
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Accelerating Kernels from WRF on GPUs

John Michalakes, NREL

Manish Vachharajani, University of Colorado

John Linford, Virginia Tech

Adrian Sandu, Virginia Tech

PEEPS Workshop, June 22, 2010

Innovation for Our Energy Future

WRF Overview

• Large collaborative effort to develop
next-generation community non-
hydrostatic model

– 4000+ registered users

– Applications

• Numerical Weather Prediction

• High resolution climate

• Air quality research/prediction

• Wildfire

• Atmospheric Research

• Software designed for HPC

– Ported to and in use on virtually all
types of system in the Top500

– 2007 Gordon Bell finalist

• Why accelerators?

– Cost performance

– Need for strong scaling

http://www.wrf-model.org

WRF Overview

• Software
– ~0.5 million lines mostly Fortran
– MPI and OpenMP
– All single (32-bit) precision

• Dynamics
– CFD over regular Cartesian 3D grid
– Explicit finite-difference
– 2D decomposition in X and Y

• Physics
– Computes forcing terms as updates to

tendencies of state variables
– Column-wise, perfectly parallel in

horizontal dimensions
– ¼ of total run time is microphysics

Percentages of total run time

(single processor profile)

microphysics 26%

other physics 20%

dynamics 44%

other 10%

Microphysics

Radiation

Planetary

Boundary

Cumulus

TKE

Surface processes

Dynamics and

other

Innovation for Our Energy Future

easy

medium

ouch!

www.mmm.ucar.edu/wrf/WG2/GPU

Innovation for Our Energy Future

• WRF Single Moment 5-Tracer (WSM5)* scheme

• Represents condensation, precipitation, and
thermodynamic effects of latent heat release

• Operates independently up each column of 3D WRF
domain

• Large memory footprint: 40 32-bit floats per cell

• Expensive:
– Called every time step

– 2400 floating point multiply-equiv. per cell per invocation

Kernel 1: Microphysics

*Hong, S., J. Dudhia, and S. Chen (2004). Monthly Weather Review, 132(1):103-120.

Kernel 1: Microphysics

• Manual conversion, writing 15-
hundred line Fortran90 module into
CUDA C

• Remove outer loops over i, j
horizontal dimensions, keep only
vertical k loops

• Each resulting column assigned to
a thread

• Benchmark workload: Standard
WRF test case (Eastern U.S.
Storm, Jan. 24, 2000)

Innovation for Our Energy Future

Kernel 1: WSM5 Microphysics

Harpertown and Nehalem results contributed by
Roman Dubtsov, Intel

7766
original

GPU

Innovation for Our Energy Future

Kernel 1: WSM5 Microphysics

• WSM5 Microphysics adapted to NVIDIA’s CUDA for GPU

– 15-25% of WRF cost effectively removed along with load imbalance

– CUDA version distributed with WRFV3

– Users have seen 1.2-1.3x improvement

• PGI have acceleration directives show comparable speedups and

overheads from transfer cost

WRF CONUS 12km benchmark
Courtesy Brent Leback and Craig

Toepfer, PGI

total seconds

microphysics

Kernel 3: WRF-Chem*

• WRF model coupled to atmospheric chemistry
for air quality research and air pollution
forecasting

• RADM2-SORG test case for benchmark:
– Time evolution and advection of tens to hundreds of

chemical species being produced and consumed at
varying rates in networks of reactions

– Rosenbrock** solver for stiff system of ODEs at each
cell

– Series of Newton iterations, each step of which is
solved implicitly

– Many times cost of core meteorology

• WRF domain is very small: 160M floating point
operations per time step

• Chemistry on same domain increases cost 40x

• Parallelism
– The computation itself is completely serial

– Independent computation at each cell

– Seemingly ideal for massively threaded acceleration

*Grell et al., WRF Chem Version 3.0 User’s Guide, http://ruc.fsl.noaa.gov/wrf/WG11
**Hairer E. and G. Wanner. Solving ODEs II: Stiff and Differential-Algebraic Problems, Springer 1996.

***Damian, et al. (2002). Computers & Chemical Engineering 26, 1567-1579.

Kernel 3: WRF-Chem*

• WRF model coupled to atmospheric chemistry
for air quality research and air pollution
forecasting

• RADM2-SORG chemical kinetics solver:
– Time evolution of tens to hundreds of chemical

species being produced and consumed at varying
rates in networks of reactions

– Rosenbrock** solver for stiff system of ODEs at each
cell

– Series of Newton iterations, each step of which is
solved implicitly

– Many times cost of core meteorology

• WRF domain is very small: 160M floating point
operations per time step

• Chemistry on same domain increases cost 40x

• Parallelism
– The computation itself is completely serial

– Independent computation at each cell

– Seemingly ideal for massively threaded acceleration

*Grell et al., WRF Chem Version 3.0 User’s Guide, http://ruc.fsl.noaa.gov/wrf/WG11
**Hairer E. and G. Wanner. Solving ODEs II: Stiff and Differential-Algebraic Problems, Springer 1996.

***Damian, et al. (2002). Computers & Chemical Engineering 26, 1567-1579.

• Y(NVAR) – input vector of 59 active species concentrations
• Temporaries Ynew(NVAR) , Yerr(NVAR), and K(NVAR*3)
• Fcn(NVAR) – dYi / dt
• RCONST(NREACT) – array of 159 reaction rates.
• Jac0(LU_NONZERO), Ghimj(LU_NONZERO) store 659 non-zero entries of Jacobian
• Integer arrays for indexing sparse Jacobian matrix (stored in GPU constant memory)

Kernel 3: WRF-Chem*

• WRF model coupled to atmospheric chemistry
for air quality research and air pollution
forecasting

• RADM2-SORG chemical kinetics solver:
– Time evolution of tens to hundreds of chemical

species being produced and consumed at varying
rates in networks of reactions

– Rosenbrock** solver for stiff system of ODEs at each
cell

– Series of Newton iterations, each step of which is
solved implicitly

– Many times cost of core meteorology

• WRF domain is very small: 160M floating point
operations per time step

• Chemistry on same domain increases cost 40x

• Parallelism
– The computation itself is completely serial

– Independent computation at each cell

– Seemingly ideal for massively threaded acceleration

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 using CUDA (first attempt)

• Convert KPP generated Fortran to C

• Convert entire solver for one cell into

CUDA

• Spawn kernel as one-thread-per-cell over

domain

• Results:
– Too much for CUDA compiler

– Entire kernel constrained by most resource-

intensive step

– Disappointing performance

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 using CUDA (first attempt)

• Convert KPP generated Fortran to C

• Convert entire solver for one cell into

CUDA

• Spawn kernel as one-thread-per-cell over

domain

• Results:
– Too much for CUDA compiler

– Entire kernel constrained by most resource-

intensive step

– Disappointing performance

Radm2sorg <<<gridDim, blockDim >>>(…)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 using CUDA (first attempt)

• Computation and storage at each grid cell

per invocation:
– 600K fp ops

– 1M load/stores

– 1800 dbl. prec. words

– Array layout is cell-index outermost

• This means
– Low computational intensity

– Massive temporal working set

– Outstrips shared memory and available registers

per thread

• Result
– Latency to GPU memory is severe bottleneck

– Non-coalesced access to GPU memory is also a

bandwidth limitation

Radm2sorg <<<gridDim, blockDim >>>(…)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 Improvements

• Rewrite code to break up single

RADM2 kernel into steps
– Outer loop given back to CPU

– Smaller footprint

– Individual kernels can be invoked

according to what’s optimal for that step

in terms of

• Number of threads

• Use of shared memory

– No performance downside: kernel

invocation latency is small

– Most difficult in terms of effort

Radm2sorg <<<gridDim, blockDim >>>(…)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 Improvements

• Rewrite code to break up single

RADM2 kernel into steps
– Outer loop given back to CPU

– Smaller footprint

– Individual kernels can be invoked

according to what’s optimal for that step

in terms of

• Number of threads

• Use of shared memory

– No performance downside: kernel

invocation latency is small

– Involves a complete rewrite

On CPU

Thread per cell on GPU

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 Improvements

• Store indirection vectors into sparse

data structures in GPU constant

memory (easy)

• Unroll loops over sparse arrays
– Exposes reuse to compiler to exploit 16K

register file on each stream

multiprocessor

– Free: KPP can do this automatically

• Reorder arrays so cell-index

innermost to give 2x improvement in

bandwidth through coalescing

(somewhat easy using macros)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 Improvements

• Store indirection vectors into sparse

data structures in GPU constant

memory (easy)

• Unroll loops over sparse arrays
– Exposes reuse to compiler to exploit 16K

register file on each stream

multiprocessor

– More effective than putting

datastructures in shared memory, even

when they do fit

– Free: KPP can do this automatically

• Reorder arrays so cell-index

innermost to give 2x improvement in

bandwidth through coalescing

(somewhat easy using macros)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

RADM2 Improvements

• Store indirection vectors into sparse

data structures in GPU constant

memory (easy)

• Unroll loops over sparse arrays
– Exposes reuse to compiler to exploit 16K

register file on each stream

multiprocessor

– More effective than putting

datastructures in shared memory, even

when they do fit

– Free: KPP can do this automatically

• Reorder arrays so cell-index

innermost to give 2x improvement in

bandwidth through coalescing

(somewhat easy using macros)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future

Innovation for Our Energy Future

Innovation for Our Energy Future

Fermi results: courtesy

Craig Toepfer, PGI

Innovation for Our Energy Future

Code transformations

• GPU device memory latency

– Fusing loops to get rid of temporary arrays

– Unrolling loops over sparse data structures to expose register reuse

– Rewriting code to use shared-memory, if working set fits

– Pipelining tasks between cores on the GPU. Not possible.

• GPU device memory bandwidth

– Array & loop index reordering to improve coalesced memory access

• Host-GPU transfer costs

– Organizing host-GPU transfers to minimize movement

– Asynchronous data transfers

– Using pinned memory on host to speed up host-GPU transfers

– Hand-coding to access array sections for MPI communications

• Misc.

– Breaking up code into multiple kernel invocations

Innovation for Our Energy Future

Some final thoughts on programming models

• What’s good about GPU programming

– Forces programmer to think in terms of simple tasks performed over

large numbers of lightweight threads

– We’ll have to think that way for peta-/exascale-systems anyway

– Programs converted to GPU often perform better on multi-core too

• What’s bad about GPU programming

– The memory hierarchy must be programmed explicitly

– The co-processor model must also be programmed explicitly

– Restructuring for performance is manual, costly, and blind.

– Does the investment pay off in performance? Will the program be

usable in 5 years?

