Hybrid MPI and OpenMP Programming on
Clusters of Multi-core Nodes

Gabriele Jost — Texas Advanced Computing Center, The University of Texas at Austin
*Rolf Rabenseifner — High Performance Computing Center Stuttgart (HLRS), Germany

*Georg Hager — Erlangen Regional Computing Center (RRZE), University of
Erlangen-Nuremberg, Germany

*Bob Robins, NorthWest Research Associates, Inc, Redmond, WA.

*author only—not speaking

PEEPS 2010 Workshop, Jost & others

Hybrid Programming MPI/OpenMP

Programming Models on Clusters of SMP nodes
Remarks on MPI and OpenMP

Hybrid MPI/OpenMP Case Studies:

— Pitfalls and Opportunities
Summary on Hybrid Parallelization

PEEPS 2010 Workshop, Jost & others

Programming Models for
Hierarchical Systems

® Pure MPI (one MPI process on each CPU)

’ Hybrid MPI+OpenMP OpenMP inside of the
- shared memory OpenMP MP node

L. MPI between the nodes
- distributed memory MPI m node interconnect |—| Node Interconnect

¢ Other: Virtual shared memory systems, PGAS, HPF, ...

MPI private address space in each process OpenMP (shared address space)

time
B execution Pa“;”e' . Parallel .
o [y iy s
| 4] =
| G < —
‘ | /4'C'qr?‘ <

/(= \\\ 6 Core
ExplicitMessage Passing Master Thread Multi-Threaded

by calling MPI_Send & MPI_Recv

PEEPS 2010 Workshop, Jost & others

MPI on Clusters of Multi-Core Nodes

+ Common Characteristics of Large Scale
Parallel Systems:
- Hierarchical systems
- Different characteristics for intra-node and inter-

. Core
node communication
. : Socket
- Different latencies for shared memory access
SMP board

» Application specific issues, eg:
- MPI Scalability Limitations
- Memory Consumption

* MPI Performance is affected by:
- Data and process layout across node
- Network Latency and Bandwidth
- MPI Stack Latency and Bandwidth
- Shared memory access

- Resource contention for network and memory
access within a node

Cluster of SMP nodes

L1 cache

L2 cache
cccNuma remote memory

PEEPS 2010 Workshop, Jost & others

Hybrid MPI/OpenMP Programming

(Mixed model)

* Often hybrid
programming
slower than pure MPI

| Node Interconnect

SMP node SMP node * Seems like the natural
Socket 1 Socket 1 choice, but.....
‘ | * ... which model is the
| _Quad-core__ | _Quad-core__
CPU CcPU fastest?
I scscee | * MPI everywhere?
Socket 2 Socket 2
\ | * Fully hybrid
| _ Quad-core__ | _ Quad-core__ MPI & 0penMP?
cPU CPU
I | * Something between? %Ug
|

PEEPS 2010 Workshop, Jost & others

Comparison of MPI and OpenMP

* OpenMP
* Memory Model *+ Memory Model
- Data private by default — Data shared by default
- Data accessed by — Access to shared data requires
multiple processes needs synchronization
to be explicitly — Private data needs to be explicitly
communicated declared
* Program Execution . Program Execution
- Parallel execution from — Fork-Join Model

start to beginning

* Parallelization
- Process based
- Domain decomposition

- Explicitly programmed by
user

+ Parallelization
— Thread based
— Typically on loop level, incremental
— Based on compiler directives

PEEPS 2010 Workshop, Jost & others

Support of Hybrid Programming

MPI

— MPI-1 no concept of
threads

- MPI-2:
— Thread support
— MPI_Init_thread

OpenMP
— None

— API only for one execution unit,
which is one MPI process

— For example: No means to
specify the total number of
threads across several MPI

processes.

PEEPS 2010 Workshop, Jost & others

MPI2 MPI_Init_thread

PART 2: Hybrid MPI+OpenMP
* Introduction

Programming Models

* How-To on hybrid prog.

* Mismatch Problems

* Application ... can benefit

* Summary

Syntax: call MPI_Init_thread(

irequired,

iprovided, ierr)

int MPI_Init_thread(int *argc, char ***argyv, int required, int *provided)
int MPI::Init_thread(int& argc, char**& argyv, int required)

Support Levels

Description

MPI_THREAD_SINGLE

Only one thread will execute.

MPI_THREAD_FUNNELED

eg: overlap communication and

Process may be multi-threaded, but only main
thread will make MPI calls (calls are "funneled" to

main thread). Default

MPI_THREAD_SERIALIZE

Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (all MPI calls must be

"serialized").

MPI_THREAD_MULTIPLE

Multiple threads may call MPI, no restrictions.

eg: p2p thread sync. Across MPI procs

PEEPS 2010 Workshop, Jost & others

The Multi-Zone NAS Parallel

Benchmarks
set up zones Nested
MPI/OpenMP MLP OpenMP
i Time step sequential sequential sequential
initialize zones
inter-zones MBI MLR OpenMP
Processes Processes
exchange data copy+
Exchande boundaries e sync. Qg
boundaries
timestep intra-zones OpenMP OpenMP OpenMP
zones) .
® Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

® Two hybrid sample implementations
® Load balance heuristics part of sample codes
® www.nas.nasa.gov/Resources/Software/software.html

PEEPS 2010 Workshop, Jost & others

Benchmark Characteristics

Aggregate sizes:

Class D: 1632 x 1216 x 34 grid points Expectations:
Class E: 4224 x 3456 x 92 grid points -
. N\
BT-MZ: (Block tridiagonal simulated CFD application) (Pure MPI: Load- '
Alternative Directions Implicit (ADI) method balancing problems.
#Zones: 1024 (D), 4096 (E) Good candidate for

Size of the zones varies widely: MPI+OpenMP)

large/small about 20
requires multi-level parallelism to achieve a good load-balance

Limitted MPI
Parallelism:
-> MPI+OpenMP
increases Parallelism

LU-MZ: (LU decomposition simulated CFD application)
SSOR method (2D pipelined method)
#Zones: 16 (all Classes)

Size of the zones identical:
no load-balancing required
limited parallelism on outer level

Load-balanced on
MPI level: Pure MPI
should perform best

SP-MZ: (Scalar Pentadiagonal simulated CFD application)
#Zones: 1024 (D), 4096 (E)
Size of zones identical

no load-balancing required

PEEPS 2010 Workshop, Jost & others ———

Using MPI/OpenMP

call omp_set_numthreads (weight) subroutine zsolve(u, rsd,.)
do step = 1, itmax
call exch_gbc(u, gbc, nx,..) | SOMP PARALLEL DEFAUL (SHARED)

1$0MP& PRIVATE (m,i,j,k...)

do k = 2, nz-1
call mpi_send/recv 1$OMP DO

do j = 2, ny-1
do i = 2, nx-1

do zone = 1, num_ zones dom=1, 5
if (iam .eq. pzone_id(zone)) then u(m,i,j, k)=
call zsolve(u,rsd,..) dt*rsd(m,1i,3,k-1)
end if end do
end do end do
end do
end do

PEEPS 2010 Workshop, Jost & others

Cray XT5

Node

Results obtained by the courtesy of the HPCMO
Program and the Engineer Research and
Development Center Major Shared Resource
Center, Vicksburg, MS (

)

Cray XT5 is located at the Arctic Region
Supercomputing Center (ARSC) (http://
www.arsc.edu/resources/pingo)

— 432- Cray XT5 compute nodes with

p—o|
p—¢

+ 32 GB of shared memory per node (4 GB per Socket
core) -

* 2 -quad core 2.3 GHz AMD Opteron processors -
per node. 1

* 1 - Seastar2+ Interconnect Module per node. =2

HH
I

— Cray Seastar2+ Interconnect between all compute =
and login nodes

PEEPS 2010 Workshop, Jost & others

NPB-MZ Class D Scalability on Cray XT5

3000

2048 cores
2500
®BT-MZ Gops

2000
" SP-MZ Gops

1500

Gopls

1000

512 cores

256 cores

500

\J

N O > DS N g X S N 9 S N a4 N o
q?@-\@-‘- & $¢+°’0+ rf>°+ gl é,;&-\&st-h@-\- 'c},ﬁ- ,(ib*'@b?’*@m#‘,(* '\f’@
MPIxOpenMP
Performance reported for Class D 256-2048 cores

Expected:
#MPI Processes
limitted to 1024

SP-MZ pure MPI scales up to 1024 cores
SP-MZ MPI/OpenMP outperforms MPI: scales to 2048 cores

) Unexpected? Why?]

SP-MZ MPI/OpenMP outperforms pure MPI for 1024 cores
BT-MZ MPI/OpenMP scales to 2048 cores, outperforms pure MPI

PEEPS 2010 Workshop, Jost & others

Expected: Load-
Imbalance for
ure MPI

BT-MZ Load-Balance 32x4 vs 128x1

Table 2: Load Balance across PE's by FunctionGroup Table 2%

Time 2 | Tine 2 |
| |Group |
| | | PE[mmm]

| | I Thread

Time | Calls |Experiment=1 Time | Calls IGroup
| |

| PE[mmm]
100,0% | 24,277514 | 38258 |Total
54,22 | 13,166225 | 4545 IMPI

100,0% | 1,782603 | 18662 ITotal
86,1% | 1,535163 | 7783 IUSER
2,7% | 1,535987 | 6813 lpe.0

0,52 | 16,454393 |

|

| 4846 |pe,91
I 0,52 | 14,058538 |

|

|

2434 Ipe.29
2434 Ipe.0

0,02 | 0,289479 |

44,9% | 10,834808 | 17983 |USER

|
|
Il
I
1
301 0,72 | 1,535987 | 6188 |thread.1 \
301 0,72 | 1,535871 | 6188 Ithread.3
31 0,72 | 1,535829 | 6188 |thread.2 : 8§§ : ESSSEZEE : zgggg :g?gm
ﬂl 0,72 | 1,466954 | 6813 Ithread.0 | G D S e
Il 2,72 | 1,535147 | 7783 Ipe.18
11
301 0.7¢ | 1535147 | 7072 Ithread.1 bt-mz-C.128x1
301 0,72 | 1,534995 | 7072 Ithread.3
301 0,72 | 1,524968 | 7072 Ithread.2
301 0,62 | 1,290502 | 7783 Ithread.0
Il
H 2,72 | 1,534233 | 7783 Ipe.16 «CrayPat profile shows:
301 0,72 | 1,534233 | 7072 Ithread.1 ; ; e
311 0.7% | 1,534101 | 7072 Ithread.3 * maximum, median, minimum PEs
301 0,72 | 1,524076 | 7072 Ithread.2 R .
31 0,62 | 1,268085 | 7783 Ithread.0 * bt-mz.C.128x1 large imbalance in
1
. .
bt-mz.C.32x4 well balanced times
bt-mz-C.32x4

PEEPS 2010 Workshop, Jost & others

Load Balance across PE's by FunctionGroup

User and MPI time

Sun Constellation Cluster Ranger

Sun Constellation (UT-TACC):

* Located at the Texas Advanced
Computing Center, The University
of Texas at Austin

* 4 2.3GHz AMD Quad-core Opteron
per node

* 16 cores per node
* 32 Gbyte shared memory per node
* Infiniband Interconnect

2
Core Core

Core Core

H2
Core Core

[—>
Core Core

1

Core Core

Core Core

Core Core

Blomjeu

(=]

Core Core # ‘

lw

2
Core Core

Core Core

Core Core :l ‘

Core Core

I~

‘ % Core Core

PEEPS 2010 Workshop, Jost & others

(=]

Core Core :ﬂ

SUN Constellation: NPB-MZ Class E Scalability

access!

*Performance reported for 1024 to 8192
-SP-MZ MPI/OpenMP outperforms MPI WHY?

-BT-MZ MPI/OpenMP does not scale to 8192 WHY?

PEEPS 2010 Workshop, Jost & others

NPB-MZ Class E Scalability on Sun Constellation BT h
5000000 Significant improve-
or\.
4500000 +—{m SP-MZ (MPI) ment (2.35/?).
4000000 1—|0 SP-MZ MPI+OpenMP Load-balancing issues
3500000 1|0 BT-MZ (MP) solved with MPI/
B BT-MZ MPI+OpenMP
2 3000000 L OpenMP J
£ 2500000
= 2000000
1500000 SP
1000000 - Pure MPI load-balanced
500000 - but hybrid programming
0 - 9.6% faster: 16 MPI per
1024 2048 .p 4096 node compete for network

Hybrid:
SP: still scales

BT: does not scale Bad
default process placement!

19

Linux numactl: Socket, Core, Memory Placement

2 4‘ 3
bt-mz.1024x8 yields el T INEL
best load-balance an VAL I
-pe 2way 8192
export OMP_NUM THREADS=8 3
my rank=$PMI_RANK Rank 0 g
local rank=$((Smy rank % Smyway)) 1 g =
numnode=$ (($local_rank + 1))
2 SEi
Default: H:
________ je—>| je—>
numactl -N $numnode -m $numnode $* 3. .
Bad performance: Gl ol || ol
* MPI process uses only cores within the IRE L
local socket. 1 H: :ﬂ 0
* 8 threads on 4 cores
*Memory allocated on one socket
PEEPS 2010 Workshop, Jost & others
20
numactl: Using Corres across Sockets
bt-mz.1024x8) 4‘ 3
export OMP NUM THREADS=8 - H: R
[} je—>
my rank=$PMI_ RANK
local rank=$((Smy rank % Smyway)) 1
de=$((S1 1 k 1))
numnoae oca _ran + . . ., . . a
Default: é
........ 1 0 =
numactl -N $numnode -m $numnode $*
21 2N\ /7 N\ ‘3
Modified: T \f CT hE
-i-;-_[--filocal_rank -eq 0]; then
numactl -N 0,3 -m 0,3 $*]
else
numactl -N 1,2 -m 1,2 $* .. .=
. Ld ﬂ

t_./

Rank
Achieves Scalability: ank 1 an

*Process uses cores and memory across 2 sockets
* Suitable for 8 threads _

PEEPS 2010 Workshop, Jost & others

IBM Power 6

* Results obtained by the courtesy of the HPCMO Program and the Engineer Research
and Development Center Major Shared Resource Center, Vicksburg, MS (

)
* The IBM Power 6 System is located at (http://www.navo.hpc.mil/davinci_about.html)
e 150 Compute Nodes
e 32 4.7GHz Power6 Cores per Node (4800 cores total)
* 64 GBytes of dedicated memory per node
* QLOGOC Infiniband DDR interconnect
* IBM MPI: MPI 1.2 + MPI-IO

— mpxif_r m garch=pwr6 -qtune=pwr6 -gsmp=omp

Flag was essential to achieve
full compiler optimization in
presence of OMP directives!

PEEPS 2010 Workshop, Jost & others

22

NPB-MZ Class D on IBM Power 6: Exploiting
SMT for 2048 Core Results

- 2500
M BT-MZ Gops
2000
B SP-MZ Gops
1500
»
~
S 1000
]
) IIIi hll I
0...1“ I ‘
NS 0N T 0N T 00 H N T 00 NS 0
X X X X X X X X X X X X < X X X X —« X X X
0 S &N W W 00 F AN N W 0 & X & N O 0 X < N O
N O M = 1N N O M A 1 N O NN "1 N < N W

MPIxOpenMP
¢ Performance reported for 128-2048 cores:
- BT-M, SP-MZ behave as expected
— Only 1024 cores were available for the experiments
- BT-MZ and SP-MZ show benefit from SMT: 2048 threads on 1024 cores

PEEPS 2010 Workshop, Jost & others

23

LU-MZ Class D Scalability IBM Power 6

700

600

B LU-MZ Gops

500
« 400
Q.
]
9 300

200

- I

o m
16x1 16x4 16x8 16x16 16x32
MPIXOMP

e LU-MZ significantly benefits from hybrid mode:
e Pure MPI limited to 16 cores, due to #zones = 16

PEEPS 2010 Workshop, Jost & others

24

PIR3D: Hybrid Programming in the Real World

* PIR3D code developed by Bob Robins, Northwest Research
Associates

* Physical problem:

- Simulate environmental effects on evolution of trailing vortices of
underwater vehicles

* Numerical Approach:
- Solve 3-D (or 2-D) Boussinesq equations for incompressible fluid
- FFT’s for horizontal derivatives (periodic BC)
- Higher-order compact scheme for vertical derivatives
- 2n order Adams-Bashforth time-stepping
- (projection method to ensure incompressibility —
- requires solution to Poisson’s Equation at every time step)
- Periodic smoothing to control small-scale energy — compact approach
in vertical, FFT approach in horizontal
- Diagnostics — normalized divergence to check incompressibility,
timings

PEEPS 2010 Workshop, Jost & others

25

1D Domain Decomposition

loctnitial Distribrution
| Derivative Calculations |

NX

/

4

N

lgcn
NZ |x-slab

cnx

e

I—DL?isson Solver

| Requires Swapping of Data [

PEEPS 2010 Workshop, Jost & others

26

Elapsed Time in Seconds

1600

1400

[
N
o
o

=
o
(=]
o

800

600

400

PIR3D Timings for Case 256x512x256

= Cray XT5 4 MPI/socket

7x=Cray XT5 2 MPI/socket
=>&=SGl Altix 4 MPI/socket
~=SGl Altix 2 MPI/socket

Sun Constellation 4 MPI/socket
Sun Constellation 2 MPI/socket

32

64 128

#MPI Procs

PEEPS 2010 Workshop, Jost & others

27

CrayPat MPI Performance Statistics for Cray XT5

4 cores per socket

Table 1: Profile by Function
Samp % | Samp |Group
|

)
| 40.9% | 279404 |[USER
Il

|| 8.4% | 57437 |dcalc_

|| 5.0% | 34240 |getdiv_

|| 4.1% | 28323 |rvcalc_

|| 4.0% | 27202 |csttt_

| 2.3% | 15693 |swapyx_

|| 1.5% | 10051 |swapxy_

| 29.9% | 204411 | MPI w
Il

28253 |mpi_send_
26565 |mpi_ibsend
22363 |mpi_irecv_
13100 |mpi_bsend

| 29.1% | 198881 | ETC

|| 6.9% | 46856 |dgtts2_

| 4.6% | 31179 |_c_mcopy8
|| 4.3% | 29496 |daxpy_k

|| 1.5% | 10027 |hc2cbdftv_8
|| 1.2% | 8117 |[dgbmv_n

1 core per socket

PEEPS 2010 V/orkshop, Jost & others

Table 1: Protile by Function
Samp % | Samp | Group
100.0% | 442157 | Total

40.7% | 179890 [USER

| 48416 | dcalc_
21543 | getdiv_
19064 | rvcalc_
13795 | esttt_
11531 | swapyx_
6941 | swapxy
5679 | sctft_

10.9%
4.9% |

38.2% | 169084 | ETC

|
)
| 10.4% | 46117 |dgtts2
| 6.7% | 29648 |daxpy_k
| 4.3% | 18820 |_ ¢ _mcopyS8
| 2.1% | 9194 |hc2cbdftv_8
| 1.8% | 8108 |[debmv n
I
qr 93183 | MPI 1
Il
| . 32290 |mpi_waitall
| 4. 20944 |mp
| 3. 15558 |mp -
| 2. 10862 mp1_send_
| 2.2% | 9755 |mpi_bsend_

All-to-All Throughput

#bytes/usec

35

30

25

20

All-to-All Throughput Cray XT5

16 Procs 4 cores/socket | |

——16 procs 1 corelsocket

——64 procs 4 coresfsocket ||

——64 procs 1 corelsocket

Message Length in #bytes

Inter-Node Communication requires
network access.

#Bytes/usec

16

14

12

10

All-to-All Thr Sun C; llati

16 Procs 4 cores/socket
——16 Procs 1 core/socket
——64 Procs 1 core/socket

——64 Procs 4 cores/socket

16384 32768 65536 131072 262144 524288 104857620971524194304
Message length in #bytes

81p2

Intra-Node Communication only!
No network access required

PEEPS 201C Workshop, Jost & others

29

Hybrid Timings for Case 512x256x256

Timings on Cray XT5

= 200
e | Adding OpenMP to loops in 3 routines:

120 - increases the number of usable
100 cores
o - 128x2 outperforms 256x1 on
2 256 cores,128x4 better than
20 I 256x2 on 512 cores
' = Time distributed across many

64x1 128x1 64x2 25 X2 64x4 256x2 128x4 64x8 256x4 128x8 routines: Need to |dent|fy more
time consuming loops!
Timings on Sun Constellation

450 Most of the
performance due to
“spacing” of MPI.

About 12%
improvement due to

150 OpenMP
100 I I

0

| RANENE

64x1 128x1 64x2 256x1 128x2 64x4 256x2 128x4 64x8 256x4 128x8 256x8

Time in Seconds

MPI Procs x OMP Threads

PEEPS 2010 Workshop, Jost & others
30

Elements of
Successful Hybrid Programming

¢ System Requirements:
- Some level of shared memory parallelism, such as within a multi-core node

- Runtime libraries and environment to support both models
= Thread-safe MPI library
= Compiler support for OpenMP directives, OpenMP runtime libraries

- Mechanisms to map MPI processes onto cores and nodes
¢ Application Requirements:
- Expose multiple levels of parallelism: Coarse and fine
- Enough fine-grained parallelism to allow OpenMP scaling to the number of
cores per node
* Pitfalls:
- Highly dependent on optimal process and thread placement
- No standard API to achieve optimal placement
- Optimal placement may not be be known beforehand (i.e. optimal number of
threads per MPI process) or requirements may change during execution
- OpenMP:
- impact on compiler optimization
- impact of ccNUMA remote memory access
PEEPS 2010 Workshop, Jost & others

31

Hybrid Programming: Does it Help?

Hybrid Codes provide these opportunities:

- Lower communication overhead
= Few multi-threaded MPI processes vs Many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
- Lower memory requirements
= Reduced amount of replicated data
= Reduced size of MPI internal buffer space
= May become more important for systems of 100’s or 1000’s cores per node
- Provide for flexible load-balancing on coarse and fine grain
= Smaller #of MPI processes leave room to assign workload more even
= MPI processes with higher workload could employ more threads
- Increase parallelism
= Domain decomposition as well as loop level parallelism can be exploited

YES, IT CAN!

PEEPS 2010 Workshop, Jost & others

32

