Multi-GPU Computing and GPU
MapReduce

Joint work with Jeff Stuart, UC Davis

John Owens
Associate Professor, Electrical and Computer Engineering
SciDAC Institute for Ultrascale Visualization
University of California, Davis




A Modern Computer

CPU

GPU




A Modern Computer

Chipset

Network




A Modern Computer

[
GPU

Chipset

Network




A Modern Computer

L > GPU

K/ Chipset




A Modern Computer




A Modern Computer

=
CPU GPU




Fast & Flexible Communication
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e (PUs are good at creating & manipulating data structures?

e GPUs are good at accessing & updating data structures?
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Structuring CPU-GPU Programs

CPU GPU

Marshal data

Send to GPU
\ Receive from CPU

Call kernel
\ Execute kernel
Retrieve from GPU \
Send to CPU




Structuring Multi-GPU Programs
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Structuring Multi-GPU Programs

PU

Static division of work
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(Global Arrays: Zippy,
/ lNSA)
GPU GPU G

PU GPU GPU

Want to run on GPU:
if (foo == true) {
GPU[Lx][bar] = baz;
} else {
bar = GPU[Lyl[baz];
}




Structuring Multi-GPU Programs

CPU Static division of work
(Global Arrays: Zippy,
/ CUDASA)

Want to run on GPU:
if (foo == true) {
GPU[Lx][bar] = baz;
} else {
bar = GPU[Lyl[baz];
}

Instead, GPU as slave.
Goal: GPU as first-class citizen.




Our Research Program

Abstractions




Example

e Abstraction: GPU

initiates network send _

e Problems: Abstractions
e GPU can’t communicate Mechanisms
with NI

e GPU signals CPU




Example

e Abstraction: GPU

e Solution: :
Abstractions

e (PU allocates
“mailbox” in GPU mem Mechanisms

e GPU sets mailbox to
initiate network send

e (CPU polls mailbox




Exa m p le Take-home: Abstraction

does not change even if
underlying
mechanisms change

e Abstraction: GPU

e mewann? | Programming Models |

e Solution: :
Abstractions

e (PU allocates
“mailbox” in GPU mem Mechanisms

e GPU sets mailbox to
initiate network send

e (CPU polls mailbox




DCGN: MPI-Like Programming Model

e Distributed Computing for GPU Networks (DCGN,
pronounced decagon)

e MPI-like interface

e Allows communication between all CPUs and GPUs in
system

e Allow GPU to source/sink communication

Multithreaded communication via MPI

Both synchronous and asynchronous (- overlap!)

Collectives

Multiplex MPI addresses (“slots”)



Architecture

Running on CPUs PCl-e Devices

GPUThread1 |€ ~  Kemnel > GPU1

GPUThread2 |+ Invocations=——>{ Gpu 2
H Memory ﬁ

: Copies
GPU Thread N ](-' ‘->[ GPUN

)

Comm. Requests

— ‘|’ External :
MPI Thread <+  Comm. —> NIC :
K © REQUESES feerriiiiiiiiiiiiiiiiiiiiiiieressssssssnenes :

Comm. Requests

: )
CPU Thread 1
‘ﬁ

CPU Thread 2

Yj

CPU Thread N




Node-to-Node Send

Node 1

GPU
Thread

COMM

| Thread

ATI
o 1| 14
I

ls

GPU

NIC

GPU COMM
Thread Thread

i
0: 7

GPU

——




Complexities with GPU Threads

In MPI, each processor has many (1? 10s? 100s?) of
active threads/processes

GPUs have thousands to millions of active threads at
one time

e Are those threads all cooperating on the same piece of
work (logically communicating with one CPU thread)?

e Uniform computation across many threads

e Are those threads all doing separate pieces of work
(logically communicating with many CPU threads)?

e Small percentage of threads take 1000x longer




DCGN: Slots

Each GPU is given 1—n slots for n GPU threads, specified
by the user

All communication requests have an additional “slot”
parameter

No implicit synchronization of slots

Not part of MPI (this is why we didn’t use MPI)




Microbenchmarks
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App Results

N-body (one-to-all broadcast)

Cannon’s matrix multiplication (simultaneous
communication)

Mandelbrot set (unpredictable communication)

All three had at least 90% of the performance of GPU-
as-slave




DCGN Conclusions

e SowhyDCGN?

e Future-proof code: use abstractions, underlying
mechanisms can improve

e DCGN code is at a higher level of abstraction
e HW improvements

e Ability for GPU to initiate communication

e Direct GPU-GPU and/or GPU-NIC desirable

e Faster/lower-latency CPU-GPU communication

e Upcoming Fusion-style CPU-GPU hybrids




MapReduce
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Why MapReduce?

Simple programming model
Parallel programming model

Scalable

Previous GPU work: neither multi-GPU nor out-of-core




Block Diagram
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Keys to Performance

Process data in chunks

e More efficient transmission &
computation

e Also allows out of core

Overlap computation and
communication

Accumulate

Partial Reduce

GPU 1
and
CPU1

Scheduler

GPUN
and

CPUN

v

Scheduler

Map +
Partial
Reduce +
Partition

v

Map +
Partial
Reduce +
Partition




Partial Reduce

User-specified function combines
pairs with the same key

Each map chunk spawns a partial
reduction on that chunk

Only good when cost of reduction
is less than cost of transmission

Good for ~larger number of keys

Reduces GPU-»CPU bw
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Accumulate

Mapper has explicit knowledge
about nature of key-value pairs

Each map chunk accumulates its
key-value outputs with GPU-
resident key-value accumulated
outputs

Good for small number of keys

Also reduces GPU->CPU bw
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Benchmarks—Which

Matrix Multiplication (MM)
Word Occurrence (WO)
Sparse-Integer Occurrence (S10)
Linear Regression (LR)

K-Means Clustering (KMC)

(Volume Renderer—presented 90
minutes ago @ MapReduce ’10)




Benchmarks—Why

e Needed to stress aspects of GPMR
Unbalanced work (WO)

Multiple emits/Non-uniform number of emits (LR, KMC,
WO0)

Sparsity of keys (S10)
Accumulation (WO, LR, KM(C)
Many key-value pairs (S10)
Compute Bound Scalability (MM)




Benchmarks—Results

100.0 %
90.0 %
80.0 %
70.0 %
60.0 %
50.0 %
40.0 %
30.0 %
20.0 %
10.0 %

0.0 %

MM

Map

Complete Binning

Sort

Reduce

GPMR Internal / Scheduler

KM

LR SIO WO
Benchmark




Benchmarks—Results

vs. CPU

MM KMC LR SIO WO

1-GPU Speedup 162.712 2.991 1.296 1.450 11.080
4-GPU Speedup 559.209 11.726 4.085 2.322 18.441

TABLE 2: Speedup for GPMR over Phoenix on our large (second-
biggest) input data from our first set. The exception is MM, for which
we use our small input set (Phoenix required almost twenty seconds
to multiply two 1024 x 1024 matrices).

MM KMC WO

1-GPU Speedup  2.695 37.344 3.098
4-GPU Speedup 10.760 129.425 11.709

TABLE 3: Speedup for GPMR over Mars on 4096 x 4096 Matrix
Multiplication, an 8M-point K-Means Clustering, and a 512 MB
Word Occurrence. These sizes represent the largest problems that
can meet the in-core memory requirements of Mars.



Benchmarks - Results

Matrix Multiplication
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Benchmarks - Results

K-Means Clustering
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Benchmarks - Results

Word Occurrence
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Conclusions

Time is right to explore diverse programming models on
GPUs

e Few threads -» many, heavy threads -» light

Lack of {bandwidth, GPU primitives for communication,
access to NIC} are challenges

What happens if GPUs get a lightweight serial
processor?

Future hybrid hardware is exciting
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