NASA Almond 8 Ghz

233 027 unknowns with 2 symmetries \implies 932 108 unknowns

- matrix size : 434 GBytes
- 4 factorizations & 8 back/forward solves to compute the currents
- global CPU time on 1536 processors : 36 083 seconds

D BIEM

Only homogeneous and isotropic media

Numerical instability for very thin layers

Size of the dense linear system 7 according to the number of layers

A solution : a strong coupling PDE - BIEM

- ➡ It needs to use a Schur complement : elimination of the unknown E
- BUT need of a great number of computations (solutions) of the sparse linear system

The other solution: a weak coupling PDE - BIEM

Based on :

- * a domain decomposition method (DDM) partitioned into concentric sub-domains
- * a Robin-type transmission condition on the interfaces
- * on the outer boundary, the radiation condition is taken into account using a new IE formulation called EID
- * we solve this problem with inner/outer iteration

① Gauss-Seidel for the global problem

Inside each sub-domain

- ② iterative solver (// conjugate gradient)
- the PaStiX direct solver (EMILIO library)

for the free space problem

- ② a // Fast Multipole Method
- a direct ScaLapack solver

- EMILIO was developed in collaboration with INRIA's team
- EMILIO uses efficient parallel implementation of direct methods to solve sparse linear systems, <u>thanks to the high performance direct solver</u> <u>PaStiX and the Scotch package (both developed by INRIA's team)</u>
- Organized into two parts :
 - a sequential pre-processing phase using a global strategy,
 - a parallel phase.
- In our 3D code, we use an old version of PaStiX
 - 1-D block column distribution
 - Full MPI implementation
 - Static scheduling

CEA/DAM/CESTA

10

How we use PaStiX (Direct Solver) in EMILIO

How we use PaStiX (Direct Solver) in EMILIO

Numerical results

> Altere :

- * **5.63 millions** unknowns in 4 sub-domains
- * **120 000** edges for the outer boundary

Numerical results

Comparison 2D axi-symmetric code / Odyssée

Comparison 2D axi-symmetric / Odyssee

Bistatique RCS- θ =90 degrés

 \boxtimes 7 iterations for the relaxed Gauss-Seidel

Our limit : 23 millions of unknowns

> A complex object :

* 23 millions of unknowns in 1 sub-domain

* 20 000 unknowns for the EID

Ω₁ : EMILIO - full MPI (industrial version of PasTiX)

 S_1 : EID + MLFMA

About 125 Tera operations needed for the factorization only

Number of procs	512 (32 nodes)	
Number of MPI tasks	64 (2 per node)	
Memory used per Node	94 Go	
Time to Assembly the Matrix	870 s	
Time of Factorization	8712 s	
Time of Resolution	40 s	
Time for the EID	30 s	

How to bypass the gap of Memory consumption

<u>Problem</u> : Find a high performance linear solver able to solve very large sparse linear systems (hundreds of millions of unknowns)

Existing software :

EMILIO (with solver PaStiX full MPI) already integrated in ODYSSEE

PETSc (iterative solver) already integrated in ODYSSEE

→ <u>Limits :</u>

- Emilio is limited to 23 Millions of unknowns
- Classical Iterative solver are not well adapted to our problems

Use the PTScotch software to avoid the ordering sequential step

Test the MPI+Threads version of PaStiX (results on the next slide...)

The biggest problem (for the moment with TERA10...) solved by PaStiX MPI+Threads

3D Problem : 82 Millions of unknowns (New PasStiX MPI + Threads)

OPC (number of operations needed for factorization) LDLt : 4.28 e+15 NNZ (number of non zeroes in the sparse matrix) A : 5.97 e+10

Number of cores	Max Time	Max Memory per
(Tasks MPI / Threads)	Factorization per core	SMP Node
768 (48/16)	27750 s	115 Go

>A parallel hybrid multigrid/direct method

- Compute solution using direct solver on initial mesh
- Prolongate solution on finer mesh
- Apply smoother and compute residual
- Restrict residual on coarse mesh and compute error e
- Apply correction using prolonged e then smooth
- Go to Step 2 until desired refinement level is reached

Fine Grid

Conclusions and Future research

Conclusions for Parallel codes for electromagnetism

We have developed a 3D code which is able to take into account all the goals we want to attain

- We successfully validated all the physics through comparison with : - other codes we have (full BIEM, 2D axis symmetric)
 - measurements

Future research for Odyssee

We must finish to develop a complete hybrid, implementation of Odyssee with MPI + Threads + GPU ?

Improve our methods and our softwares, test some iterative methods for the solution of each sub domain in the volume, work on a Fast Multipole Method adapted to hybrid architecture of new supercomputers

Congratulations to the Soccer's US Team ! No congratulations at all for the French team.....

