™

Charm++
on the road to Exascale

Isaac Dooley
PEEPS @ VecPar
Berkeley, June 2010

[JLLLINOTIS PARALLEL

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB
DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

PPL

UIUC

Overview

« Context

« History

« Philosophy

« Over-decomposition into Migratable Objects
« Some Current Research Efforts

— Scalable Performance Analysis

— Automatic Performance Tuning

— New types of Runtime System Adaptation
— Load Balancing

— Topology Mapping

— Accelerators

— Incomplete but Useful Languages

Promising Features in Charm++ for the Future

June 22, 2010 PEEPS

Context (so far)

Well-known molecular
simulations application

Nano-Materials.. Gordon Bell Award, 2002

Techniques
&Li rc‘#lles

\
Charm-++ pllcatlon/sl
Runtime -
System
Computational
Astronomy Rocket

Simulation’

ébace-Time
“Meshing”
| —

June 22, 2010 PEEPS 3

A Glance at History

« 1987: Chare Kernel arose from parallel Prolog work
— Dynamic load balancing for state-space search, Prolog, ..

e 1992: Charm++

e 1996: Charm++ in almost current form
— Chare arrays, Measurement Based Dynamic Load balancing

« 1997: AMPI

But then things get complex: Multicore, GPU, Heterogeneous,
Manycore, Large interconnects, RDMA on Infiniband

« 2008-2011: Blue Waters:

— Charm++ and NAMD will scale to 1PFlop/s sustained application performance

June 22, 2010 PEEPS 4

PPL Mission and Approach

« To enhance Performance and Productivity in
programming complex parallel applications
— Performance: scalable to >100s of thousands of processors

— Productivity: of human programmers
— Complex: irregular structure, dynamic variations

« Approach: Application Oriented yet CS centered
research

— Develop enabling technology, for a wide collection of apps.
— Develop, use and test it in the context of real applications

June 22, 2010 PEEPS

Some Guiding Principles

No magic

— Parallelizing compilers have achieved close to technical perfection, but
are not enough

— Sequential programs obscure too much information

Seek an optimal division of labor between the system
and the programmer

Design abstractions based solidly on use-cases

— Application-oriented yet computer-science centered approach

L. V. Kale, "Application Oriented and Computer Science Centered HPCC Research", Developing a Computer
Science Agenda for High-Performance Computing, New York, NY, USA, 1994, ACM Press, pp. 98-105.

June 22, 2010 PEEPS

Migratable Objects (aka Processor Virtualization)

Benefits

e Software engineering

— Number of virtual processors can be
independently controlled

— Separate VPs for different modules

e Message driven execution
— Adaptive overlap of communication

Implementations: Charm++, AMPI — Predictability :
e Automatic out-of-core

— Asynchronous reductions

&% ‘ . ¢ Dynamic mapping
k : — Heterogeneous clusters
e \acate, adjust to speed, share
” e — Automatic checkpointing
Global Object Space CPUA CPUB cPUC — Change set of processors used
User View System View — Automatic dynamic load balancing
— Communication optimization

Programmer: [Over] decomposition into
virtual processors / objects

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

June 22, 2010 PEEPS 7

Adaptive overlap and modules

m] "
&

Y

c [.
([
Busy: [} Idle:[]
Q = [:
= g0 O T >
C B O .
(

Busy: [Idle:[]

SPMD and Message-Driven Modules

(From A. Gursoy, Simplified expression of message-driven programs and
quantification of their impact on performance, Ph.D Thesis, Apr 1994)

Modularity, Reuse, and Efficiency with Message-Driven Libraries: Proc. of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, San Fransisco, 1995

June 22, 2010 PEEPS

Overview

« Some Current Research Efforts

— Scalable Performance Analysis

— Automatic Performance Tuning

— New types of Runtime System Adaptation
— Load Balancing

— Topology Mapping

— Accelerators

— Incomplete but Useful Languages

e Promising Features in Charm++ for the Future

June 22, 2010 PEEPS

Scalable Performance Analysis

e Programming models must support
scalable performance analysis or

Time to Perform K-Means Clustering

automatic tuning!
» Scalable performance analysis idioms \/

— Must do in parallel

— Use end-of-run when machine is available to you e s
— E.g. parallel k-means clustering [’
« Live streaming of performance data :Art | |
i

tistitt, NATTE

AR ‘ ‘ LMl
TRalize_pencls B enquEveWorkA

— stream live performance data out-of-band in
user-space to enable powerful analysis idioms

........

tion on Perfornance (3D Jacobi 296x256x192)

£ oow

June 22, 2010 PEEPS [0

Live Streaming System Overview

« Interleave/Compose performance monitoring with
application execution

A) Gathering Performance Data in Parallel Runtime System:

(1) Broadcast Request for
Utilization Profiles
Once Per Second

Root Processor

7.7y Periodic
“,” Requests t ‘ ¢
Trace Processor Trace Processor Trace
Module Module " Module
(3) Buffer
Utilization
R N (2) Reduction Merges Compressed Utilization Profiles

B) Visualizing Performance Data:

Root Processor

Visualization Client

(1) Send Request via

TCP using CCS protocol
P CCs
< Handler (2) Retrieve a
(3) CCS Reply Contains Buffered Utilization
Utilization Profile Profile

(4) Update Display

June 22, 2010 PEEPS

Automatic Performance Tuning

o The runtime system dynamically
reconfigures applications

« Tuning/Steering is based on
runtime observations :

— ldle time, overhead time,
grain size, # messages,
critical paths, etc.

« Applications expose in
structured manner: tunable
parameters AND information
about the parameters

Application

Performance Control Points

Parallel Runtime System

Knowledge of
_» Control Point
' Effects

iy Experiment
" History

Measured
Performance
Characteristics

Isaac Dooley, and Laxmikant V. Kale, Detecting and Using Critical Paths at Runtime in Message Driven Parallel
Programs, 12th Workshop on Advances in Parallel and Distributed Computing Models (APDCM 2010) at IPDPS 2010.

June 22, 2010

PEEPS

12

New Types of Dynamic Adaptation

Memory Usage with
187 No Threshold
« Memory Aware
Scheduling L
£
. The Charm++ scheduler was =
modified to adapt its behavior. 5 ool
» It can give preferential] T e TR
treatment to annotated entry Time (9
methods when available _ Memory Usage with
18 900MB Threshold
memory is low. g o]
« The memory usage for an LU | wasimum memor s
. . . g over threshola:
Factorization program is £ MASAIS O M ANN
reduced, enabling further £
scalability.

Y 20 40 60 80 100 120 140 160 180

Time (s)

Isaac Dooley, Chao Mei, Jonathan Lifflander, and Laxmikant V. Kale, A Study of Memory-Aware Scheduling in
Message Driven Parallel Programs, PPL Technical Report 2010

June 22, 2010 PEEPS

Scalability & Performance Summary

« We think dynamic adaptation is good.
« Automatic Adaptation Is Necessary

— Manual tuning of even simple applications requires super-experts!

— There are dynamically changing performance characteristics of
application and of the system.

— Need good support for intelligent automatic tuning?
— Need good support for partially automated performance analysis?

« Need Composability of:
— Applications
— Performance Measuring
— Intelligent Autotuning
— Runtime system adaptation

June 22, 2010 PEEPS

Large Scale Parallelism:
Load Balancing at Petascale

« Our older load balancing strategies don’t scale on extremely
large machines
— Consider an application with 1M objects on 64K processors

e Centralized e Distributed

Object load data are sent to Load balancing among
processor O neighboring processors

Integrate to a complete object Build partial object graph
graph Migration decision is sent to its
Migration decision is broadcast neighbors

from processor O No global barrier
Global barrier

e Topology-aware
— On 3D Torus/Mesh topologies

June 22, 2010 PEEPS 15

Mapping Objects onto
Machine Interconnect Topology

Charm++ Applications MPI Applications

$ #
0%
ALY

#>

wwwwwwww

Molecular Dynamics - NAMD Weather Research & Forecasting Model

ApoAlonBlue Gene/P 4

\—‘ 3
| M Default
| B Topology
256 512

=+-Topology Oblivious
\\ -#-TopoPlace Patches
1024 2048

o)

N

[EEN

Time per step (ms)
IS

N

Average hops per
byte per core

Y -+-TopoAware LDBs

512 1024 2048 4096 8192 16384

o

[y

No. of cores

Number of cores

June 22, 2010 PEEPS 16

Load Balancing Summary

« Need appropriate load balancing algorithms

« Many concerns:
— Need excellent quality load balance (comm. & compute)
— Machine interconnect topology

— Complex hierarchy of processor cores
— Cost of performing each load balancing operation

« Charm++ model, due to its encouraging of
overdecomposing, provides many load balancing
opportunities.

June 22, 2010 PEEPS

Accelerators and Heterogeneity

« GPUs, Larrabee, IBM Cell processor, ..

e It turns out that some of the Charm++ features are a
good fit for these

— Charm++ model already decomposes applications into small somewhat
self-contained pieces.

« With minor changes to Charm++, tighter
encapsulations of objects helps bridge barriers to
multiple-memory-space platforms (or non-cache
coherent systems)

Kunzman and Kale, Towards a Framework for Abstracting Accelerators in Parallel
Applications: Experience with Cell, finalist for best student paper at SC09

June 22, 2010 PEEPS 18

Incomplete But Useful Languages

« Why use just one(or two) languages/paradigms?

« High level parallel languages:
— Charisma: static data flow
— SDAG: static & dynamic data flow
— Multiphase Shared Arrays: shared arrays with access modes

— Charij: Java-like version of Charm++ that supports better compiler
generation of utility code (efficient object serialization, ...)

« Multiple paradigms coexist with each other and can
be interleaved in time (message driven scheduling)!

June 22, 2010 PEEPS

Overview

e Promising Features in Charm++ for the Future

June 22, 2010 PEEPS

20

1.

2.

3.

Promising Features in Charm++
for the Future

Overdecomposition

— Portability to exotic architectures, better encapsulation

— Greater ability to automatically manage (load balancing, fault
tolerance, ...)

Efficient composability of multiple modules

— application, paradigms, libraries, performance analysis, autotuning,
debugging, ...

Automatic management where possible

— Adaptation within runtime system, and in application

June 22, 2010 PEEPS 21

Exascale?

« Exascale machines will look different.
— Power consumption, exotic/new architectures, ...
o Charm++ looks like a promising candidate with

sufficient margins & flexibility to fit onto a wide
range of conceivable architectures.

e« Charm++ model is complex, but then again so are

many other choices (which require super-experts to

achieve good performance):
— PGAS+threads+cuda+...
— MPI+OpenMP+0OpenCL+...

June 22, 2010 PEEPS 22

Final Summary

Emerging parallel machines:
— Big
— Differing architectural designs
— Increasingly hard to program

Charm++ model has some interesting and promising
features that address some of these difficulties:

— Overdecomposition
— Efficient composition

June 22, 2010 PEEPS 23

™

Questions?

Charm++: on the road to Exascale

Isaac Dooley
PEEPS @ VecPar
Berkeley, June 2010

[LLLINOIS PARALLEL

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB

DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

PPL

UIUC

