
Compiler Analysis and Optimization
of Habanero-Java Programs

Rajkishore Barik
rajbarik@rice.edu

1Rice University

Habanero Multicore Software Research Project

Rice University

7/1/2010

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming
Languages

Habanero
Static Compiler

& Parallel
Intermediate
Representation

Habanero
Runtime &
Dynamic
Compiler

Two-level programming model
Declarative Coordination Language

for Domain Experts,
CnC (Intel Concurrent Collections)

+
Task-Parallel Languages for Tuning

Experts,
Habanero-Java (from X10 v1.5)

and Habanero-C

Portable execution model
1) Lightweight asynchronous
tasks and data transfers
� async, finish, asyncMemcpy
2) Locality control for task and
data distribution
� hierarchical place tree
3) Mutual exclusion
� ownership-based isolation
4) Collective, point-to-point,
stream synchronization
� phasers

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

7/1/2010 2Rice University

Code Optimization for Parallel Programs

• Our current paradigm for code optimization was developed for
sequential programs, and has served very well for five decades
… but is now under siege because of parallelism

• Several anomalies can be observed when using sequential code
optimization techniques on parallel programs
– Control flow anomalies: branching due to parallel constructs

• Arbitrary nesting of function calls and parallel constructs
– Data flow anomalies: flow of values across parallel tasks

• Shared data accesses may not be properly synchronized
– Compiler does not know if input program is data-race free

– Code motion anomalies: reordering of statements
• Legality of the transformation depends on the underlying

memory model supported by the programming language

7/1/2010 3Rice University

HJ Programming Model
• Lightweight dynamic task creation & termination

– async: spawn an asynchronous activity
– finish: parent activity waits for all children activities to complete
– future async expressions and force

• Mutual exclusion and isolation
– isolated: executed by an activity as if in a single step during

which all other concurrent activities are suspended (extension of
X10’s atomic)

• Collective and point-to-point synchronization
– phasers (extension of X10’s clocks)

• Locality control – task and data distributions
– Hierarchical place tree (extension of X10’s places)
– Point, region, and distribution of arrays
– array views

• Isolation Consistency Memory Model

Rice University 4
Habanero download website: http://habanero.rice.edu/hj

7/1/2010

Async and Finish (from X10 v1.5)

async S
• Creates a new child activity

that executes statement S
• Returns immediately

Stmt ::= async Stmt

finish S
� Execute S, but wait until all

(transitively) spawned asyncs
have terminated.

� Implicit finish between start
and end of main program

Stmt ::= finish Stmt

//A0(Parent)
finish { //Begin finish
async {
STMT1; //A1(Child)

}
STMT2; //A0

} //End finish

STMT2

async

STMT1

terminate
wait

A1 A0

7/1/2010 5Rice University

HJ isolated statement

isolated (<place-set>) <body>
isolated <body>
• Two tasks executing isolated statements with a non-

empty place intersection must perform the isolated
statement in mutual exclusion

• Tasks must only access data local to one of the
places in <place-set>
– Throw exception if a non-local access occurs

• Default: isolated = isolated(*), isolation across all
places

7/1/2010 6Rice University

Parallel Depth-First Search Spanning Tree
class V {
V [] neighbors;
V parent;
. . .
boolean tryLabeling(V n) {
isolated if (parent == null) parent = n;
return parent == n;

} // tryLabeling

void compute() {
for (int i=0; i<neighbors.length; i++) {
V child = neighbors[i];
if (child.tryLabeling(this))

async child.compute(); //escaping async
}

} // compute

void DFS() {
parent = this; finish compute();

} // DFS
} // class V
. . . root.DFS(); . . .

Async edge

Finish edge

7/1/2010 7Rice University

Scalar Replacement for Load Elimination
• Scalar replacement for load elimination transformation replaces

a heap memory load by a read of a scalar temporary

– Scalar replacement for register reuse leads to Load Elimination
• Reuse using flow and input dependences

– Needs reasoning about object references

8

p := new Type1()
q := new Type1()
. . .
p.x := …
q.x := …
… := p.x

p := new Type1()
q := new Type1()
. . .
T1 := …
p.x := T1
q.x := …
… := T1

Original Code Transformed code
Rice University

p := new Type1()
q := new Type1()
. . .
… := p.x
q.x := …
… := p.x

p := new Type1()
q := new Type1()
. . .
T1 := p.x
… := T1
q.x := …
… := T1

[Callahan et al ’90, Cooper & Lu ’97, Bodik et al ’99, Wu & Lee ’99, Fink et al ’00, Cooper & Xu
‘02, Praun et al ’03]

7/1/2010

Scalar Replacement Examples

1: final A a = new A ()
2: a.f = …
3: async { … }
4: … = a.f

Rice University 9

1: final A a = new A ()
2: a.f = …
3: finish async { a.f = … }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { if(...) a.f = F(a.f) }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { isolated if (…) a.x++ }
4: … = a.f

Case 1

Case 3 Case 4

Case 2

• Legal for cases 1,2 and 4 in Isolation Consistency Memory model

Can the read in Line 4 reuse the value written in Line 2?

7/1/2010

Summary of Scalar Replacement Algorithm

• Eliminate GETFIELD operations across async,
finish, and isolated constructs

• Compute Side-effects for every function call
and parallel constructs (interprocedural analysis)

• Convert the program into Array-SSA form
• Perform scalar replacement using a data flow

framework that propagates global value numbers
• Guarantee program semantics using Isolation

Consistency Memory model that adheres to
weak atomicity

10Rice University7/1/2010

Interprocedural Load Elimination for Dynamic Optimization of Parallel Programs,
R. Barik, V. Sarkar, PACT 2009

Experimental Setup

• Hardware
– 16-core system that has four 2.4GHz quad-core Intel Xeon

processors, 30GB of memory

• Compiler and Runtime
– HJ front-end based on Polyglot
– HJ middle-end based on Soot
– Jikes RVM 3.0.0 with -X:aos:initial compiler=opt, -X:irc:O0,

PLOS_FRAC=0.4f
– HJ work-sharing runtime with NUMBER_OF_LOCAL_PLACES set to

1 and INIT_THREADS_PER_PLACE set to number of workers

• Benchmark Set
– Java Grande Forum (Moldyn, Montecarlo, RayTracer)
– NAS Parallel Benchmarks (CG, MG)

Rice University 117/1/2010

Experimental Setup (contd.)

• Additional Transformations in Jikes RVM (TRANS):
– Loop-invariant load motion

• Convert while loops into zero-trip and a repeat-until loop
– Live-range splitting

• Split live-ranges around call and loop entry-exit regions
• Comparison of approaches (GETFIELD operations only):

– Jikes RVM Load elimination (FKS)
• Uses no side effect analysis for both function calls and

parallel constructs
– FKS with additional transformations (FKS+TRANS)
– Parallelism-aware load elimination (PAR)
– PAR with additional transformations (PAR+TRANS)

Rice University 127/1/2010

Runtime Performance (16-Threads)

Rice University 13

Speedup: up to 1.68x, and 1.22x on avg. compared to NO LOADELIM

7/1/2010

Communication Optimization in X10
class C {

val f,g;
C (int m, int n) { f = m; g = n;}

}

val x:C = new C(2,3);
val y:C = new C(2,3);
async (p) {

= x.f;
= y.f;
= y.g

}

7/1/2010 Rice University 14

val x:C = new C(2,3);
val y:C = new C(2,3);
val x_f = x.f, y_f=y.f, y_g=y.g;
async (p) {

= x_f;
= y_f;
= y_g;

}

RR(x)

x.f

x.g

RR(y)

y.f

x.loc

&x

y.g

y.loc

&y

x_f

y_f

y_g
Transformed
Program

Communication Buffer

Communication Buffer

HPCC RandomAccess benchmark

def randomAccessUpdate (NUM_UPDATES: long, logLocalTableSize: long,
tables: ValRail[LocalTable]) {

finish for (var p:int=0; p<Place.MAX_PLACES; p++) {
val valp = p;
async (Place.places(p)) { // async_0

var ran:long = HPCC_starts(valp*(NUM_UPDATES/NUM_PLACES));
for (var i:long=0; i<NUM_UPDATES/NUM_PLACES; i++) {

val placeId = ((ran>>logLocalTableSize) & PLACE_ID_MASK) as int;
val valran = ran;
async (Place.places(placeId)) { // async_1
tables(placeId).update(valran);

}
ran = (ran << 1) ^ (ran<0L ? POLY : 0L);

} } } }

7/1/2010 Rice University 15

Preliminary results for RandomAccess

7/1/2010 Rice University 16

Preliminary results for RandomAccess

7/1/2010 Rice University 17

7/1/2010 18

Conclusions and Future Work
• Habanero-Java (HJ) abstractions model important features of

manycore systems including parallelism, synchronization, and
locality

• Addressed compiler-level scalar replacement for load elimination
in parallel programs with async, finish, and isolated constructs

• Extended scalar replacement optimization for communication
optimization across async’s in X10 programs on distributed-
memory multiprocessors

• Future Work
– Extend this work to additional parallel constructs like futures and

phasers
– Explore other compiler optimizations that are important for parallel

program performance

Rice University

Acknowledgments
• Rice Habanero project team members

– http://habanero.rice.edu
• IBM X10 project team members
• Contributors to open source projects

– Jikes RVM, Polyglot, Soot, GCC
• Funding:

– IBM Open Collaborative Faculty Award
– This work was supported in part by the National Science

Foundation under the HECURA program. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of
the National Science Foundation.

Rice University 197/1/2010

Habanero Team

7/1/2010 20Rice University

21

Thank You

Rice University7/1/2010

Backup Slides

22Rice University7/1/2010

Rice University 23

The Manycore Revolution: why Concurrency has
become critical for Mainstream Computing

• Chip density is continuing
to increase ~2x every 18
months
– Clock speed is not
– Number of processor

cores is doubling
instead

• There is little or no
hidden parallelism (ILP)
to be found

• Manycore design with low
power and area

• Parallelism must be
exposed to and managed
by software explicitly

Source: Intel, Microsoft
(Sutter) and Stanford
(Olukotun, Hammond), Rice

7/1/2010

Hierarchical Place Trees (HPT)
• Past approaches

– Flat single-level partition e.g., HPF, PGAS
– Hierarchical memory model with static parallelism e.g.,

Sequoia
• HPT approach

– Hierarchical memory + Dynamic parallelism
• Place denotes memory hierarchy level

– Cache, SDRAM, device memory, …
• Leaf places include worker threads

– e.g., W0, W1, W2, W3
• Places can be used for CPUs and accelerators
• Multiple HPT configurations

– For same hardware and programs
– Trade-off between locality and load-balance

“Hierarchical Place Trees: A Portable Abstraction for Task
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009

7/1/2010 24Rice University

Data transfers in HPT
Three data transfer interfaces:
1. Implicit data transfer through data distribution

• Data can be distributed (e.g., block/cyclic) at each level of
hierarchical place tree

• e.g., use to model hierarchical shared memories
2. Explicit data transfer using synchronous copy-in / copy-

out
• Syntax: async [<pl>] IN (…) OUT (…) INOUT (…) <stmt>
• e.g., used to model memory-to-memory transfers for accelerators

such as GPGPUs
3. Explicit data transfer using asynchronous memory copy

• Syntax: asyncMemcpy(dest, src);
• e.g., use to model inter-processor DMA (direct memory access)

with finish for termination

7/1/2010 25Rice University

• New synchronization construct designed to integrate
– Asynchronous barriers
– Asynchronous point-to-point synchronizations
– Asynchronous collectives
– Streaming computations
– Dynamic parallelism (number of activities synchronized on phaser can

vary dynamically)
• Support for “fuzzy barriers” and “single” statements
• Phase ordering property
• Deadlock freedom with “next” operations
• Amenable to efficient hierarchical implementation

• References
– “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point

Synchronization”, J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, ICS 2008
– “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”,

J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, IPDPS 2009
– “Hierarchical Phasers for Scalable Synchronization and Reduction”, J.Shirako,

V.Sarkar, IPDPS 2010 (to appear)

Overview of Phasers

7/1/2010 26Rice University

• Phaser allocation
– Phaser ph = new Phaser(mode)

• Phaser ph is allocated with registration mode
• Mode:

• Activity registration
– async phased (ph1<mode1>, ph2<mode2>, …) {STMT}

• Spawned activity is registered with ph1 in mode1, ph2 in mode2, …
• child activity’s capabilities must be subset of parent’s

• Synchronization
– next:

• Advance each phaser that activity is registered on to its next
phase

• Semantics depends on registration mode

Phaser Operations in Habanero Java

SINGLE

SIG_WAIT(default)

SIGNAL WAIT

Registration mode defines capability
There is a lattice ordering of capabilities

7/1/2010 27Rice University

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal (Don’t wait for any activity)
WAIT: next = wait (Don’t disturb any activity)

next / signal / wait operations
next = Notify “I reached next” = signal (or ph.signal())

Wait for others to notify = wait

signal

wait
next

SIG SIG_WAITSIG_WAITWAIT

A master activity receives all signals and broadcasts a barrier completion
7/1/2010 28Rice University

HJ’s Async and Finish Statements for Task Creation and
Termination

async S
• Creates a new child task that

executes statement S
• Parent immediately moves on to

statement following the async
• If S refers to a local variable

from an enclosing statement, that
variable must be declared as final

• Child task cannot be aborted or
cancelled

• Analogous to pthread_create()

finish S
� Execute S, but wait until all

(transitively) spawned asyncs in S‘s
scope have terminated.

� Implicit finish between start and
end of main program

� Analogous to pthread_join(), but
applied to all descendant tasks

Rooted exception model
Trap all exceptions thrown by

spawned activities
Throw an (aggregate) exception if

any spawned async terminates
abruptly

7/1/2010 29Rice University

Related Work
• Scalar Replacement in the context of array references

[Callahan et al ‘90]
– Used to improve register reuse

• Redundant memory load operations using Global Value
Numbering approach [Bodik et al ’99]

• Unified framework for analyzing memory loads of arrays
and object field references [Fink et al ’00]
– Array-SSA form and global value numbering
– Conservative assumptions for function calls, parallel constructs

• Load elimination in the presence of Java’s exception and
concurrency using PRE [Praun et al ’03]
– Conflict Analysis that guarantees SC model

• Improve Fink et al. work by encoding side-effect
information in class files [Le et al ’05]
– Uses results of points-to analysis from SOOT infrastructure

7/1/2010 Rice University 30

Scalar Replacement for Load
Elimination Example

Rice University 31

1: void main() {
2: p.x = …
3: s.w = …
4: finish { //f
5: async { //async_1
6: if (…) p.x = …
7: isolated { q.y = …; … = q.y }
8: … = p.x
9: }
10: … = p.x
11: foo()
12: }
13: … = p.x
14: … = s.w
15: }

16: void foo() {
17: async bar() //async_2
18: isolated { q.y = … }
19: … = s.w
20: }

21: void bar() {
22: r.z = …
23: .. = r.z
24: }

7/1/2010

Side-effects of method calls and parallel constructs

• Async and normal method level side-effect [Banning ’79]
– IMOD/IREF – immediate modified/referenced side-effects of

individual statements
– GMOD/GREF – generalized modified/referenced side-effects of

method calls
• Propagate side-effects over call graph nodes

• Isolated level side-effect
– AMOD/AREF – modified/referenced side-effects for isolated

blocks
• Global side-effects or refined side-effects based on May-

Happen-in-Parallel analysis
• Async-escaping level side-effect

– EMOD/EREF – escaping modified/referenced side-effects
• Finish scope level side-effect

– FMOD/FREF - modified/referenced side-effects for finish
scope

Rice University 327/1/2010

Isolation Consistency Memory Model
• Isolation Consistency Memory Model

– Builds on the operational semantics of Location Consistency (LC)
Memory Model [Gao & Sarkar ‘00]

• State of a shared location is defined using a partially ordered
multi-set (pomset) of write and synchronization operations

• A read operation sees a value that is
– written by a most recent predecessor write
– a write operation that is unrelated

– Weaker than many existing memory models including sequential
consistency

• Favors compiler optimization (like code motion) by preferring
values that preserve data and control dependencies within a
thread, i.e., in isolation (Unlike LC model)

• Weak atomicity via correct ordering of load and stores within
isolated sections

– Java memory model semantics is preserved for volatile variables
– Same semantics as Sequential Programs for data-race free programs

Rice University 337/1/2010

Side-Effects for Async-Escaping Methods
• Async-Escaping Method Level Side-Effect (EMOD, EREF)

– Sequential calls to methods that contain async constructs which are not
wrapped in finish scopes

– GMOD and GREF side-effects for async-escaping methods to be
propagated in the call chain to their immediate enclosing finish (IEF)

Rice University 34

1: void foo () {
2: async bar() // A
3: … = p.x
4: … = p.x
5: }

9: void main () {
10: p.x = …
11: finish { // F
12: foo ()
13: … = p.x
14: }
15: … = p.x
16: foo ()
17: }

GMOD (bar) = {p.x}

GMOD (A) = {p.x}

GMOD (foo) = {}

EMOD (foo) = {p.x}

EMOD (main) = {p.x}

6: void bar () {
7: p.x = …
8: }

7/1/2010

Side-Effects for Finish Scopes
• Finish Scope Level Side-Effect (FMOD, FREF)

– Any async created within a finish scope scope must be completed before the
statement after it is executed

– FMOD and FREF side effects comprise of the heap accesses for the asyncs
within the finish scope

Rice University 35

1: void foo () {
2: async bar() // A
3: … = p.x
4: … = p.x
5: }

9: void main () {
10: p.x = …
11: finish { // F
12: foo ()
13: … = p.x
14: }
15: … = p.x
16: foo ()
17: }

GMOD (bar) = {p.x}
GMOD (A) = {p.x}
GMOD (foo) = {}
EMOD (foo) = {p.x}
EMOD (main) = {p.x}

FMOD (F) = {p.x}
GMOD (main) = {p.x}

6: void bar () {
7: p.x = …
8: }

7/1/2010

Side-Effect Analysis: putting all together

Rice University 36

16: void foo() {
17: async bar() //async_2
18: isolated { q.y = … }
19: … = s.w
20: }

21: void bar() {
22: r.z = …
23: .. = r.z
24: }

AMOD = AREF = {q.y}

GMOD (bar) = GREF (bar) = {r.z}

GMOD (foo) = {}
GREF (foo) = {s.w}

EMOD (foo) = EREF (foo) = {r.z}

FMOD (f) = {p.x, r.z}
FREF (f) = {p.x, r.z, s.w}

GMOD (main) = GREF (main) =
{p.x, r.z, s.w}

1: void main() {
2: p.x = …
3: s.w = …
4: finish { //f
5: async { //async_1
6: if (…) p.x = …
7: isolated { q.y = …; … = q.y }
8: … = p.x
9: }
10: … = p.x
11: foo()
12: }
13: … = p.x
14: … = s.w
15: }

7/1/2010

Example of Using Async-Finish to create a Parallel Loop

int iters = 0; delta = epsilon+1;
while (delta > epsilon) {

finish {
for (jj = 1 ; jj <= n ; jj++) {

final int j = jj;
async { // finish-for-async can be replaced by foreach

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;
diff[j] = Math.abs(newA[j]-oldA[j]);

} // async
} // for

} // finish (join)
delta = diff.sum(); iters++;
temp = newA; newA = oldA; oldA = temp;

}
System.out.println("Iterations: " + iters);

7/1/2010 37Rice University

Scalar Replacement for Load
Elimination and Parallelism

• Challenging to perform scalar replacement for load elimination
transformation in the presence of parallel constructs
– Interferences due to shared data accesses among parallel

activities
– Shared data accesses may not be properly synchronized

• Compiler does not know if the input program is data-race
free

– Legality of the transformation depends on the underlying memory
model supported by the programming language

• Memory model determines the set of possible observable
behaviors

• It is desirable for a memory model to have same semantics
for data-race free programs

Rice University 387/1/2010

Example: Places to Co-locate Computation and
Data

1) finish { // Inter-place parallelism
final int x = … , y = … ;
async (a) a.foo(x); // Execute at a’s place
async (b.distribution[i])

b[i].bar(y); // Execute at b[i]’s place
}

2) // Implicit and explicit versions of remote fetch-and-op
a) a.x = foo(a.x, b.y) ;
b) async (b) {

final double v = b.y; // Can be any value type
async (a) isolated a.x = foo(a.x, v);

}

7/1/2010 39Rice University

Scalar Replacement for Load Elimination

7/1/2010 Rice University 40

Parallelism-Aware Scalar Replacement Algorithm

• Compute side-effects for method calls and parallel
constructs
– Side-effects for async, finish scopes, and isolated blocks

• Append pseudo-defs and pseudo-uses to fields based on
side-effects and isolation consistency memory model

• Create heap operands for field accesses including pseudo-
defs and pseudo-uses

• Construct extended array-ssa form for the heap
operands (handles both field accesses and array
accesses)

• Perform global value numbering to compute Definitely-
Same (DS) and Definitely-Different (DD) relations

• Perform data flow analysis to propagate value numbers
for heap operands

• Eliminate loads if the value number is available

41Rice University7/1/2010

Reduction in Dynamic Field Accesses

Benchmark #
getfield
original

#getfield
after
FKS Load
elim.

#getfield
after
FKS+TRA
NS Load
elim.

#getfield
after PAR
Load elim.

#getfield
after PAR
+TRANS
Load elim.

Impr.
relative to
Original (%)

Impr.
Relative to
FKS

Impr.
Relative to
FKS+TRAN
S

CG-S 3.89E09 3.10E09 3.03E09 2.34E09 3.92E05 99.99% 99.99% 99.99%

MG-W 1.41E04 1.15E04 1.13E04 7.96E03 6.71E03 52.55% 41.72% 40.58%

MolDyn-B 1.19E10 7.91E09 5.82E09 4.91E09 3.11E09 73.89% 60.62% 46.49%

RayTracer-B 3.08E10 2.02E10 2.02E10 1.67E10 1.38E10 55.25% 31.93% 31.82%

Montecarlo-
B

1.75E09 1.54E09 1.48E09 5.84E08 9.19E08 47.38% 40.48% 37.95%

specJBB-
Java

1.19E09 1.02E09 8.95E08 6.65E08 5.78E08 51.56% 43.19% 35.43%

Rice University 42

Decrease in dynamic counts of getfield operations of up to ~99.99%

FKS uses no side-effect analysis

7/1/2010

Compilation-time Overhead

Rice University 43

Benchmark

NO
LOADELIM
Total Comp
time in ms

FKS
LOADELIM
ssa+loadeli
m time in
ms

FKS
LOADELIM
TRANS
time in ms

FKS
LOADELIM
Total Comp
time in ms

PAR
LOADELIM
sideeffect
time in ms

PAR
LOADELIM
ssa+loadeli
m time in
ms

PAR
LOADELIM
TRANS
time in ms

PAR
LOADELIM
Total Comp
time in ms

CG-A 461 277 75 811 102 398 84 1137

MG-W 574 336 98 989 131 442 110 1348

MolDyn-B 263 194 35 493 76 255 47 673
RayTracer
-B 275 157 35 468 77 246 44 670
Montecarlo
-B 273 156 35 469 90 253 44 692
specJBB-
JAVA 4336 1099 232 5625 580 1153 329 6867

Increase in compilation time for PAR LOADELIM in the range
1.22x to 1.47x compared to FKS+TRANS

7/1/2010

Benchmark Characteristics (static)

Benchmarks async &
foreach

finish isolated

CG-A 5 5 0
MG-W 4 4 0
Moldyn-B 5 5 0
Raytracer-B 1 1 0
Montecarlo-B 1 1 0
specJBB-JAVA 1 1 169

Rice University 447/1/2010

Scalability on 4 Quadcore Intel Xeon

Rice University 45

Moldyn CG

7/1/2010

Runtime Performance (1-Thread)

Rice University 46

Speedup: up to 2.49x, and 1.48x on avg. compared to NO LOADELIM

7/1/2010

