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kinc 

Einc 

Hinc 

Numerical solution of Maxwell’s equations in the free space 

(Hd,Ed) 

What is the problem ? 

 RCS (Radar Cross Section) computation   

 Antenna computation    

The simulation of the electromagnetic behavior for a 

complex target in the frequency domain formulation 

Introduction : The Electromagnetic problem 
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Our Supercomputers 

01 02 03 04 05 06 07 08 09 10 11 13 99 00 12 

TERA-1 : 1 (5) Tflops 

 
TERA-10 : > 10 Tfops 

 

TERA-100 : > 100Tflops 

30 (50) Gflops 

 

TERA 

 Better physics modelling 
 

                        

Linpack : 52,84 

 Teraflops 

(2007) 

 
544*16 proc. 
 
> 60 Tflops 
(12,5 Tflops) 
 
30 To 
 
1 Po - 56 nodes 
  
< 2000 kW 

 
SMP Nodes 
 
Peak performance 
(Benchmark CEA) 
 
RAM 
 
Disk space 
 
Consumption 

Main characteristics of TERA 10 
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The 2 big « families » of numerical methods for EM 

Boundary Integral Equations 
Methods = BIEM 

Partial Differential Equations 
Methods = PDE   

 Volumic description  

 the unknowns : fields in the computational 

volume : E and/or H 

 formulations 

       2nd order on E 

       2nd order on H 

   

 surfacic description 

 the unknowns : equivalent currents on the 

surface : J et M 

 formulations 

       EFIE 

       CFIE 

       EID   (CEA originality) 

 

Discretization by volumic finite elements  

H(rot) 

Integral representation :     
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Discretization by surfacic finite elements 

H(div) 

IN BOTH CASE it leads to solve a linear system   A.x = b with A dense or sparse  
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The CESTA Full BIEM 3D Code 

 Solver  

In house parallel Cholesky-Crout solver. 

The matrix is : 

 - symmetric 
 - complex 
 - non hermitian 
 
For some applications, the matrices are  
non symmetric so we use 
 
 - The ScaLapack  LU solver 

 Fully BIEM 

 Meshes at the surface and on interfaces  

between homogeneous isotropic medium 

- number of DOF (Degrees of Freedom) reasonable 

- leads to a full matrix 

Parallelization : very efficient 

M 

J 

As
22 As

23 

As
23 As

33 

J,M 
J,M 



Some results with the 3D BIEM code 

 Parallel Direct solver for dense systems,  the matrix is complex and symmetric 

Complete geometry and plane symmetries 

 Parallel Direct solver for dense systems, the matrix is complex and non symmetric (ScaLapack) 

Unvarious geometry under rotation 

 N=75 000, size  90 Gbytes, LU factorization 

Number of Proc CPU time (s) % / peak power 

128 1809 76 % 

256 968 70% 

512 507 68% 

N=285 621, size  1306 Gbytes, LU factorization 

Number of proc CPU time (s) % / peak power Tflops 

1600 8315 73 % 7.47 

N=486 636, size 1895 Gbytes, LDLt factorization 

Number of Proc CPU time (s) % / peak power Tflops 

1024 39 642 60 % 3.87 
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A test case for the 3D BIEM code 

  NASA Almond 8 Ghz 

      233 027 unknowns with 2 symmetries              932 108 unknowns 

• matrix size : 434 GBytes 

• 4 factorizations & 8 back/forward solves to compute the currents  

• global CPU  time  on 1536 processors : 36 083 seconds 

Bistatique  RCS  8 GHz 
Bistatic  RCS  8 GHz 

axial incidence 

Observation’s angles  (degrees) 
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    BIEM  

Only homogeneous and isotropic media  
 
Numerical instability for very thin layers 
 
Size of the dense linear system  according to the number of layers 

The limits of the full BIEM method  

E 

 J 

M 

= Sd Mb 

 A solution : a strong coupling PDE - BIEM  

It needs to use a Schur complement : 
elimination of the unknown E 

BUT need of a great number of 
computations (solutions) of the sparse 
linear system 
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A 3D Electromagnetic code : Odyssee 

* a domain decomposition method (DDM) partitioned  
    into concentric sub-domains 

*  a Robin-type transmission condition on the interfaces 

* we solve this problem with inner/outer iteration  

Based on :  

* on the outer boundary, the radiation condition is taken into   
     account using a new IE formulation called EID  

 Gauss-Seidel for the global problem   

 Inside each sub-domain   

-  iterative solver (// conjugate gradient) 

 for the free space problem 

-   a //  Fast Multipole Method 

-  the PaStiX direct solver (EMILIO library) -  a direct ScaLapack solver 

The other solution: a weak coupling PDE - BIEM  

EFV 

PEC 

 

 

 
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Focus on EMILIO = industrial version of PaStiX solver 

 

 

 

• EMILIO was developed in collaboration with INRIA’s team   

 

• EMILIO uses efficient parallel implementation of direct methods to solve 

sparse linear systems, thanks to the high performance direct solver 

PaStiX and the Scotch package (both developed by INRIA’s team) 

 

• Organized into two parts : 

•  a sequential pre-processing phase using a global strategy, 

•  a parallel phase. 

 EMILIO in few words 

• In our 3D code, we use an old version of PaStiX  

– 1-D block column distribution  

– Full MPI implementation 

– Static scheduling 
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Reordering of the unknowns 

PaStiX 

Symbolic Factorization 

How we use PaStiX (Direct Solver) in EMILIO 

Sequential Computation (1 time per problem)  

Mesh of the object = graph of  the  

unknowns 
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How we use PaStiX (Direct Solver) in EMILIO 

PaStiX 

Block mapping of the matrix Finite Element Mapping on the procs 

PaStiX 

Matrix assembly, Boundary Conditions, RHS 

Assembly Factorization 

PaStiX 

Solution 

Odyssee routine 

Odyssee routine 

Parallel Computation for the 1st iteration 
for each volumic subdomain  EFV 

EID BIEM : 

PEC 

 

 

 
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How we use PaStiX (Direct Solver) in EMILIO 

PaStiX 

Matrix assembly, Boundary Conditions, RHS 

Assembly Factorization 

PaStiX 

Solution 

Odyssee routine 

EFV 

EID BIEM : 

PEC 

 

 

 

Parallel Computation for the iteration  > 1 
for each volumic subdomain 
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Altere :  

   * 5.63 millions unknowns in 4 sub-domains 

   *  120 000 edges for the outer boundary 

Numerical results 
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Comparison 2D axi-symmetric code / Odyssée  

Bistatic RCS at 1GHz  

Numerical results 

k  
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Bistatique RCS- =90 degrés 

Observations (degrés) 

    Comparison 2D axi-symmetric / Odyssee  

Numerical results for an another test 

 7 iterations for the relaxed Gauss-Seidel  
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A complex object :  
   * 23 millions of unknowns in 1 sub-domain 

   *  20 000 unknowns for the EID 

Our limit : 23 millions of unknowns  

1 : EMILIO – full MPI 
        (industrial version of PasTiX) 

1 

S0 
S1 

S1 : EID +  MLFMA 

About 125 Tera operations needed 
for the factorization only  Number of procs 512 (32 nodes) 

Number of MPI tasks 64 ( 2 per node ) 

Memory used per Node 94 Go 

Time to Assembly the Matrix 870 s 

Time of Factorization 8712 s 

Time of Resolution 40 s 

Time for the EID 30 s 
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Problem : Find a high performance linear solver able to solve very  
large sparse linear systems (hundreds of millions of unknowns) 

EMILIO (with solver PaStiX full MPI) already integrated in ODYSSEE 

  PETSc (iterative solver) already integrated in ODYSSEE 
 

Limits : 

Emilio is limited to 23 Millions of unknowns  

   Classical Iterative solver are not well adapted to our problems  

How to bypass the gap of Memory consumption 

Existing software :  

 Find New solvers  

 Use the PTScotch software to avoid the ordering sequential step  

 Test the MPI+Threads version of PaStiX (results on the next slide…) 
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 3D Problem : 82 Millions of unknowns  
(New PasStiX MPI + Threads) 

Number of cores 
(Tasks MPI / Threads) 

Max Time 
Factorization per core 

 
Max Memory per 

SMP Node 
 

768 (48/16) 27750 s 115 Go 

The biggest problem (for the moment with TERA10…) solved 

by PaStiX MPI+Threads 

OPC (number of operations needed for factorization)  LDLt : 4.28 e+15  

NNZ (number of non zeroes in the sparse matrix) A : 5.97 e+10 
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Iterative and Multigrid Methods (Joint work with D. Lecas) 

ILUPACK 

Hypre 

Other Softwares studied to bypass the GAP ! 

PETSc  

HIPS : Hierarchical Iterative Parallel Solver, solver developped by the INRIA 
team Bacchus 

Direct Methods 

SuperLU 

MUMPS 

MaPHYS : developped by the INRIA team Hiepacs 
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Phd Student Mathieu Chanaud  (INRIA-CEA) 

First level of grid 

restriction prolongation 

(interpolation) 

Fine Grid 

smoothing 

 Compute solution using direct solver on initial mesh 

 Prolongate solution on finer mesh 

 Apply smoother and compute residual 

 Restrict residual on coarse mesh and compute error e  

 Apply correction using prolonged e then smooth 

 Go to Step 2 until desired refinement level is reached 

A parallel hybrid multigrid/direct method 
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Conclusions and Future research 

 Conclusions for Parallel codes for electromagnetism 

We must finish to develop a complete hybrid,  

implementation of Odyssee with MPI + Threads + GPU ? 

Improve our methods and our softwares, test some iterative methods  

for the solution of each sub domain in the volume, work on a Fast 

Multipole Method adapted to hybrid architecture of new  

supercomputers 

 Future research for Odyssee 

We have developed a 3D code which is able to take into account 

all the goals we want to attain 

We successfully validated all the physics through comparison with : 
  - other codes we have (full BIEM, 2D axis symmetric) 
  - measurements 

  



That’s all ! 

Thank you  
 for your attention 
Merci 

Congratulations to the Soccer’s US Team ! 
No congratulations at all for the French team….. 


