
Multi-GPU Computing and GPU
MapReduce

Joint work with Jeff Stuart, UC Davis

John Owens
Associate Professor, Electrical and Computer Engineering

SciDAC Institute for Ultrascale Visualization
University of California, Davis

A Modern Computer

Chipset

CPU GPU

Network

A Modern Computer

Chipset

CPU GPU

Network

Kernel Call

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

Fast & Flexible Communication

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

• CPUs are good at creating & manipulating data structures?

• GPUs are good at accessing & updating data structures?

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

Structuring CPU-GPU Programs
CPU GPU

Marshal data

Send to GPU
Receive from CPU

Call kernel

Execute kernel
Retrieve from GPU

Send to CPU

Structuring Multi-GPU Programs
CPU

GPUGPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Structuring Multi-GPU Programs
CPU

GPU

Want to run on GPU:
if (foo == true) {
 GPU[x][bar] = baz;
} else {
 bar = GPU[y][baz];
}

GPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Structuring Multi-GPU Programs
CPU

GPU

Want to run on GPU:
if (foo == true) {
 GPU[x][bar] = baz;
} else {
 bar = GPU[y][baz];
}

GPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Instead, GPU as slave.
Goal: GPU as first-class citizen.

Our Research Program

Programming Models

Abstractions

Mechanisms

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Problems:

• GPU can’t communicate
with NI

• GPU signals CPU

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Solution:

• CPU allocates
“mailbox” in GPU mem

• GPU sets mailbox to
initiate network send

• CPU polls mailbox

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Solution:

• CPU allocates
“mailbox” in GPU mem

• GPU sets mailbox to
initiate network send

• CPU polls mailbox

Take-home: Abstraction
does not change even if

underlying
mechanisms change

DCGN: MPI-Like Programming Model
• Distributed Computing for GPU Networks (DCGN,

pronounced decagon)

• MPI-like interface

• Allows communication between all CPUs and GPUs in
system

• Allow GPU to source/sink communication

• Multithreaded communication via MPI

• Both synchronous and asynchronous (<- overlap!)

• Collectives

• Multiplex MPI addresses (“slots”)

Architecture

Node-to-Node Send
!"#$%&

'()

'()
*+,$-#

./00
*+,$-#

!1.

!"#$%2

'()

'()
*+,$-#

./00
*+,$-#

!1.

! " #

$

%

%

#

&

'

(!

"

Complexities with GPU Threads
• In MPI, each processor has many (1? 10s? 100s?) of

active threads/processes

• GPUs have thousands to millions of active threads at
one time

• Are those threads all cooperating on the same piece of
work (logically communicating with one CPU thread)?

• Uniform computation across many threads

• Are those threads all doing separate pieces of work
(logically communicating with many CPU threads)?

• Small percentage of threads take 1000x longer

DCGN: Slots

• Each GPU is given 1–n slots for n GPU threads, specified
by the user

• All communication requests have an additional “slot”
parameter

• No implicit synchronization of slots

• Not part of MPI (this is why we didn’t use MPI)

Microbenchmarks

0.1

1.0

0 B 1 kB 64 kB256 kB1 MB

Ti
m

e
(m

s)

Data Size

Send

DCGN GPU:GPU
DCGN GPU:CPU
DCGN CPU:GPU
DCGN CPU:CPU

MVAPICH2 Good

App Results

• N-body (one-to-all broadcast)

• Cannon’s matrix multiplication (simultaneous
communication)

• Mandelbrot set (unpredictable communication)

• All three had at least 90% of the performance of GPU-
as-slave

DCGN Conclusions
• So why DCGN?

• Future-proof code: use abstractions, underlying
mechanisms can improve

• DCGN code is at a higher level of abstraction

• HW improvements

• Ability for GPU to initiate communication

• Direct GPU-GPU and/or GPU-NIC desirable

• Faster/lower-latency CPU-GPU communication

• Upcoming Fusion-style CPU-GPU hybrids

MapReduce

http://m.blog.hu/dw/dwbi/image/2009/Q4/mapreduce_small.png

Why MapReduce?

• Simple programming model

• Parallel programming model

• Scalable

• Previous GPU work: neither multi-GPU nor out-of-core

Block Diagram
!"#$
%#$
&'($

!"#$
%#$
)'($

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

&'(8
+#2$
)'(8

&'(9
+#2$
)'(9

:$$:$$:$

63;12"01.$

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

63;12"01.$

63;12"01.$ 63;12"01.$

!12"31$!12"31$

!"#$
%#$
&'($

!"#$
%#$
)'($

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

&'(8
+#2$
)'(8

&'(9
+#2$
)'(9

:$$:$$:$

63;12"01.$

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

63;12"01.$

63;12"01.$ 63;12"01.$

!12"31$!12"31$

• Process data in chunks

• More efficient transmission &
computation

• Also allows out of core

• Overlap computation and
communication

• Accumulate

• Partial Reduce

Keys to Performance

!"#$
%#$
&'($

!"#$
%#$
)'($

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

&'(8
+#2$
)'(8

&'(9
+#2$
)'(9

:$$:$$:$

63;12"01.$

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

63;12"01.$

63;12"01.$ 63;12"01.$

!12"31$!12"31$

• User-specified function combines
pairs with the same key

• Each map chunk spawns a partial
reduction on that chunk

• Only good when cost of reduction
is less than cost of transmission

• Good for ~larger number of keys

• Reduces GPU->CPU bw

Partial Reduce

!"#$
%#$
&'($

!"#$
%#$
)'($

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

&'(8
+#2$
)'(8

&'(9
+#2$
)'(9

:$$:$$:$

63;12"01.$

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

63;12"01.$

63;12"01.$ 63;12"01.$

!12"31$!12"31$

• Mapper has explicit knowledge
about nature of key-value pairs

• Each map chunk accumulates its
key-value outputs with GPU-
resident key-value accumulated
outputs

• Good for small number of keys

• Also reduces GPU->CPU bw

Accumulate

Benchmarks—Which
• Matrix Multiplication (MM)

• Word Occurrence (WO)

• Sparse-Integer Occurrence (SIO)

• Linear Regression (LR)

• K-Means Clustering (KMC)

• (Volume Renderer—presented 90
minutes ago @ MapReduce ’10)

Benchmarks—Why

• Needed to stress aspects of GPMR

• Unbalanced work (WO)

• Multiple emits/Non-uniform number of emits (LR, KMC,
WO)

• Sparsity of keys (SIO)

• Accumulation (WO, LR, KMC)

• Many key-value pairs (SIO)

• Compute Bound Scalability (MM)

Benchmarks—Results

Benchmarks—Results

9

MM SIO WO KMC LR

Input Element Size — 4 bytes 1 byte 16 bytes 8 bytes

Elems in first set (×10
6
) 1024

2
, 2048

2
, 4096

2
, 16384

2
1, 8, 32, 128 1, 16, 64, 512 1, 8, 32, 512 1, 16, 64, 512

Elems in second set (×10
6
/GPU) — 1, 2, 4, 1, 2, 4, 8, 16, 1, 2, 4, 1, 2, 4, 8, 16

8, 16, 32 32, 64, 128, 256 8, 16, 32 32, 64

TABLE 1: Dataset Sizes for all four benchmarks. We tested Phoenix against the first input set for SIO, KMC, LR, and the second set for

WO. We test GPMR against all available input sets.

MM KMC LR SIO WO

1-GPU Speedup 162.712 2.991 1.296 1.450 11.080

4-GPU Speedup 559.209 11.726 4.085 2.322 18.441

TABLE 2: Speedup for GPMR over Phoenix on our large (second-

biggest) input data from our first set. The exception is MM, for which

we use our small input set (Phoenix required almost twenty seconds

to multiply two 1024×1024 matrices).

MM KMC WO

1-GPU Speedup 2.695 37.344 3.098

4-GPU Speedup 10.760 129.425 11.709

TABLE 3: Speedup for GPMR over Mars on 4096× 4096 Matrix

Multiplication, an 8M-point K-Means Clustering, and a 512 MB

Word Occurrence. These sizes represent the largest problems that

can meet the in-core memory requirements of Mars.

summarizes speedup results over Phoenix, while Table 3 gives

speedup results of GPMR over Mars. Note that GPMR, even

in the one-GPU configuration, is faster on all benchmarks that

either Phoenix or Mars, and GPMR shows good scalability to

four GPUs as well.

Source code size is another important metric. One signif-

icant benefit of MapReduce in general is its high level of

abstraction: as a result, code sizes are small and development

time is reduced, since the developer does not have to focus

on the low-level details of communication and scheduling but

instead on the algorithm. Table 4 shows the different number

of lines required for each of three benchmarks implemented

in Phoenix, Mars, and GPMR. We would also like to show

developer time required to implement each benchmark for

each platform, but neither Mars nor Phoenix published such

information (and we wanted to use the applications provided

so as not to introduce bias in Mars’s or Phoenix’s runtimes). As

a frame of reference, the lead author of this paper implemented

and tested MM in GPMR in three hours, SIO in half an hour,

KMC in two hours, LR in two hours, and WO in four hours.

KMC, LR, and WO were then later modified in about half an

hour each to add Accumulation.

7 CONCLUSION

GPMR offers many benefits to MapReduce programmers.

The most important is scalability. While it is unrealistic to

expect perfect scalability from all but the most compute-bound

tasks, GPMR’s minimal overhead and transfer costs position

MM KMC WO

Phoenix 317 345 231

Mars 235 152 140

GPMR 214 129 397

TABLE 4: Lines of source code for three common benchmarks

written in Phoenix, Mars, and GPMR. We exclude setup code from

all counts as it was roughly the same for all benchmarks and had

little to do with the actual MapReduce code. For GPMR we included

boilerplate code in the form of class header files and C++ wrapper

functions that invoke CUDA kernels. If we excluded these files,

GPMR’s totals would be even smaller. Also, WO is so large because

of the hashing required in GPMR’s implementation.

Fig. 2: GPMR runtime breakdowns on our the largest datasets.

This figure shows how each application exhibits different runtime

characteristics, and also how exhibited characteristics change as we

increase the number of GPUs.

it well in comparison to other MapReduce implementations.

GPMR also offers flexibility to developers in several areas,

particularly when compared with Mars. GPMR allows flexible

mappings between threads and keys and customization of the

MapReduce pipeline with additional communication-reducing

stages while still providing sensible default implementations.

Our results demonstrate that even difficult applications that

have not traditionally been addressed by GPUs can still show

vs. CPU

vs. GPU

Benchmarks - Results

Go
od

Benchmarks - Results

Go
od

Benchmarks - Results

Go
od

Conclusions

• Time is right to explore diverse programming models on
GPUs

• Few threads -> many, heavy threads -> light

• Lack of {bandwidth, GPU primitives for communication,
access to NIC} are challenges

• What happens if GPUs get a lightweight serial
processor?

• Future hybrid hardware is exciting

Thanks to …

• University of Illinois / NCSA and Argonne for cluster
access

• NVIDIA for hardware donations

• Funding agencies: Department of Energy (SciDAC
Institute for Ultrascale Visualization, Early Career
Principal Investigator Award), NSF, LANL, BMW, NVIDIA,
HP, Intel, UC MICRO, Microsoft, ChevronTexaco, Rambus

