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Motivations

Due to computational cost, fluid dynamics is often neglected
in building physics. Modelling of energy efficient buildings
requires to take these effects into account.

The lattice Boltzmann method (LBM) is an innovative
approach in CFD. Besides other advantages, parallel
implementations of LBM are rather straightforward.

GPUs, e.g. CUDA capable hardware, provide an inexpensive
and efficient way to perform parallel computations.

The global memory maximum throughput is the limiting factor
for CUDA implementations of the LBM, which currently
achieve 70 to 80% of the maximum sustained throughput.



Lattice Boltzmann Method

Mass transfer is performed in discrete time and space using a finite
set of velocities, as the D3Q19 stencil:



Lattice Boltzmann Equation

The fluid is represented by a discrete distribution fi associated to
the velocities ei , and obeying to the following equation:

fi (x + δt ei , t + δt)− fi (x, t) = Ωi (f (x, t))

where Ωi is a collision operator.

The macroscopic quantities are given by:
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Algorithmic Aspect

The LBM breaks up in two elementary steps, i.e. collision and
propagation:

f̃i (x, t) = fi (x, t) + Ωi (f (x, t))

fi (x + δt ei , t + δt) = f̃i (x, t)



Algorithm

for each time step t do
for each lattice node x do

read velocity distribution fi (x, t)
if node x is on boundaries then

apply boundary conditions
end if
compute updated distribution f̃i (x, t)
propagate to neighbouring nodes x + δtei

end for
end for

CUDA implementations of the LBM assign one thread to each
node, store the velocity distribution in global memory, and ensure
global synchronisation using one kernel launch for each time step.



Methodology

To study transactions between global memory and registers, we
used kernels performing the following operations :

1 Store time t0 in a register.

2 Read N words from global memory, with possibly L misalignments.

3 Store time t1 in a register.

4 Write N words to global memory, with possibly M misalignments.

5 Store time t2 in a register.

6 Write t2 to global memory.

Time is accurately determined using the CUDA clock() function
which uses per TPC counters.



Methodology (continued)

The parameters of our measurements are N, L, M, and k, the
number of warps concurrently affected to each SM.

We used a one-dimensional grid and one-dimensional blocks
containing one single warp.

We created a script generating the kernels rather than using
runtime parameters and loops.



Example of Kernel

__global__ void kernel(uint* t)
{

int i = blockIdx.x;
int j = threadIdx.x;
uint t0 = clock();
uint r0 = t[_(i, j, 0)];
uint r1 = t[_(i, j, 1)];
uint r2 = t[_(i, j, 2)];
uint t1 = clock();
t[_(i, j, 0)] = r0 + t0;
t[_(i, j, 1)] = r1 + t1;
t[_(i, j, 2)] = r2 + t1;
uint t2 = clock();
t[_(i, j, T)] = r2 + t2;

}



Measurements

We carried out our measurements on one CUDA device of a
GeForce GTX 295 graphics board (featuring two GT200).

At kernel launch, blocks are dispatched to the TPCs one by
one up to k blocks per SM.

Since the GT200 contains ten TPCs, blocks affected to the
same TPC have identical blockIdx.x unit digit.

In order to compare the measurements, we shifted the origin
of the time scale to the minimal t0.

We noticed that the timings are coherent on each of the TPCs.



Modelling, N ≤ 20

For N ≤ 20, we observed that:

Reads and writes are performed in one stage, hence storing of
t2 has no noticeable influence.

Warps 0 to 8 are launched at once (in a determined but
apparently incoherent order).

Subsequent warps are launched one after the other every ∼ 63
clock cycles.

Thus we approximate the processing time T of k warps per SM
with:

T ≈ `+ TR + TW

` being start time of the last warp, TR read time, TW write time.



Launch Delay
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`(i) ≈ 0 for i ≤ 9 and `(i) ≈ 63(i − 10) + 13 otherwise.



Read time distribution (96,000 warps with N = 19)
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Bimodal shape of the distribution is most likely due to TLB misses.



Write time distribution
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Average read and write times depend linearly of N. For instance
with, k = 8, we obtained:

TR ≈ 317(N − 4) + 440 TW ≈ 562(N − 4) + 1178



Modelling, N > 20

For N > 20, reads and writes are performed in two stages.

If the first n warps in a SM read at least 4,096 words, where
n ∈ {4, 5, 6}, then the processing of the subsequent warps is
postponed.

Time t0 for the first 3n warps of a TPC follow the same
pattern as in the first case.

There is a slight overlapping of the two stages but we may
consider that they are performed sequentialy.

Again, we can approximate the processing time T of k warps per
SM with:

T ≈ T0 + `′ + T ′
R + T ′

W

T0 being the processing time for the first stage.



First stage duration
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T0 depends linearly of N in the three intervals {21, . . . 25},
{26, . . . 32}, and {33, . . . 39}.



Timings in second stage
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W also depend linearly of N in the mentionned intervals.



Misalignment impact
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For misaligned reads, the average write time remains approximatively constant.
Read time increases linearly until some threshold is reached. Similar conclusion
can be drawn for misaligned writes.



Implementation

For each implementation, we used a SoA like data layout, and a
two-dimensional grid of one-dimensional blocks. Since misaligned
writes are more expensive than misaligned reads, we experimented
several propagation schemes in which misalignments are deferred
to the read phase of the next time step.



Performance and Estimation (MLUPS)

Model Occupancy Actual Estimated Rel. error

D3Q19 LBGK 25% 481 492 2.3%

D3Q19 MRT 25% 516 492 4.6%

Thermal LBM 12.5% 195 196 1.0%



Summary

Our work provides:

An extensive study of the global memory access mechanism
between global memory and GPU for the GT200.

A description of the scheduling of global memory accesses at
hardware level.

A model which allows to estimate the global execution time of
a regular data-parallel application on GPU. This model is
likely to apply to similar GPU applications.



Thank you for your attention!
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