
Parallel Auto-tuned GMRES Method to Solve
Complex Non-Hermitian Linear Systems

Pierre-Yves Aquilanti12, Serge Petiton1, and Henri Calandra2

1 LIFL - UMR Lille 1/CNRS 8022
Cité Scientifique - Bâtiment M3

59655 Villeneuve d’Ascq Cédex - France
2 TOTAL Exploitation Production

Avenue Larribau
64000 Pau

Abstract. Solving a linear system in a minimum time is a key factor in
many scientific fields. It is possible to reduce time of computation for a
given linear system by using auto-tuning and adaptive parameters. We
propose auto-tuning within the GMRES solver by changing the value of
the restart parameter dynamically in order to reduce the time of com-
putation. We outline the limits of our heuristic through sequential an
parallel experiments on complex-valued non-hermitian non-symmetric
matrices including Helmholtz matrices.

1 Introduction

Linear algebra has been a very active field over the past years. This can be ex-
plained by many reasons, one of them being the increasing need of numerical
tools for solving new types of problems in a wide range of scientific fields from
mechanical engineering to geophysics. An important part of those problems are
modelized by linear systems.

A system of linear equations is generally described by

Ax = b (1)

where An×n is the coefficient matrix , xn the solution, bn the right hand
side of the linear system of equations, n the size of the vectors x and b, n × n
the size of the involved matrix. Two main types of solvers exist : direct and
iteratives solvers. Direct solvers (LU, MUMPS[1] for example) will compute the
exact solution of the equation 1. The problem with direct solvers is that they
face a difficulty to solve huge linear systems because they require a lot of mem-
ory storage and computing power. This cost is important when An×n is sparse
and the number of unknowns very important (it can be counted in millions or
billions for some cases).



2

Because the size of linear systems tends to increase over the years and new
types of linear systems emerge (Partial Differential Equations for example), an
other kind of linear solver emerged, iterative methods. There is a broad number
of iterative methods, starting from the Conjugate Gradient[16] (CG), a classi-
cal solver for symmetric matrices, to the Generalized Minimum Residual (GM-
RES)[15]. GMRES is a common choice for solving large sparse linear systems
where An×n is a non-symmetric matrix. It minimizes the residual norm over the
Krylov subspace :

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

(m−1)r0}, m = 1, 2, . . . (2)

at every step, r0 is the initial residual vector and x0 the initial guess (r0 ≡
b − Ax0). Because the amount of computation and storage increase with the
number of iterations, GMRES is restarted with the last approximate solution as
the new initial guess every m steps to limit this cost. This Restarted GMRES
is called GMRES(m)[15]. This process will repeat until a satisfying criteria is
met, ie. the residual norm is small enough. The restarted GMRES parameter
m is called the restart parameter or GMRES subspace size because the partial
solution will lie into the subspace spanned by GMRES (equation 2).

We focus our work on the auto-tuning of GMRES via the selection of the
restart parameter over the restart process of GMRES to reduce the time of
computation during the solving process, we studied the behavior of our GM-
RES auto-tuning for different matrices. Complex domain non-symmetric linear
systems have not been as heavily studied as the real case and have a lot of im-
plications in various fields. Our approach is mainly experimental.

An other implication of auto-tuning for linear solvers is to assist the solver
user to select the different parameters and handle automatically this selection if
necessary. Optimal parameters for a particular problem are hard to guess with-
out heavy knowledge of iteratives solvers and the problem to solve. Auto-tuning
is an assistant to help the user to obtain optimal parameters needed to solve a
given problem.

Auto-tuning is also very important when parallelism is taken into account.
This is generally the case when computation occur on a multi-core workstation,
a cluster or a computing grid. Computation involves the processor cores but
also the different memory levels from cache memory to Random Access Memory
(RAM). Auto-tuning helps to reduce the time of computation by studying the
execution environment with multiple phases [7].

This paper is organized as follows. In Section 2 we will present related works
to the adaptive restart parameter for GMRES(m). This will lead us to make
a proposal of an adaptive based algorithm whose goal is to reduce the time of
computation for various complex-valued non-hermitian non-symmetric matrices



3

in 3. We will then present in Section 4 experiments based on our adaptive in-
cluding a study of the efficiency of our method in a parallel environment. Thus
will we’ll conclude on the efficiency of our contribution.

2 Related Works

It has been accepted that larger was the restart parameter better was the con-
vergence of GMRES because of the information accumulated into the GMRES
residual polynomial [12], thus requiring less iterations for a resolution than a
small restart. A larger m also avoids stalling, as stated in [15, 18], and reduces
the burden of GMRES superlinear convergence [18]. However, a larger m also
means higher memory and computational costs because the Krylov base is in-
creasing with the number of iterations, higher storage because we have to store
more data, higher computational costs because the Arnoldi orthogonalization
process becomes more and more expensive as m increases. Later iterations will
require more time to compute than the first ones. This expense does not guar-
antee a faster convergence or any convergence at all. Besides, Embree higlighted
in [9] that a smaller restart parameter can result in fewer iterations for some
particular problems. One could understand that it is very difficult to choose a
proper restart parameter and it brings back the problem of finding a good bal-
ance to attain convergence with a reduced time of computation and/or iterations.

The restart parameter is generally choosed arbitrarily prior to the execution
of the solver and will remain fixed over the different restarts. Different works
focused on the dynamic change of the restart parameter depending on different
heuristics. Joubert [12] proposed a sophisticated heuristic weighting the com-
putational cost against the residual norm reduction which aims to find a good
balance between the time of computation and the convergence. Sosonkina and
al. presented an adaptive implementation of GMRES(m) to avoid stagnation by
detecting it with an heuristic that computes the relative number of iterations
before convergence, the algorithm is reacting by increasing m [17]. However, one
of the drawback of this adaptive implementation is that the restart parameter
m increases until it reachs the maximum boundary and will never decrease, even
if convergence conditions are getting better. Later restarts will carry a cost (for
memory and computations) that could be avoided. That is what tried to do
Habu and Nodera in a work leaning on Sosonkina’s implementation to decrease
the restart parameter to its initial value [10]. Similar work has been presented by
Kuroda, Katagiri and Kanada [13] where the authors increase m at each itera-
tion from a small value till it reachs a maximum value and then set it back to it’s
inital value as a cycle. The goal of this contribution is to increase convergence
and reduce time of computation but it is not based on any analysis of the conver-
gence by heuristics. An other adaptive method provided by Zhang and Nodera
[19] compares the harmonic Ritz values (computed by Arnoldi) and the Ritz
values (computed by GMRES, they are the approximate eigenvalues) to choose
m in order to avoid stagnation. An other approach proposed by Baker and al.



4

[4] computes an angle, called successive angle, between the residual norms to
decrease the restart parameter adaptively over the restarts to decrease the time
of computation. This idea has been pursued more deeply in an other work [3]
where the same authors also propose an adaptive heuristic to prevent the repeti-
tive (or alternating) convergence behavior of GMRES(m) restarts by computing
skip angles between two non-successive restarts for real-valued symmetric and
skew-symmetric problems.

3 Proposal

Our goal is to propose an adaptive version of GMRES to reduce the time of
computation needed to solve complex-valued non-hermitian non-symmetric lin-
ear systems. We were interested in the proposal of Joubert [12] that a decrease
of the restart parameter could be a benefit to reduce the time of computation.
It conducted us to follow the idea of Baker [3] that we found very seducing
for various reasons : a negligible overhead on computation, reducing the restart
parameter instead of globally increasing it, a powerful heuristic despite its sim-
plicity. We also found that it was in general difficult to predict the behavior of
GMRES by using different restarts and judge all the different approach for the
complex-valued case as all previous works were dealing with real-valued matrices.
We were also seduced by the fact that this approach was very flexible and could
be used in either real or complex domain. We defined an algorithm (algorithm
1) based on [3] that reduces GMRES restart parameter continuously to reduce
the general time of computation and increases it if needed like in the case where
convergence is really weak, near stagnation, the choice is done thanks to a sim-
ple heuristic. Hardware memory specifications helps us to define the boundaries
between which will evolve the restart parameter.

3.1 Reducing the Restart Parameter

To reduce the restart parameter we follow an angle based on two successive
residual norms (equation 3), this can be seen as a convergence ratio between two
successive restarts.

cr = cos 6 (ri, ri−1) =
‖ri‖2
‖ri−1‖2

(3)

We also define two bounds max cr and min cr for this angle. If cr falls over
max cr we consider that the current restart parameter m is satisfying and we
will continue to use it for the next restart. If cr is under max cr and over min cr
then the next restart will use the current m decreased by a value d. If at any time
by decreasing m by d we reach a minimum value mmin then m will be settled
back to mmax which is also the start value for m. If cr brake this vertuous cycle
by being under min cr then we will react by a sudden increase of the restart



5

Algorithm 1 adaptive version of GMRES by adaptive reduce of the restart
parameter
1: mmemory level ← 1
2: mcount ← 5
3: mcpt ← 1
4: mmemory max level ← maximum number of memory levels
5: mmemory[]← m limits depending on memory size
6: mmemory[mmemory max level]← 1000
7: cr ← 1
8: d← 3
9: while not converged do

10: if mcpt > mcount then
11: m← mmax,mcpt = 1,mmemory level = 1
12: if mmemory level < mmemory max level − 1 then
13: mmemory level ← mmemory level + 1
14: else
15: mmemory level ← 1
16: end if
17: else if cr > max cr then
18: m← mmax,mcpt ← 1,mmemorylevel ← 1
19: else if cr < max cr and cr > min cr then
20: if m− d ≥ mmin and mcpt = 0 then
21: m← m− d
22: else
23: m← mmax

24: end if
25: mcpt ← 0,mmemory level ← 1
26: else if cr ≤ min cr then
27: if mcpt < mcount then
28: if m× 2 ≤ mmemory[mmemory level] then
29: m← m× 2,mcpt ← mcpt + 1
30: else
31: m← mmemory[mmemory level],mcpt ← mcpt + 1
32: end if
33: else if mmemory level = mmemory max level then
34: m← mmemory[mmemory level],mcpt ← mcount + 1
35: end if
36: if mmemory level > mmemory max level − 1 then
37: mmemory level ← 1
38: end if
39: end if
40: GMRES(m)
41: cr ← ‖ri‖2/‖ri−1‖2
42: end while



6

parameter.

3.2 Sudden Increase of Restart Parameter

Prior to the execution of the solver we define the restart parameter increasing
levels with respect to the execution hardware platform. Those levels are defined
by computing the maximum restart value depending on the different memory
levels (cache, RAM) of the host platform.

Our idea is to increase the restart parameter when its decrease (presented
previously) is not sufficient to improve the gain in convergence (ie. the time of
computation) and possibly overcomes the stagnation process. To sum up, if cr is
under min cr. This follows the statements that were made in the contributions we
presented earlier [13, 17, 10]. The difference appears in the fact that we take into
account that the time of processing data will depend on its location between the
different memory levels. Access times are higher if data is in RAM memory than
if it is in cache memory. We compute an m restart parameter for each memory
level, those computed m (or mmemory) will define access memory bounds that
we will have to respect if we want to guarantee a certain optimality in terms of
time of computation. Granularity of memory is taken into account if multiple
cores share the same processor die. Typically, the L1 cache is specific to a core,
the L2 and/or L3 are usually shared between the cores.

We compute each mmemory by the above formula :

(nnz + 3n+m(m+ 1) +n(m+ 1))×SizeOfScalar ≥MemoryBytesLevel (4)

Which brings us back to solve the following second-order equation. Each variable
in the left part is a constant :

MemoryBytesLevel

SizeOfScalar
− nnz − 4n = m2 + m(n + 1) (5)

All computed mmemory will be differently processed. The last one, the one
that is computed by taking into account the RAM memory size, will be used to
as a control value. It means that we use this value to evaluate if m (or mmax),
given by the user at solver’s launch, is under the mmemory RAM. This is needed
to verify the consistency of user’s given parameter.

The other mmemory values, the ones that are computed from the different
cache memory levels, will be placed into an array mmemory[] to which we will
add a last value. The reason we added this arbitrarly choosed value is because,
as we saw in Section 1, large values of restart parameter can sometimes avoid
stalling and reduces the superlinear convergence of GMRES [15, 18]. This last
value is used if no other classical increase or decrease of the restart parameter
helped the solver to converge. In practice we choosed a value of 1000, which is



7

generally under the mmemory defined by the RAM memory.

The sudden increase of the restart parameter process will also use three
variables : mcpt a counter of successive increases, mcount the maximum number
of successive increases, and m memory level that corresponds to the current
mmemory used level. To increase the current m, the solver will multiply it by 2
and increment mcpt until this counter reachs mcount and no improvement was
met (if cr is still under min cr for mcount times). If no improvement has been
encountered, then the current augmented m will be replaced by the current
mmemory designated by m memory level (m← mmemory[m memory level]). If
no improvement is met, then the sudden increase process will continue until
convergence gets better or the last m memory level value is reached (the one
we added arbitrarly). If after using this last value we still had no convergence
improvement, then the method is declared as stalling.

4 Numerical Experiments

We will here provide results of our adaptive GMRES(mmin, mmax) for various
problems. We experimented our method in parallel on complex non-symmetric
non-hermitian matrices available from the University of Florida Sparse Matrix
Collection [6] and different matrices that we generated from discretization of
the Helmholtz equation by finite differences simulating a wave propagation in
frequency in a heterogeneous medium.

We studied the adaptive restart parameter on complex-valued non-hermitian
non-symmetric matrices to reduce the time of computation needed to attain con-
vergence. Each experiment was run till the solver reached a precision of 10e−6

for the true residual with a maximum number of 10000 iterations (which is the
default for PETSc [5]) and was run 10 times. For each, we recorded the number
of iterations needed the attain the desired precision and we also recorded the
average time required to solve the linear system.

The experiments where conducted using PETSc 3.0.0-p10 [5] modified for
our needs. The two first experiment set were done using an HP wx94000 work-
station with two AMD Opteron 2200 dual-cores and 16GB of RAM memory.
Those experiments were using four processes, we solved each linear system in
parallel. The third set of experiments was conducted on a SGI Altix ICE8200EX
cluster from Total Exploitation Production, the number of processors cores used
is varying from 1 to 512 for each solving process.

4.1 Matrices

We accomplished our study on different complex-valued non-hermitian non-
symmetric matrices, previous contributions were made using only real-valued



8

matrices. We also used different Helmholtz matrices, a type of linear system
that is described as difficult to solve in the litterature. The complex-valued case
has not been as heavily studied as the real-valued case because of its complexity
and the fact that properties cannot always be applied equally on both domains.
GMRES behavior is also not as much understood for the complex-valued non-
symmetric non-hermitian case than compared to the real one. Right-Hand side
vectors used for the following matrices are equal to the 2-norm of the vector.

Matrix n nnz kind

aft02 8,184 127,762 acoustics problem

conf5 0-4x4-26 3,072 119,808 theorical/quantum chemistry problem

kim1 38,415 933,195 2D/3D problem

mhd1280a 1,280 47906 electromagnetics problem

young4c 841 4,089 acoustics problem

Table 1. UF complex-valued non-hermitian non-symmetric matrices

We also generated matrices by the discrete formulation of the Helmholtz
Equation in the frequency domain with boundaries conditions on a heteroge-
neous medium which is proposed by Pinel [14]. The boundaries conditions are
modelized by the Perfectly Matched Layer Technique (PML), it consists in the
absorption of the wave reflections on the boundaries to simulate an infinite
medium. The discretization of the Helmholtz formulation is done via a second-
order finite differences scheme. The resulting matrix is sparse five-banded (or
seven-banded in 3-D), complex-valued, non-hermitian and non-symmetric gen-
erated by a classical 5 points Cartesian stencil (figure 1) (7 points for the 3-D
case).

Our Helmholtz matrices are generated from the discretization of two hetero-
geneous velocity models commonly used in the geophysical domain for algorith-
mic evaluations : IFP Marmousi velocity model [11] and SEG/EAGE Overthrust
3-D model [2]. We dicretized the models with different frequencies producing ma-
trices with different caracteristics. We will restrict our study on the Helmholtz
matrices to hel 369 for the first two sets of experiments. We also generated a
right-hand side equal to the norm of each UF matrix. For the Helmoltz ma-
trices we generated a b[n] = 0, n = 1, 2, . . . ,m except at the position that is
corresponding to the location of the source generating the wave b[x] = 1.

4.2 Adaptive Variation of GMRES(m) Restart

In a first set of experiments we experimentally studied the behavior of GMRES(m)
with an adaptive restart parameter depending on the successive angle defined
in Section 3. Our goal was to study the feasibility of this approach for complex-
valued non-symmetric matrices. The results proved that we could reach some



9

Fig. 1. Five banded Helmholtz matrix

Matrix n nnz Model Discretization Frequency

hel 161 984,998 6,842,820 Overthrust 1Hz

hel 737 177,617 886,609 Marmousi 10Hz

hel 369 44,649 222,505 Marmousi 5Hz

Table 2. Helmholtz matrices characteristics

improvements with our method over the use of a fixed restart like for the clas-
sical GMRES(m). The adaptive parameter values used where d = 3, min cr =
cos(80), max cr = cos(8). Our study of the sequential angle shows that those
values would be the most appropriate. For each matrix we defined the mmin

value to 3, we have varied this parameter but noticed that there was no real
change in the behavior of the adaptive restart. Concerning mmax we choosed
values from 3 to 1000 which defined good limits to understand the behavior of
our study. In figure 2 and 3, doted lines are the best and worst convergences for
classical GMRES.

As stated by Joubert [12], small restart parameter can make the solver con-
verge where high values cannot. However, it is also taken for granted that high
restart parameter values can make problems converge when this would not be
the case with small values[15]. As Baker [3] we observed that varying the restart
parameter was not the panacea for problems that stagnate, this was the case
for conf5 0-4x4-26. Nevertheless, we noticed interesting behavior for the stag-
nating mhd1280a (figure 2) as for the two diverging linear problems aft02 and
kim1 even if the adaptive restart would not make the problem converge it had
a certain influence over the classical GMRES(m) on the convergence.



10

Fig. 2. mhd1280 convergence for various values of mmax

On the other hand, for our two converging matrices (fig:young4c and hel 369 )
we had two different behavior. For young4c we did not noticed any improvment
at first sight over GMRES(m). Varying the restart parameter adaptively can
become to costly in time of computation if the problem is already converging
to well. However, we observed that for the hel 369 problem the improvement of
the adaptive restart was up to 20% in terms of time of computation. One could
notice on figure 3 that the adaptive restart version of GMRES is faster for a
range of mmax (or m) from 8 to 38 than the best time of computation for the
classical GMRES(m) with m = 18.

Our analysis of the results will follow the one made by Baker in [3] on
the real-valued symmetric and skew-symmetric linear problems. The adaptive
GMRES(mmin,mmax) cannot overcome stagnation or divergence of problems
even by the sudden increase. However we were not totally surprised for this last
point, for high values of m the classical GMRES(m) would also not converge.

We pursued our study by focusing our attention on the two converging matri-
ces behavior (young4c and Helmholtz ) by making an evaluation of our methods
for a wide range of mmax (m for the classical GMRES) in a second set of ex-
periments. This highlighted that high restart parameters values would not mean
faster convergence. Moreover, we were allowed to observe a gain of 20% in time
in general for our method over the classical GMRES(m) for the hel 369 matrix.
It also appears that there is an optimal restart parameter value that minimize
more the time to solution than other ones, this highlight the bearing of choosing
a proper restart parameter for GMRES.



11

Fig. 3. The Helmholtz problem convergence

Fig. 4. Helmholtz wide range convergence in seconds for many restart parameter values.

One will notice that the restart parameter value as an influence on the num-
ber of iterations. This influence becomes obscured as the restart value grows.
About the number of iterations two GMRES variants, there no clear discrep-
ancy of behavior for the number of iterations on the exception of the hel 369
matrix on small restart values (figure 5). Results from the young4c case, where
corroborating the ones made on hel 369.

Parallelism is a critical key for today solvers, it will become even more critical
when fully entering the petaflopic era and the exaflopic one. It is already not rare



12

Fig. 5. Helmholtz wide range convergence in number of iterations for many restart
parameter values.

to use iterative methods on clusters, as parallelism grows it is important to under-
stand the behavior of algorithms in order to propose the best possible optimiza-
tion. The same code will not have the same behavior on a sequential or execution
platforms. Parallelism has many levels (GPU, cores, processors, nodes, racks,
clusters, grids,...), for each of them we need to define the limits of it’s processing
possibilites, parallel or not. This is exactly the same for solvers where boundaries
needs to be drawn for each sofware element. Following this statement we studied
the scalability of our adaptive method to see its effectiveness in parallel environ-
ment. We were already executing our in parallel but we extended our study to
a range from 1 to 512 nodes. We runned our solver on the Helmholtz matrices
described in Table 4.1 and young4c. For each experiment we proceeded as previ-
ously. We recorded the average time of computation for ten runs for each matrix,
for three solvers : a classical GMRES(m), our adaptive GMRES(mmin,mmax)
with sudden increase and the adaptive GMRES(mmin,mmax) without sudden
increase corresponding to the algorithm defined in [3].

Our experiments showed that gain in time was in general higher when allow-
ing sudden increase of the restart parameter (figure 6) compared to the simple
decrease of this parameter (figure 7). Comparing the two figures highlight the
fact that the improvement is not equal for all matrices and might face a certain
overhead for particular ones as it is the case for young4c. Gain in time of compu-
tation for convergence does not obey to a linear law. As we increase the number
of nodes we can see that the gain induced by our method is decreasing but not
equally for all matrices. It is hard to make a general conclusion based on our two
figures but it stands out that varying the restart parameter for GMRES has a
certain influence on convergence and that the sudden increase is in general more
efficient compared to a method that just decrease the restart parameter. This



13

Fig. 6. Decrease in time for adaptive GMRES with sudden increase of the restart
parameter in percents from 1 to 512 nodes.

Fig. 7. Decrease in time for adaptive GMRES without sudden increase of the restart
parameter in percents ffrom 1 to 512 nodes.

also highlight the fact that there exists a scalability boundary that need to be
respected in order to keep a certain gain. However, if there is no clear gain when
using a lot of nodes we can see that the influence of our method on convergence
is noticeable even if it produces an overhead.

Varying the restart parameter by an adaptive method is an easy way to im-
prove GMRES convergence. Computation overhead is light over classical GM-
RES and it allows to improve convergence in time from a few percents to 30%.
Nevertheless, when considering stagnating problems, varying the restart param-



14

eter adaptively, even for high values, does not allow the problem to converge.
Our experiments showed that there is is a clear gain to both increase and de-
crease the restart parameter during the solving process. Our work focused on
complex-valued non-hermitian non-symmetric matrices showed that simple tech-
niques coming from the real domain can be fully applied to the complex. We also
presented experiments on the scalability of adaptive restart parameter method
that demonstrated that the gain over classical GMRES for our method is valu-
able when using multiple nodes.

Another thing that we noticed through our experiments is that in order to
reduces time of computation, varying the restart parameter cannot be done by
one way ie. by decreasing or increasing. The use of both methods has its advan-
tages and also its drawbacks. By only decreasing the restart parameter GMRES
restart cycles will be shorter but the resulting residual vector will contain less
information than with higher values. In some cases this is not crucial ie. when
convergence is good. In the cases where convergence is weak then one may need
to increase the restart parameter value. Even if restart cycles take more time to
produce a new GMRES iterate, the gain in information is valuable for conver-
gence optimization. We studied both views on the restart parameter made by
Joubert [12] and Saad [15] and our experiments let us think that both are right
but we will add some overtone : it will just depend on the case. This depends
on the matrix and the convergence during the GMRES restart process. Restart
parameter value increase and decrease approachs are distinctly valuable but a
mix of both can be powerfull as illustrated in our experiments. It is about a
tradeoff between iterate information and time of computation.

5 Conclusion

Our study shows that simple adaptive improvements are valuable for complex-
valued non-hermitian non-symmetric cases. Our experiments showed a real im-
provement for Helmholtz matrices, but this depends on the matrix. There is a
real need to define new heuristics and act on proper parameters. Futhermore,
adaptive parameters can be introduced at every stage of the linear system solver,
including the preconditioner. Adaptive parameter do not only involve the lin-
ear system numeric but also on its parallelism when existing to select proper
resources for a matching case. It is rather difficult to determine a restart param-
eter prior to the solve process as it is very dependant on the problem and the
hardware that is used but there’s a real interest of an adaptive change parame-
ter that will provide auto-tuning and help the user to select optimal parameters.
Hybridation of solvers might be a key point to explore, like in the MERAM
method [8]. For this last point the parallelism has to be taken into account and
its limits sketched as it is a key point and will become more important in the
next future with the democratization of petaflopic solutions and emergence of
exaflopic ones.



15

References

1. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

2. F. Aminzadeh, J. Brac, and T. Kunz. 3-D Salt and Overthrust Models. SEG/EAGE
3-D Modeling Series, 1, 1997.

3. Alison Baker, Elizabeth R Jessup, and TV Kolev. A Simple Strategy for Varying
the Restart Parameter in GMRES(m). Journal of Computational and Applied
Mathematics, 230(2):751–761, 2009.

4. Alison Baker, Elizabeth R Jessup, and T Manteuffel. A Technique for Accelerating
the Convergence of Restarted GMRES. SIAM Journal on Matrix Analysis and
Applications, 26:962, 2005.

5. Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web
page, 2009. http://www.mcs.anl.gov/petsc.

6. Timothy A. Davis. University of Florida Sparse Matrix Collection. NA Diges, 92,
1994.

7. James Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Richard Wilson
Vuduc, R .Clint Whaley, and Katherine Yelick. Self-adapting linear algebra algo-
rithms and software. Proceedings of the IEEE, 93(2):293–312, 2005.

8. Nahid Emad, Serge Petiton, and Guy Edjlali. Multiple explicitly restarted arnoldi
method for solving large eigenproblems. SIAM J. Sci. Comput., 27(1):253–277,
2005.

9. Mark Embree. The Tortoise and the Hare Restart Gmres. Dec 2001.
10. Mitsuru Habu and Takashi Nodera. GMRES (m) Algorithm with Changing the

Restart Cycle Adaptively. Proceedings of Algorithmy 2000 Conference on Scientific
Computing, pages 254–263, 2000.

11. IFP. Marmousi Model. Synthetic 2D Acoustic Model, 1988.
12. Wayne Joubert. On the Convergence Behavior of the Restarted Gmres Algorithm

for Solving Nonsymmetric Linear Systems. Oct 1997.
13. Hisayasu Kuroda, Takahiro Katagiri, and Yasumasa Kanada. Performance of auto-

matically tuned parallel gmres(m) method on distributed memory machines. Apr
2000.

14. Xavier Pinel. A Perturbed Two-Level Preconditioner for the Solution of the Three-
Dimensional Heterogeneous Helmholtz Problems with Applications to Geophysics.
PhD thesis, CERFACS, 2010.

15. Yousef Saad and Martin H Schultz. GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856–869, Jan 1986.

16. Jonathan R Shewchuk. An Introduction to the Conjugate Gradient Method With-
out the Agonizing Pain. Technical report, 1994.

17. Maria Sosonkina, Layne T. Watson, and Rakesh K. Kapania. A New Adaptive
Gmres Algorithm for Achieving High Accuracy. Mar 1996.

18. Henk A van der Vorst and C Vuik. Superlinear Convergence Behaviour of GMRES.
Journal of Computational and Applied Mathematics, 48(3):327–341, 1993.

19. Linjie Zhang and Takashi Nodera. A New Adaptive GMRES(m) Algorithm with
Correction. The 12th Biennial Computational Techniques and Applications Con-
ference, 2004.


