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WRF Overview

» Large collaborative effort to develop
next-generation community non- http:/fwww.wrf-model.org

hydrostatic model o
_ 4000+ regIStered users »  THE WRATHIR RESTARCH & FORITASTING MODEL

— Applications
* Numerical Weather Prediction
* High resolution climate
« Air quality research/prediction

Clooww ai NUAN ARW WY sokan Vorvosst

® WI Idfl re The WIF 200w teatyme fasecsst s 3 48 h forecast from 002 end 12 T evaadzaton. Paralel run
V22 wods.

» Atmospheric Research

. Mathe| Run Detebrod 3= Chusse ather & suttace, stper ar, or swvars sterm Aol
» Software designed for HPC CEETET P
— Ported to and in use on virtually all (i = SN T

types of system in the Top500
— 2007 Gordon Bell finalist
* Why accelerators?
— Cost performance
— Need for strong scaling

Innovation for Our Energy Future




WRF Overview

o Software

— ~0.5 million lines mostly Fortran
— MPI and OpenMP
— All single (32-bit) precision

Microphysics

* Dynamics
— CFD over regular Cartesian 3D grid
— Explicit finite-difference
— 2D decomposition in X and Y

Radiation

Planetary
Boundary

Cumulus
TKE
Surface processes

* Physics
" eRuEnCEs of affle Varablee P2 1 microphysics | 26%
" Ronzonial dimBrionsy Paratelin other physics|  20%
— Y. of total run time is microphysics dynamics 44%
other 10%

Percentages of total run time
(single processor profile)
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GPU Acceleration of NWP: BenchmarkKernels Web Page

John Michalakes, National Center for Atmospheric Research \
Manish Vachharajani, University of Colorado at Boulder
www.mmm.ucar.edu/wrf/WG2/GPU

Introduction

Increased computing power for weather, climate, and stmosphenc science has provided direct benefits for defense, agnculture, the economy, the environment, and
public welfare and convanience Today, vary large clusters with many thousands of processos are allowing sciantists 1o move forward with simulations of
unprecedented size But time-cntical applcatons such as real-time foracasting or climate pradiction need strong scaling. faster nodes and processors, not more of
tham, Moreayer, the nesd for good cost performance has naver been greater, both in terms of pedormance per watt and per doller For thase reasons, the new
generations of multi- and marny-core processors being mass produced for commercial T and "graphical computing (deo games) are being scrubinized for ther ability
to axpiait the abundant fine- grain paralledsm in atmosphenc models.

We are working to identifying key computational kernels within the dynamics and physics of a large community NVWIP model, the Weather Resaarch and Forecast
(WEE) model The goals are to (1) charactenze and model parformance of the kernels (n terms of computational Intensity, data paraelism, mamory bandwidth
prassure, memory footpnnt, etc (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and
opporunities for ool or higher-leval language support, and (4) establish a continung sat of kemel benchmarks that can be used to measure and compare effactiveness
of current and future designs of multi- and marny-cora procassors for weather and climate applications

With the aim of fosteting community interaction and effort, we Invite and encourage for inclusion hare contributed results, implementations {Including Ced, other
GPUs, and mulb.core), apmizations, new benchmark kemels, and links to pages presenting simitar work. Please contact the authors at michalakebucer edu

Benchmark Kernels
Tha following kernets have bean idertified and set up as standalone benchmarks Click on the titles of each for additional Information and status.

“r = . .

® Two standalone banchmatk implementations
o single-threaded CPU code (onginal Fortran)
o CUDA for NVIDIA GPUs
® Rosults presented for a number of CPUs
o Dovnloadable benchmark codes with vakdation cnteria
o [nstructions for using GPU implementation in full WRFV3

. ‘et .

o Two standalone benchmark implementations
o single-threaded CPU code (onginal Fortran)
o CUDA for NVIDIA GFLs

o Results presented for a number of CPUs

e Bonchmark codes

® Two standalone benchmark implemertations

o single-threaded CPU code (original Fortran)

o CUDA for NVIDIA GPLs
e Results comparing NVIDIA C 1060 with Intel 2 83 GHz Xeon (single core only)
o Davmloadable benchmark codes with vakdation cntena




Kernel 1: Microphysics

 WRF Single Moment 5-Tracer (WSM5)" scheme

* Represents condensation, precipitation, and
thermodynamic effects of latent heat release

« Operates independently up each column of 3D WRF
domain

« Large memory footprint: 40 32-bit floats per cell

* EXpensive:
— Called every time step
— 2400 floating point multiply-equiv. per cell per invocation

*Hong, S., J. Dudhia, and S. Chen (2004). Monthly Weather Review, 132(1):103-120.

MATIONAL RENEWABLE EMERGY LABORATORY Innovation for Our Energy Future



Kernel 1: Microphysics

« Manual conversion, writing 15- J
hundred line Fortran90 module into F
CUDAC

« Remove outer loops over |, |
horizontal dimensions, keep only
vertical k loops

« Each resulting column assigned to
a thread

« Benchmark workload: Standard
WRF test case (Eastern U.S.
Storm, Jan. 24, 2000)




Kernel 1. WSM5 Microphysics
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Roman Dubtsov, Intel
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Kernel 1. WSM5 Microphysics

— Users have seen 1.2-1.3x improvement

overheads from transfer cost

WRF CONUS 12km benchmark
Courtesy Brent Leback and Craig
Toepfer, PGI

total seconds

microphysics

MATIONAL REMEWABLE EMERGY LABOR

WSMS5 Microphysics adapted to NVIDIA's CUDA for GPU

— 15-25% of WRF cost effectively removed along with load imbalance
— CUDA version distributed with WRFV3

PGI have acceleration directives show comparable speedups and

orgna o | Aecoes [ cumnc
U= Wi .

9.0-4 Host | 1 t+GPU | Host+GPU

1679.71 | 1413.48 | 1413.46

(276.72) | (29.79) | (26.35)
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Kernel 3: WRF-Chem"

 WRF model coupled to atmospheric chemistry
for air quality research and air pollution
forecasting

*Grell et al., WRF Chem Version 3.0 User’s Guide, http://ruc.fsl.noaa.gov/wrf/WG11
“Hairer E. and G. Wanner. Solving ODEs II: Stiff and Differential-Algebraic Problems, Springer 1996.
“*Damian, et al. (2002). Computers & Chemical Engineering 26, 1567-1579.



Kernel 3: WRF-Chem"

 WRF model coupled to atmospheric chemistry
for air quality research and air pollution

fOrecaSti ng Compute Ry vector from species vector Y and meteorology (p, t, q, p)
« RADM2-SORG chemical kinetics solver: T &= T and initialize small time step h
Time evolution of tens to hundreds of chemical " ComputeFeng and construct Jacobian Jac,
species being produced and consumed at varying
rates in networks of reactions —> ComputeG (LU decompositionof (1/(hy)-Jac,)
- sé)nsenbrock solver for stiff system of ODEs at each D ———
—  Series of Newton iterations, each step of which is s=13- Implicitsolve of K, using G
solved implicitly oA e ‘
—  Many times cost of core meteorology | Update Fenfroni K
° X\ézraggrrga;)lllsti\rl]qeerysfer?)all: 160M floating point Compute new species vector Y, fromK; .
» Chemistry on same domain increases cost 40x ~— Computeerror term and if > 1, discard, reduce H, and try again
Otherwise, advance time T < T + H and proceed to next step

Finish: Resultin Y,

* Y(NVAR) — input vector of 59 active species concentrations

* Temporaries Ynew(NVAR) , Yerr(NVAR), and K(NVAR*3)

* Fen(NVAR) — dY, / dt

* RCONST(NREACT) — array of 159 reaction rates.

* JacO(LU_NONZERO), Ghimj(LU_NONZERO) store 659 non-zero entries of Jacobian

« Integer arrays for indexing sparse Jacobian matrix (stored in GPU constant memory)

*Grell et al., WRF Chem Version 3.0 User’s Guide, http://ruc.fsl.noaa.gov/wrf/WG11
“Hairer E. and G. Wanner. Solving ODEs II: Stiff and Differential-Algebraic Problems, Springer 1996.
“Damian, et al. (2002). Computers & Chemical Engineering 26, 1567-1579.



Kernel 3: WRF-Chem"

 WRF model coupled to atmospheric chemistry,
for air quality research and air pollution e
forecasting

* RADM2-SORG chemical kinetics solver:

Time evolution of tens to hundreds of chemical

11

10

species being produced and consumed at varying 9
rates in networks of reactions g

— Rosenbrock™ solver for stiff system of ODEs at each 5
cell

—  Series of Newton iterations, each step of which is
solved implicitly

— Many times cost of core meteorology

*  WRF domain is very small: 160M floating point
operations per time step 3

Seconds

+ Chemistry on same domain increases cost 40x 5
« Parallelism , ——
—  The computation itself is completely serial o
— Independent computation at each cell 0 4 8 12 16 20 24 2B 32 36 40 44 4B S2 S6 60 64
—  Seemingly ideal for massively threaded acceleration OpenMP Threads, CPU only (Filled in markers denote fult subscription of threads to cores)

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010



RADM?2 using CUDA (first attempt)

» Convert KPP generated Fortran to C

» Convert entire solver for one cell into
CUDA

« Spawn kernel as one-thread-per-cell over
domain

* Results:
—  Too much for CUDA compiler

—  Entire kernel constrained by most resource-
intensive step

— Disappointing performance

loop until —

5T

Compute Ry vector from species vector Y and meteorology (p, t, q, p)
T & T,, and initialize small time step h
Compute Feng and construct JacobianJac,
— ComputeG (LU decomposition of (1/(hy)-Jac,)
‘ ComputeK, from Fen and K from other stages
st=1.3 ‘ Implicit solve of K, using G
} Update Fen from K

Compute new species vector Y, fromK; .

~— Computeerror term and if 2 1, discard, reduce H, and try again
Otherwise, advance time T < T + H and proceed to next step

Finish: Resultin Y,

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future




RADM?2 using CUDA (first attempt)

e Convert KPP generated Fortran to C Radm2sorg <<<gridDim, blockDim >>>( .. )

» Convert entire solver for one cell into
CUDA

« Spawn kernel as one-thread-per-cell over e 1
d O m ai n Compute Reaner vector from species vector Y and meteorology (o, t, 6, p) &

* Results:
i T =T, and initialize small time step h
N TOO mUCh for CUDA Compller | Compute Feny and construct Jacobian Jac,

Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.

Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.
Compute Reoys vector from species vector Y and meteorology (p, t, , p)

:::::

:::::

—  Entire kernel constrained by most resource-
intensive step

> ComputeG (LU decomposition of (1/(hy)-Jac,)
ComputeK, from Fen and K from other stages

|
se=13 Implicitsolve of K, using G |

. .. ; | UpdateFet
- Dlsappolntl ng performance Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.
& | Compute new|
I | L computeend Compute Reaner vector from species vector Y and meteorology (o, t, 6, p) &
_ Otherwise, adva Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.
& |

Finish: Result in Y,
1 Compute R gy vector from species vector Y and meteorology (p, t, q, p)

T &= T,y and initialize smalltime step h
Compute Feng and construct Jacobian Jac,
> ComputeG (LU decomposition of (1/(hy)-Jac,)
ComputeK, from Fen and K from other stages
sk13- Implicitsolve of K, using G
Update Fen from K
Compute new species vector Y, from K, ,
L Computeerror term andif > 1, discard, reduce H, and try again
_ Otherwise, advance time T =T + H and proceed to next step

Finish: Resultin Ye,

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010
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RADM?2 using CUDA (first attempt)

« Computation and storage at each grid cell Radm2sorg <<<gridDim, blockDim >>>{ ..))
per invocation:

600K fp ops

1M load/stores P S——————

1800 dbl. prec. words P S——————

Array layout is cell-index outermost ComputeReausectoriomspecies ecorandmeteorology(ot..ol-&

* This means ,
T =T, and initialize smalltime step h
—  Low computational intensity E e ——
. . e | > Compute ecomposition of (1/(hy)-Jacy
—  Massive temporal working set T

Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.

ol Compute Reoysr vector from species vector Y and meteorology (p, t, g, p)
=1

ol ComputeK, from Fen and K from other stages

1 |
H H H s - Implicit sol f ing G
—  Outstrips shared memory and available registers L a7 P ezl oting L
- Update Fet
G teR tor fi i tor Y and meteorology (p, t, 6. p)
per th read 4 comitsiel ompute Reoner vector from species vector Y and meteorology P) ke
L E— | Compute Reonsr vector from species vector Y and meteorology (0, t, 0, p) k.

o R e S u |t | Otherwise, adva Compute Reawcr vector from species vector Y and meteorology (o, t,.a.p). k.

& |

Finish: Resultin Yoy

_ Latency to G PU memory |S severe bOt'[|eneCk 1 Compute Reoysr vector from species vector Y and meteorology (p, t, g, p)

T &= T, and initialize small time step h
— Non-coalesced access to GPU memory is also a
bandwidth limitation

Compute Feng and construct Jacobian Jac,
> ComputeG (LU decomposition of (1/(hy)-Jac,)
ol ComputeK, from Fen and K from other stages
1 sk13- Implicitsolve of K, using G
Update Fen from K
Compute new species vector Y, from K, ,
L Computeerror term andif > 1, discard, reduce H, and try again
_ Otherwise, advance time T =T + H and proceed to next step

Finish: Resultin Ye,

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future



RADM2 Improvements

» Rewrite code to break up single
RADM2 kernel into steps

Outer loop given back to CPU
Smaller footprint

Individual kernels can be invoked
according to what’s optimal for that step
in terms of

*  Number of threads
* Use of shared memory

No performance downside: kernel
invocation latency is small

Most difficult in terms of effort

Radm2sorg <<<gridDim, blockDim >>>( .. )

Qector Y and meteorology (0, t,.0,p). k.
ector Y and meteorology (0, .., p). k.
ector Y and meteorology (0, .., p). k.

Compute Reausr ector Y and meteorology (0, t,a,p) L.

,,,,, Compute Reoysr V8 ector Y and meteorology (p, t, 4, p)

ComputeFeng and constrd

> ComputeG (LU decompositi8

ComputeK, from Fen and K fro)

se=13 Implicitsolve of K, using G

ke

Update Fet
Compute Reour V8 ector Y and meteorology

Compute new|

L computeerrof

Otherwise, adva jr VN g . ta,p) b

nish: Result in Yoy

uuuuu

Update Fen from K

Compute new species vector Y, from K, ,
L computeerror term and if 2 1, discard, reduce H, and try again
_ Otherwise, advance time T <T + H and proceed to next step

Finish: Resultin Ye,

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future




RADM2 Improvements

. . Thread per cell on GPU
* Rewrite code to break up single /

RADM2 kernel into steps

L A
—  Outer loop given back to CPU — L
—  Smaller footprint Compute Rqysr vector from species vector Y and meteorology (p, t, g, p)
— Individual kernels can be invoked T &= Ta and initialize smalltime step h -
according to what’s optimal for that step : _ : : 8
in terms of Compute Feng and construct Jacobian Jac,
*  Number of threads
. Use of shared memory ComputeG (LU decomposition of (1/(hy)-Jac,)
—  No performance downside: kernel Compute K, from Fen and K from other stages ]
invocation latency is small deiy
— Involves a complete rewrite '°‘;"2‘2:‘"': = Implicit solve of K, using G ]
Update Fen from K ]
Compute new species vectorrvm, from kl__, |
—— Computeerror term and if 2 1, discard, reduce H, and try again
Otherwise, advancetime T < T + H and proceed to next step
Finish: Resultin Y,
On CPU

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010
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RADM2 Improvements

 Store indirection vectors into sparse
data structures in GPU constant
memory (easy)

........................................

USE KPP_ROOT_Parameters
USE ¥PE ROOT JacobisnSP
INTEGER &, )
KPP _REAL JVE(EPP_LU NONZERD), X|KPP _NVAR), sum

DO I=1,NVAR ____ oo ___
DO 3 S L CROW(1), LU DIAGIZIZI___.____
X4} = X(1)= IETILIKLILU_TCOL(I) T E>
e e
END DO

O DO T
%{1) = sum/JVS{LU_DIAG(L) )¢
END DO
END SUBROUTINE ¥ppBclvelndirect

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010
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RADM2 Improvements

SUBROUTINE KppSolvelndigect| JVS, X }

.. . . rolled | 4G B S
o StOI‘e |nd|rect|0n VEC'[OI’S II’I'[O Sparse ! Sparse solve subroutine using indirect addressing
data structures in GPU constant | USE KPP_ROOT_Parameters
USE XPP_ROOT JacobianSP
memory (easy) g:i :ﬁx.‘:wg(xpe_w_mxmx. X(KPE_NVAR), sum
DO 1=1,NVAR
 Unroll loops over sparse arrays 00 ) = LU_CROM(1), LU DIAG(1)-1
] ) X(4) = X{&} = JVS{3)*X{LU_ICOL{}}):
— Exposes reuse to compiler to exploit 16K sl
register file on each stream DO 1-NVAR,1,-1
multiprocessor ;gmg-x{:})_gxmmn, LU_CROW[1+1) -1
—  More effective than putting e L
datastructures in shared memory, even X{4) = sum/IVS{LU_DIAGI}) ¢
. END DO
when they do fit END SUBROUTINE Xppsolvelndirect

—  Free: KPP can do this automatically
unrolled

X(36) = X[386)~-JVS{188)*X(11)

X(37) = X(37)-JvS{195) *X(27) -IV5 (196) *X(28)

X(38) = X[38)~-JVS(205) *X(24) ~IV3(206) *X(27) ~JVS{207) *X (28} ~IVS (208} *X (29}

X(39) = X{39)-IVS(217) *X(8) -JIVS (218) *X{9} -IVS(219) *X(22) -IVE{220) *X(23)

X[40) = X{40)-JVE{230) *X(24)

X(41) = X{41)-JVE{239)*X(8)

X(42) = X{42)-JVS{246) *X (32} -IVS(247) *X{35) ~JVS({248) *X(36} -IVE(249) *X (37}~ . .

X(43) = X143)-JVE{268) *X(16} -JV3(269) *X{21) -IVS{270) *X(23}-IVS(271) *X (24}~ . . .
§-UVS (278) *X(31) -JVS (276) *X(32) -JVS(277) *X[35) -IVE{278) *X(36) - . .

thousands of lines of this

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010
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RADM2 Improvements

rolled

« Store indirection vectors into sparse
data structures in GPU constant o san o s
memory (easy) S

» Unroll loops over sparse arrays

— Exposes reuse to compiler to exploit 16K
register file on each stream PRy 15 =1
multiprocessor e &
—  More effective than putting
datastructures in shared memory, even
when they do fit

—  Free: KPP can do this automatically
» Reorder arrays so cell-index unrolled
innermost to give 2x improvement in
bandwidth through coalescing
(somewhat easy using macros)

thousands of lines of this

Linford, Michalakes, Vachharajani, Sandu. Special Issue, High Performance Computing with
Accelerators. Trans. Parallel and Distributed systems. To appear. 2010

Innovation for Our Energy Future



Seconds

12

11

10

RADM2 benchmark

Xeon 5400 3 GHz 2x4 cores
[ |

Xeon 5500 2.26 GHz 2x4 cores

Cell BEQS522, 2x8 cores

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

OpenMP Threads, CPU only (Filled in markers denote full subscription of threads to cores)

MATIOMNAL RER®

ABORATORY
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12

11

10

Seconds

RADM2 benchmark

NVIDIA C1060 (CUDA) , 1x240 cores, 190W/device, (GBL PREQGEINGLE PREC)

Xeon 5400 3 GHz 2x4 cores

Xeon 5500 2.26 GHz 2x4 cores

Cell BEQS522, 2x8 cores

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

OpenMP Threads, CPU only (Filled in markers denote full subscription of threads to cores)

MATIONAL RE R o Innovation for Our Energy Future
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10

Seconds

RADM2 benchmark

Fermi results: courtesy
Craig Toepfer, PGI

Xeon 5500 2.26 GHz 2x4 cores

Cell BEQS522, 2x8 cores

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

OpenMP Threads, CPU only (Filled in markers denote full subscription of threads to cores)
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Code transformations

GPU device memory latency
— Fusing loops to get rid of temporary arrays
— Unrolling loops over sparse data structures to expose register reuse
— Rewriting code to use shared-memory, if working set fits

— Pipeliningtasks-between-coresonthe- GRPUY. Not possible.
GPU device memory bandwidth
— Array & loop index reordering to improve coalesced memory access

Host-GPU transfer costs
— Organizing host-GPU transfers to minimize movement
— Asynchronous data transfers
— Using pinned memory on host to speed up host-GPU transfers
— Hand-coding to access array sections for MPI communications

Misc.
— Breaking up code into multiple kernel invocations

MATIONAL RENEWABLE ENERG IORATORY Innovation for Our Energy Future



Some final thoughts on programming models

» What’s good about GPU programming

— Forces programmer to think in terms of simple tasks performed over
large numbers of lightweight threads

— We’'ll have to think that way for peta-/exascale-systems anyway

— Programs converted to GPU often perform better on multi-core too
» What’s bad about GPU programming

— The memory hierarchy must be programmed explicitly

— The co-processor model must also be programmed explicitly

— Restructuring for performance is manual, costly, and blind.

— Does the investment pay off in performance? Will the program be
usable in 5 years?

MATIONAL REMEWAEBLE EMERGY LABORATORY
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