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Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming
Languages

Habanero 
Static Compiler 

& Parallel 
Intermediate 
Representation

Habanero 
Runtime & 
Dynamic 
Compiler

Two-level programming model
Declarative Coordination Language 

for Domain Experts, 
CnC (Intel Concurrent Collections) 

+ 
Task-Parallel Languages for Tuning 

Experts, 
Habanero-Java (from X10 v1.5) 

and Habanero-C

Portable execution model
1) Lightweight asynchronous 
tasks and data transfers
� async, finish, asyncMemcpy
2) Locality control for task and 
data distribution 
� hierarchical place tree 
3) Mutual exclusion
� ownership-based isolation
4) Collective, point-to-point, 
stream synchronization
� phasers 

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications
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Code Optimization for Parallel Programs

• Our current paradigm for code optimization was developed for 
sequential programs, and has served very well for five decades 
… but is now under siege because of parallelism

• Several anomalies can be observed when using sequential code 
optimization techniques on parallel programs
– Control flow anomalies: branching due to parallel constructs

• Arbitrary nesting of function calls and parallel constructs
– Data flow anomalies: flow of values across parallel tasks

• Shared data accesses may not be properly synchronized 
– Compiler does not know if input program is data-race free

– Code motion anomalies: reordering of statements
• Legality of the transformation depends on the underlying 

memory model supported by the programming language
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HJ Programming Model
• Lightweight dynamic task creation & termination

– async: spawn an asynchronous activity
– finish: parent activity waits for all children activities to complete 
– future async expressions and force

• Mutual exclusion and isolation
– isolated: executed by an activity as if in a single step during 

which all other concurrent activities are suspended (extension of 
X10’s atomic)

• Collective and point-to-point synchronization
– phasers (extension of X10’s clocks)

• Locality control – task and data distributions
– Hierarchical place tree (extension of X10’s places)
– Point, region, and distribution of arrays
– array views

• Isolation Consistency Memory Model 

Rice University 4
Habanero download website: http://habanero.rice.edu/hj
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Async and Finish (from X10 v1.5)

async  S
• Creates a new child activity 

that executes statement S
• Returns immediately

Stmt  ::= async Stmt

finish S
� Execute S, but wait until all 

(transitively) spawned asyncs 
have terminated. 

� Implicit finish between start 
and end of main program

Stmt ::= finish Stmt

//A0(Parent)
finish {   //Begin finish
async {
STMT1; //A1(Child)

}
STMT2; //A0

}          //End finish

STMT2

async

STMT1

terminate
wait

A1 A0
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HJ isolated statement

isolated (<place-set>) <body> 
isolated <body>
• Two tasks executing isolated statements with a non-

empty place intersection must perform the isolated 
statement in mutual exclusion

• Tasks must only access data local to one of the 
places in <place-set>
– Throw exception if a non-local access occurs

• Default: isolated = isolated(*), isolation across all 
places
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Parallel Depth-First Search Spanning Tree
class V  {
V [] neighbors;
V parent;
. . .
boolean tryLabeling(V n) {
isolated if (parent == null) parent = n;
return parent == n;

} // tryLabeling

void compute() {
for (int i=0; i<neighbors.length; i++) { 
V child = neighbors[i];  
if (child.tryLabeling(this))

async child.compute(); //escaping async
} 

} // compute

void DFS() {
parent = this; finish compute();

} // DFS
} // class V
. . . root.DFS(); . . .

Async edge

Finish edge
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Scalar Replacement for Load Elimination
• Scalar replacement for load elimination transformation replaces 

a heap memory load by a read of a scalar temporary

– Scalar replacement for register reuse leads to Load Elimination
• Reuse using flow and input dependences

– Needs reasoning about object references

8

p   := new Type1()
q   := new Type1()
.  .  .
p.x := …
q.x   := …
… := p.x 

p    := new Type1()
q    := new Type1()
.  .  .
T1 := …
p.x   := T1
q.x   := …
… := T1

Original Code Transformed code
Rice University

p   := new Type1()
q   := new Type1()
.  .  .
… := p.x
q.x  := …
… := p.x

p    := new Type1()
q    := new Type1()
.  .  .
T1 := p.x
… := T1
q.x    := …
… := T1

[Callahan et al ’90, Cooper & Lu ’97, Bodik et al ’99, Wu & Lee ’99, Fink et al ’00, Cooper & Xu 
‘02, Praun et al ’03]
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Scalar Replacement Examples

1: final A a = new A ()
2: a.f = …
3: async { … }
4: … = a.f
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1: final A a = new A ()
2: a.f = …
3: finish async { a.f = … }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { if(...) a.f = F(a.f) }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { isolated if (…) a.x++ }
4: … = a.f

Case 1

Case 3 Case 4

Case 2

• Legal for cases 1,2 and 4 in Isolation Consistency Memory model

Can the read in Line 4 reuse the value written in Line 2?
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Summary of Scalar Replacement Algorithm

• Eliminate GETFIELD operations across async, 
finish, and isolated constructs

• Compute Side-effects for every function call 
and parallel constructs (interprocedural analysis)  

• Convert the program into Array-SSA form
• Perform scalar replacement using a data flow 

framework that propagates global value numbers
• Guarantee program semantics using Isolation 

Consistency Memory model that adheres to 
weak atomicity

10Rice University7/1/2010
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Experimental Setup

• Hardware
– 16-core system that has four 2.4GHz quad-core Intel Xeon 

processors, 30GB of memory 

• Compiler and Runtime
– HJ front-end based on Polyglot
– HJ middle-end based on Soot
– Jikes RVM 3.0.0 with -X:aos:initial compiler=opt, -X:irc:O0, 

PLOS_FRAC=0.4f
– HJ work-sharing runtime with NUMBER_OF_LOCAL_PLACES set to 

1 and INIT_THREADS_PER_PLACE set to number of workers

• Benchmark Set 
– Java Grande Forum (Moldyn, Montecarlo, RayTracer)
– NAS Parallel Benchmarks (CG, MG)
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Experimental Setup (contd.)

• Additional Transformations in Jikes RVM (TRANS):
– Loop-invariant load motion

• Convert while loops into zero-trip and a repeat-until loop
– Live-range splitting

• Split live-ranges around call and loop entry-exit regions
• Comparison of approaches (GETFIELD operations only):

– Jikes RVM Load elimination (FKS)
• Uses no side effect analysis for both function calls and 

parallel constructs
– FKS with additional transformations (FKS+TRANS)
– Parallelism-aware load elimination (PAR)
– PAR with additional transformations (PAR+TRANS)
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Runtime Performance (16-Threads)
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Speedup: up to 1.68x, and 1.22x on avg. compared to NO LOADELIM
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Communication Optimization in X10
class C {

val f,g;
C (int m, int n) { f = m; g = n;}

}

val x:C = new C(2,3);
val y:C = new C(2,3);
async (p) {

= x.f;
= y.f;
= y.g

}
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val x:C = new C(2,3);
val y:C = new C(2,3);
val x_f = x.f, y_f=y.f, y_g=y.g;
async (p) {

= x_f;
= y_f;
= y_g;

}

RR(x)

x.f

x.g

RR(y)

y.f

x.loc

&x

y.g

y.loc

&y

x_f

y_f

y_g
Transformed
Program

Communication Buffer

Communication Buffer



HPCC RandomAccess benchmark

def randomAccessUpdate (NUM_UPDATES: long, logLocalTableSize: long, 
tables: ValRail[LocalTable]) { 

finish for (var p:int=0; p<Place.MAX_PLACES; p++) { 
val valp = p; 
async (Place.places(p)) { // async_0

var ran:long = HPCC_starts(valp*(NUM_UPDATES/NUM_PLACES)); 
for (var i:long=0; i<NUM_UPDATES/NUM_PLACES; i++) { 

val placeId = ((ran>>logLocalTableSize) & PLACE_ID_MASK) as int; 
val valran = ran; 
async (Place.places(placeId)) { // async_1 
tables(placeId).update(valran); 

} 
ran = (ran << 1) ^ (ran<0L ? POLY : 0L); 

} } } } 
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Preliminary results for RandomAccess

7/1/2010 Rice University 16



Preliminary results for RandomAccess
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Conclusions and Future Work
• Habanero-Java (HJ) abstractions model important features of 

manycore systems including parallelism, synchronization, and 
locality

• Addressed compiler-level scalar replacement for load elimination 
in parallel programs with async, finish, and isolated constructs

• Extended scalar replacement optimization for communication 
optimization across async’s in X10 programs on distributed-
memory multiprocessors

• Future Work
– Extend this work to additional parallel constructs like futures and 

phasers
– Explore other compiler optimizations that are important for parallel 

program performance
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Backup Slides
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The Manycore Revolution: why Concurrency has 
become critical for Mainstream Computing

• Chip density is continuing 
to increase ~2x every 18 
months
– Clock speed is not
– Number of processor 

cores is doubling 
instead

• There is little or no 
hidden parallelism (ILP) 
to be found

• Manycore design with low 
power and area

• Parallelism must be 
exposed to and managed 
by software explicitly

Source: Intel, Microsoft 
(Sutter) and Stanford 
(Olukotun, Hammond), Rice
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Hierarchical Place Trees (HPT)
• Past approaches

– Flat single-level partition e.g., HPF, PGAS
– Hierarchical memory model with static parallelism e.g., 

Sequoia
• HPT approach

– Hierarchical memory + Dynamic parallelism
• Place denotes memory hierarchy level

– Cache, SDRAM, device memory, …
• Leaf places include worker threads

– e.g., W0, W1, W2, W3
• Places can be used for CPUs and accelerators
• Multiple HPT configurations

– For same hardware and programs
– Trade-off between locality and load-balance

“Hierarchical Place Trees: A Portable Abstraction for Task 
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009
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Data transfers in HPT
Three data transfer interfaces:
1. Implicit data transfer through data distribution

• Data can be distributed (e.g., block/cyclic) at each level of 
hierarchical place tree

• e.g., use to model hierarchical shared memories
2. Explicit data transfer using synchronous copy-in / copy-

out
• Syntax: async [<pl>] IN ( … ) OUT ( … ) INOUT ( … ) <stmt>
• e.g., used to model memory-to-memory transfers for accelerators 

such as GPGPUs
3. Explicit data transfer using asynchronous memory copy

• Syntax: asyncMemcpy(dest, src);
• e.g., use to model inter-processor DMA (direct memory access) 

with finish for termination
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• New synchronization construct designed to integrate
– Asynchronous barriers
– Asynchronous point-to-point synchronizations
– Asynchronous collectives
– Streaming computations
– Dynamic parallelism (number of activities synchronized on phaser can 

vary dynamically)
• Support for “fuzzy barriers” and “single” statements
• Phase ordering property
• Deadlock freedom with “next” operations
• Amenable to efficient hierarchical implementation

• References
– “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point 

Synchronization”, J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, ICS 2008
– “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, 

J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, IPDPS 2009
– “Hierarchical Phasers for Scalable Synchronization and Reduction”, J.Shirako, 

V.Sarkar, IPDPS 2010 (to appear)

Overview of Phasers
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• Phaser allocation
– Phaser ph = new Phaser(mode)

• Phaser ph is allocated with registration mode
• Mode:

• Activity registration
– async phased (ph1<mode1>, ph2<mode2>, … ) {STMT}

• Spawned activity is registered with ph1 in mode1, ph2 in mode2, …
• child activity’s capabilities must be subset of parent’s

• Synchronization
– next:

• Advance each phaser that activity is registered on to its next 
phase

• Semantics depends on registration mode

Phaser Operations in Habanero Java

SINGLE

SIG_WAIT(default)

SIGNAL WAIT

Registration mode defines capability
There is a lattice ordering of capabilities
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Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal (Don’t wait for any activity)
WAIT: next = wait (Don’t disturb any activity)

next / signal / wait operations
next = Notify “I reached next” = signal ( or ph.signal() )

Wait for others to notify  = wait

signal

wait
next

SIG SIG_WAITSIG_WAITWAIT

A master activity receives all signals and broadcasts a barrier completion
7/1/2010 28Rice University



HJ’s Async and Finish Statements for Task Creation and 
Termination

async  S
• Creates a new child task that 

executes statement S
• Parent immediately moves on to 

statement following the async
• If S refers to a local variable 

from an enclosing statement, that 
variable must be declared as final

• Child task cannot be aborted or 
cancelled

• Analogous to pthread_create()

finish S
� Execute S, but wait until all

(transitively) spawned asyncs in S‘s 
scope have terminated. 

� Implicit finish between start and 
end of main program

� Analogous to pthread_join(), but 
applied to all descendant tasks

Rooted exception model
Trap all exceptions thrown by 

spawned activities 
Throw an (aggregate) exception if 

any spawned async terminates 
abruptly
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Related Work 
• Scalar Replacement in the context of array references 

[Callahan et al ‘90]
– Used to improve register reuse

• Redundant memory load operations using Global Value 
Numbering approach [Bodik et al ’99]

• Unified framework for analyzing memory loads of arrays 
and object field references [Fink et al ’00]
– Array-SSA form and global value numbering
– Conservative assumptions for function calls, parallel constructs

• Load elimination in the presence of Java’s exception and 
concurrency using PRE [Praun et al ’03]
– Conflict Analysis that guarantees SC model

• Improve Fink et al. work by encoding side-effect 
information in class files [Le et al ’05]
– Uses results of points-to analysis from SOOT infrastructure
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Scalar Replacement for Load 
Elimination Example
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1: void main() {
2:   p.x = …
3:   s.w = …
4:   finish { //f
5:     async { //async_1
6:         if (…) p.x = …
7:         isolated { q.y = …; … = q.y }
8:         … = p.x
9:      }
10: … = p.x
11:    foo()
12:  }
13:  … = p.x
14:  … = s.w
15: }

16: void foo() {
17:    async bar() //async_2
18:    isolated { q.y = … }
19:    … = s.w
20: }

21: void bar() {
22:    r.z = …
23:    .. = r.z
24: }
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Side-effects of method calls and parallel constructs

• Async and normal method level side-effect [Banning ’79]
– IMOD/IREF – immediate modified/referenced side-effects of 

individual statements
– GMOD/GREF – generalized modified/referenced side-effects of 

method calls
• Propagate side-effects over call graph nodes

• Isolated level side-effect
– AMOD/AREF – modified/referenced side-effects for isolated 

blocks
• Global side-effects or refined side-effects based on May-

Happen-in-Parallel analysis
• Async-escaping level side-effect

– EMOD/EREF – escaping modified/referenced side-effects
• Finish scope level side-effect

– FMOD/FREF - modified/referenced side-effects for finish 
scope
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Isolation Consistency Memory Model
• Isolation Consistency Memory Model

– Builds on the operational semantics of Location Consistency (LC)
Memory Model [Gao & Sarkar ‘00]

• State of a shared location is defined using a partially ordered 
multi-set (pomset) of write and synchronization operations

• A read operation sees a value that is
– written by a most recent predecessor write
– a write operation that is unrelated

– Weaker than many existing memory models including sequential 
consistency

• Favors compiler optimization (like code motion) by preferring 
values that preserve data and control dependencies within a 
thread, i.e., in isolation (Unlike LC model)

• Weak atomicity via correct ordering of load and stores within 
isolated sections  

– Java memory model semantics is preserved for volatile variables
– Same semantics as Sequential Programs for data-race free programs
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Side-Effects for Async-Escaping Methods
• Async-Escaping Method Level Side-Effect (EMOD, EREF)

– Sequential calls to methods that contain async constructs which are not 
wrapped in finish scopes

– GMOD and GREF side-effects for async-escaping methods to be 
propagated in the call chain to their immediate enclosing finish (IEF)

Rice University 34

1:  void foo () { 
2:    async bar() // A
3:    … = p.x
4:    … = p.x
5:  }

9:  void main () {   
10:   p.x = …
11:   finish { // F
12:       foo ()
13:       … = p.x
14:   }
15:   … = p.x   
16:  foo ()
17: }

GMOD (bar)  = {p.x}

GMOD (A)   = {p.x}

GMOD (foo)  = {}

EMOD (foo)  = {p.x}

EMOD (main) = {p.x}

6: void bar () {
7:    p.x = …
8: }
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Side-Effects for Finish Scopes
• Finish Scope Level Side-Effect (FMOD, FREF)

– Any async created within a finish scope scope must be completed before the 
statement after it is executed

– FMOD and FREF side effects comprise of the heap accesses for the asyncs 
within the finish scope

Rice University 35

1:  void foo () { 
2:    async bar() // A
3:    … = p.x
4:    … = p.x
5:  }

9:  void main () {   
10:   p.x = …
11:   finish { // F
12:       foo ()
13:       … = p.x
14:   }
15:   … = p.x   
16:  foo ()
17: }

GMOD (bar)  = {p.x}
GMOD (A)   = {p.x}
GMOD (foo)  = {}
EMOD (foo)  = {p.x}
EMOD (main) = {p.x}

FMOD (F) = {p.x}
GMOD (main) = {p.x}

6: void bar () {
7:    p.x = …
8: }
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Side-Effect Analysis: putting all together
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16: void foo() {
17:    async bar() //async_2
18:    isolated { q.y = … }
19:    … = s.w
20: }

21: void bar() {
22:    r.z = …
23:    .. = r.z
24: }

AMOD = AREF = {q.y}

GMOD (bar) = GREF (bar) = {r.z}

GMOD (foo) = {}
GREF (foo) = {s.w}

EMOD (foo) = EREF (foo) = {r.z}

FMOD (f) = {p.x, r.z}
FREF (f) = {p.x, r.z, s.w}

GMOD (main) = GREF (main) =
{p.x, r.z, s.w}

1: void main() {
2:   p.x = …
3:   s.w = …
4:   finish { //f
5:     async { //async_1
6:       if (…)  p.x = …
7:       isolated { q.y = …; … = q.y }
8:       … = p.x
9:      }
10: … = p.x
11:    foo()
12:  }
13:  … = p.x
14:  … = s.w
15: }
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Example of Using Async-Finish to create a Parallel Loop

int iters = 0; delta = epsilon+1;
while ( delta > epsilon ) {

finish {
for ( jj = 1 ; jj <= n ; jj++ ) {

final int j = jj;
async { // finish-for-async can be replaced by foreach

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;
diff[j] = Math.abs(newA[j]-oldA[j]);

} // async
} // for

} // finish (join)
delta = diff.sum(); iters++; 
temp = newA; newA = oldA; oldA = temp;

}
System.out.println("Iterations: " + iters);
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Scalar Replacement for Load 
Elimination and Parallelism

• Challenging to perform scalar replacement for load elimination 
transformation in the presence of parallel constructs 
– Interferences due to shared data accesses among parallel 

activities
– Shared data accesses may not be properly synchronized 

• Compiler does not know if the input program is data-race 
free

– Legality of the transformation depends on the underlying memory 
model supported by the programming language

• Memory model determines the set of possible observable 
behaviors

• It is desirable for a memory model to have same semantics 
for data-race free programs
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Example: Places to Co-locate Computation and 
Data

1) finish { // Inter-place parallelism
final int x = … , y = … ;
async (a) a.foo(x); // Execute at a’s place
async (b.distribution[i]) 

b[i].bar(y); // Execute at b[i]’s place
} 

2) // Implicit and explicit versions of remote fetch-and-op
a) a.x = foo(a.x, b.y) ;
b) async (b) {

final double v = b.y; // Can be any value type
async (a) isolated a.x = foo(a.x, v); 

}
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Scalar Replacement for Load Elimination
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Parallelism-Aware Scalar Replacement Algorithm

• Compute side-effects for method calls and parallel 
constructs 
– Side-effects for async, finish scopes, and isolated blocks

• Append pseudo-defs and pseudo-uses to fields based on 
side-effects and isolation consistency memory model

• Create heap operands for field accesses including pseudo-
defs and pseudo-uses

• Construct extended array-ssa form for the heap 
operands (handles both field accesses and array 
accesses)

• Perform global value numbering to compute Definitely-
Same (DS) and Definitely-Different (DD) relations 

• Perform data flow analysis to propagate value numbers 
for heap operands

• Eliminate loads if the value number is available
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Reduction in Dynamic Field Accesses

Benchmark # 
getfield 
original

#getfield 
after 
FKS Load 
elim.

#getfield 
after 
FKS+TRA
NS Load 
elim.

#getfield 
after PAR 
Load elim.

#getfield 
after PAR 
+TRANS 
Load elim.

Impr. 
relative to 
Original (%)

Impr. 
Relative to 
FKS

Impr. 
Relative to 
FKS+TRAN
S

CG-S 3.89E09 3.10E09 3.03E09 2.34E09 3.92E05 99.99% 99.99% 99.99%

MG-W 1.41E04 1.15E04 1.13E04 7.96E03 6.71E03 52.55% 41.72% 40.58%

MolDyn-B 1.19E10 7.91E09 5.82E09 4.91E09 3.11E09 73.89% 60.62% 46.49%

RayTracer-B 3.08E10 2.02E10 2.02E10 1.67E10 1.38E10 55.25% 31.93% 31.82%

Montecarlo-
B

1.75E09 1.54E09 1.48E09 5.84E08 9.19E08 47.38% 40.48% 37.95%

specJBB-
Java

1.19E09 1.02E09 8.95E08 6.65E08 5.78E08 51.56% 43.19% 35.43%

Rice University 42

Decrease in dynamic counts of getfield operations of up to ~99.99%

FKS uses no side-effect analysis
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Compilation-time Overhead

Rice University 43

Benchmark

NO 
LOADELIM 
Total Comp 
time in ms

FKS 
LOADELIM 
ssa+loadeli
m time in 
ms

FKS 
LOADELIM 
TRANS 
time in ms

FKS 
LOADELIM 
Total Comp 
time in ms

PAR 
LOADELIM 
sideeffect 
time in ms

PAR 
LOADELIM 
ssa+loadeli
m time in 
ms

PAR 
LOADELIM 
TRANS 
time in ms

PAR 
LOADELIM 
Total Comp 
time in ms

CG-A 461 277 75 811 102 398 84 1137

MG-W 574 336 98 989 131 442 110 1348

MolDyn-B 263 194 35 493 76 255 47 673
RayTracer
-B 275 157 35 468 77 246 44 670
Montecarlo
-B 273 156 35 469 90 253 44 692
specJBB-
JAVA 4336 1099 232 5625 580 1153 329 6867

Increase in compilation time for PAR LOADELIM in the range 
1.22x to 1.47x compared to FKS+TRANS
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Benchmark Characteristics (static)

Benchmarks async & 
foreach 

finish isolated

CG-A 5 5 0
MG-W 4 4 0
Moldyn-B 5 5 0
Raytracer-B 1 1 0
Montecarlo-B 1 1 0
specJBB-JAVA 1 1 169
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Scalability on 4 Quadcore Intel Xeon
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Moldyn CG
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Runtime Performance (1-Thread)
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Speedup: up to 2.49x, and 1.48x on avg. compared to NO LOADELIM
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