
Automatic Generation of Tiled and Parallel Linear
Algebra Routines

A partitioning framework for the BTO Compiler

Geoffrey Belter1, Jeremy G. Siek1, Ian Karlin2, and E. R. Jessup2

1 Department of Electrical, Computer, and Energy Engineering, University of Colorado
2 Department of Computer Science, University of Colorado

Abstract. Exploiting parallelism in modern hardware is necessary to achieve
high performance in linear algebra routines. Unfortunately, modern architectures
are complex so many optimization choices must be considered to find the com-
bination that delivers the best performance. Exploring optimizations by hand is
costly and time consuming. Auto-tuning systems offer a method for quickly gen-
erating and evaluating optimization choices. In this paper we describe a data-
parallel extension to our auto-tuning system, Build to Order BLAS. We introduce
an abstraction for partitioning matrices and vectors and we introduce an algorithm
to partitioning linear algebra operations. We generate code for shared-memory
machine using Pthreads. Results from the prototype show that our auto-tuning ap-
proach is competitive with existing state-of-the-art parallel libraries. We achieve
speedups of up to 2.7 times faster than MKL and speedups up to 6 times faster
than our best-optimized serial code on an Intel Core2Quad.

1 Introduction

The trend in architecture design is an increase in the number of processing units and the
complexity of the memory system. Fortunately, linear algebra code, such as the Basic
Linear Algebra Subprograms (BLAS) [1], can be adapted to both of these changes by
taking advantage of well understood optimizations, specifically tiling for cache locality
and data parallelism. In each case, the linear algebra operation must be partitioned into
separate sub-operations. For example the operation y ← Ax can be partitioned such
that a tile of A and the vector x can be used to compute a tile of y. This partitioning
strategy improves temporal locality use by allowing the tile of y to remain in cache.
Alternatively, each tile of y can be computed in parallel. In this paper we present a
general purpose partitioner for linear algebra operations that enables the generation of
cache tiled and data parallel code.

Another trend is that changes in computer architecture are occurring with greater
frequency, reducing the time to adapt linear algebra codes to new architectures. The
maintenance of linear algebra codes is costly and time consuming, making methods
such as automatic code generation and auto-tuning more valuable. The Build to Order
compiler (BTO) is a tool we are developing to automatically generate high performance
linear algebra routines from a high level specification. BTO takes a mathematical de-
scription of a sequence of matrix and vector operations and explores optimization al-
ternatives. The BTO selects the best performing alternative for the target platform and

then generates C code. The focus of our tool is memory bound (Level 1 and Level 2)
operations with the primary optimization being loop fusion.

In this paper we present the new partitioning framework for the BTO compiler. The
BTO uses the partitioning framework to automatically generate data parallel and cache-
blocked code. Although the framework can generate partitions for cache tiling, this
paper focuses primarily on data parallelism. We present preliminary data parallel results
showing we can achieve speedups over BTO’s best serial code of up to 6 times faster
and over the Intel MKL library of up to 2.7 times faster on and Intel Core2Quad. This
paper begins by examining related work. Section 3 explains the background of the BTO
system and then describes new partitioning framework. Section 4 shows preliminary
results and, finally, we conclude with plans for future work.

2 Related Work

This section examines research regarding the creation and maintenance of portable high
performance parallel code for shared memory multi-core systems. In particular, we fo-
cus on research on data partitioning for the purposes of exploiting parallelism.

Tools Aiding in Manual Partitioning Both the Matrix Template Library [10] [6] and Hi-
erarchically tiled arrays [3] offer features that let programmers nest array abstractions.
These nestings can be used to create partitions in matrices and vectors. The main draw-
back with these tools is the lack of automation; if a programmer wants to try several
different ways to partition an operation to find the best, he must do so manually.

Tools that Partially Automate Partitioning The FLAME tool takes programs in a high-
level syntax and automatically generates parallel code [7]. FLAME identifies indepen-
dent iterations of loops which can be performed in parallel. Currently FLAME does not
identify task level parallelism in a set of operations. However, the programmer using
FLAME is responsible for generating each algorithm they wish to evaluate.

The Falcon tool compiles MATLAB into Fortran code [5] and uses domain specific
knowledge to extract parallelism. For example, using standard BLAS routines, gemm
can be performed in parallel as multiple gemv operations. This approach is guided by the
programmer, who must select the portion of an input program to optimize and select the
optimizations to perform. If the programmer wishes to evaluate many implementations,
this process must be repeated by hand each time.

Fully Automated Partitioning Tools ATLAS is an auto-tuning tool that generates high
performance, parallel linear algebra routines [11]. ATLAS dynamically selects one-,
two-, or three-dimensional partitions based on the input matrix sizes. The results are
competitive with hand-tuned implementations on a range of systems. However, ATLAS
uses a single matrix repacking strategy which can limit performance in the presence of
CPUs with short vectors units.

PLUTO is a source-to-source translator that uses the polyhedral model to analyze
and restructure loops, including partitioning to generate parallel code [4]. The poly-
hedral model has proven successful, however one drawback is that it does not handle
sparse matrices.

SPIRAL is a code generation system for the digital signal processing (DSP) domain
[9]. SPIRAL uses a custom-built, high-level language specific to DSP. The system gen-
erates OpenMP code for shared memory systems and MPI for distributed systems.

3 Partitioning in the BTO Framework

Section 3.1 provides a brief review of the BTO compiler followed in Section 3.2 by a
description of the BTO type system and how that enables data partitioning. The main
contribution of the paper follows in sections 3.3 through 3.4. Section 3.3 describes
the rules that govern partitioning data and operations in BTO. To ensure the genera-
tion of correct programs, BTO propagates partitioning decisions through the rest of the
program, which is described in Section 3.4. Finally, in Section 3.6 we present a brief
discussion of how the BTO internal representation is converted into C code.

3.1 The BTO Framework

BTO is a linear algebra optimization tool that automatically tunes a sequence of opera-
tions for a target platform. BTO takes as input a mathematical description of matrix and
vector operations in a form similar to a subset of MATLAB. The programmer specifies
the input and output variables to be either scalars, vectors, or matrices. An example
input specification for a set of matrix-vector operations is shown in Figure 1 on the left.

A program is represented in BTO as a dataflow graph. In the dataflow graph, a node
represents an input, output, or an operation. Edges represent the flow of data. Figure
1 shows an example program, consisting of two matrix vector products, and the corre-
sponding dataflow graph. From this high-level description, the BTO framework decides
how to implement the linear algebra operations by refining the data-flow graph into a
more specific graph where matrix and vector operations are decomposed into abstract
iterations over scalar operations. The abstract iterations are then mapped to sequential
loops, threads, cache tiles, and vector units depending on the computer architecture.
The refinement of the dataflow graph is driven by the BTO type system (discussed in
detail in Section 3.2).

After all the program is refined into abstract iterations over scalars, the BTO frame-
work enters an optimization phase. Currently the optimization phase enumerates com-
binations of loop fusion. The number of combinations is limited by a single heuristic:
BTO considers a fusion profitable when two loops access a common piece of data. This
optimization phase produces typically between one and 1000 versions of the program.
The versions are fed through an analytic model based primarily on memory structure
and bandwidth. The model is designed to quickly order the versions, identifying large
differences in performance. The set of versions identified as best performing by the
model are then empirically tested. The empirical testing identifies the overall best per-
forming implementation. This portion of the tool is not discussed further here; see [2]
for more details.

MATVEC2
i n :

x : v e c t o r , A : m a t r i x
z : v e c t o r

o u t :
y : v e c t o r , w: v e c t o r

{
y = A∗x
w = A∗z

}
w

*

z

y

*

A x

Fig. 1. Example BTO input of two matrix-vector operations on the left and corresponding
dataflow graph on the right.

3.2 Type System

BTO assigns a type to each node in the dataflow graph. The type assigned to each node
controls data layout in memory and is used to determine how to traverse the data to carry
out a linear algebra operation. BTO also uses types to express multi-dimensional data
partitions. The design of the type system is such that adding partitions does not require
any changes to the BTO compiler with respect to how high-level dataflow graphs are
refined into iterations over scalars. To understand how this is possible, it is necessary to
understand how data is represented in BTO. Initially, a programmer assigns a keyword
of matrix, vector, or scalar to all variables in the input program; BTO converts matrices
and vectors into a hierarchical set of containers.

A container has an orientation associated with it, either row or column. The ori-
entation encodes the container’s layout in memory (row major vs column major) and
ensures correct linear algebra operations (a row vector multiplied by a column vector is
a different operation than a column vector multiplied by a row vector). Containers and
scalars make up the types for which the grammars are

orientations O ::= C | R
types τ ::= O<τ> | S (1)

where the container O<τ> represents a container with orientation O and containing
type τ elements. A scalar (S) type represents the native type of the operation, for exam-
ple a double or single precision value.

All data is represented using containers; so a column vector is represented as C<S>,
and a column major matrix is represented as R<C<S>>. In the case of the matrix, the
C container holds scalar values, telling BTO that elements in a given column of the
matrix are stored contiguously.

Containers represent all data, including inputs, outputs, results and any temporary
data structures. We have discovered that a set of rules describing container operations
can express linear algebra. This knowledge is encoded in a linear algebra knowledge
base, a portion of which is shown in Table 1. These rules describe the introduction
of loops based on the types of the containers involved in an operation. Consider the

Algo Op and Operands Result Type
add O<τl>+ O<τr> O<τl + τr>
s-add S + S S
trans O<τ>T OT<τT>
s-mult S × S S
rr-mult R<τl>× R<τr> R<R<τl>× τr>
cc-mult C<τl>× C<τr> C<τl × C<τr>>
dot R<τl>× C<τr>

P
(τl × τr)

outer1 C<τl>× R<τr> C<τl × R<τr>>
outer2 C<τl>× R<τr> R<C<τl>× τr>
scale S × O<τ> O<S × τ>

Table 1. Sample of the linear algebra knowledge base used by BTO

first rule in the table; the algorithm expressed is an add of containers. The Op and
Operands column is used to match the operation and operand types from the program
representation with a rule from this table. We can explain the notation used in the Result
Type column by considering this operation in terms of vector-vector addition. A vector-
vector addition is the sum of corresponding operand elements. We see from the Result
Type column that the result of container addition needs to be a container whose elements
are the sum of the two operand containers. The summation of each element tells BTO
that a loop is required.

The combination of utilizing containers to represent data and expressing operations
as container operations enables reasoning about iteration space with any number of
nestings within a container. This feature is exploited to represent partitions using the
existing types.

3.3 Rules Controlling Data and Operation Partitioning

Using containers to represent data enables partitioning of data without significant changes
to the remaining BTO framework. Additionally, the nature of containers provides an ab-
stract method for introducing data partitions. However, more than the ability to partition
data is required to safely partition a program. Program partitioning requires the ability
to partition operations.

Data To explain partitioning, we introduce a new notation for a type list given as,

[On, . . . , O1] given the type On< . . .<O1 < S>>, (2)

where the list describes the ordered set of containers in a given type. Our notation
for appending type lists is a comma and is overloaded to handle appending a single
container or scalar type to a type list. In these examples

R, [C] gives [R,C]
[R], [C] gives [R,C] (3)

we demonstrate the creation of column major matrices.

Using this notation we can describe the single rule required to determine legal data
partitioning. Given some type, if the type list l contains a container with orientation O,
it is legal to append a container with the same orientation to the type list, written as
O, l. Consider a row vector [R], the only legal method for partitioning the vector is to
create a row of rows [R,R]. Figure 2 helps to visualize this partitioning, showing on
the right a partitioned row vector. We can see from Figure 2 that we have introduced an
additional row container to represent the partition.

R<S>
[R]

R<R<S>>
[R,R]

Fig. 2. A row vector on the top and a partitioned row vector on the bottom.

Additional containers can be added to any type; the number and location in the type
list of added containers will specify the number and dimensionality of the partition.

Operations BTO represents linear algebra operations as series of binary and unary
container operations. This level of the program is where partitioning decisions are made.
Consider a simple case of a binary vector operation, y ← x+ z. If BTO decides to only
partition x, we can think of this as needing two loops to access x, but only a single loop
to access y and z. This presents a problem when reasoning about the iteration space of
the operation. BTO does not allow this situation to occur by making data partitioning
decisions based on operations and updating all containers involved in the operation.

Deciding when to partition data based on operations ensures that all types of an
operation are updated correctly which ensures iteration spaces will remain consistent.
Similar to the set of rules that controls the reasoning of operation iteration spaces (Ta-
ble 1), there is a set of rules that describes when a linear algebra operation can be
partitioned. These rules describe how to express a partition by modifying the types in-
volved in the operation. Table 2 shows the partition rules. The first row shows how to
partition addition and subtraction operations. First, the operation must match the de-
scription given in the Operation column; for addition this states that both operand and
return types all must match. The remaining three columns describe how each type can
be updated. For the add/sub algorithm there is only one unique type τ ; and if that
can be written as the set of appended lists and container described in the List column,
then the operation can be partitioned. The Partition column describes the modification
to the given type. In this example we can add a new container with orientation O to the
outermost level of the type.

Partitioning an operation in isolation from the remaining program provides the po-
tential for incorrect loop generation and can limit optimization potential. We handle

Algo Operation Type List Partition
add/sub τ = τ + τ τ u, O, l O, u, O, l

mult-bc τc = τa × τb
τb ub, R, lb R, ub, R, lb
τc uc, R, lc R, uc, R, lc

mult-ac τc = τa × τb
τa ua, C, la C, ua, C, la
τc uc, C, lc C, uc, C, lc

mult-ab* τc = τa × τb
τa ua, R, la R, ua, R, la
τb ub, C, lb C, ub, C, lb

scale
τ = S × τ

τ u, O, l O, u, O, l
τ = τ × S

trans τt = τn
τt ut, Ot, lt Ot, ut, Ot, lt
τn un, On, ln On, un, On, ln

where Ot 6= On

Table 2. Linear algebra partitioning rules where algorithms marked with ’*’ will require a reduc-
tion operation.

this by requiring the propagation of a partition decision made using a single operation
throughout the rest of the program.

3.4 Propagation of Partition Decisions Throughout a Program

As mentioned in Section 3.3, whenever a partition decision is made at the operation
level, that decision must be propagated throughout the rest of the program. The par-
tition decision is propagated to all connected operations in the dataflow graph. The
partitioning rules that control legal partitioning of operations (Table 2) are used to de-
termine type updates for any containers involved in the operations that are connected to
the original partition decision.

Consider the following set of operations:

w ← Az
y ← Ax.

(4)

The dataflow graph for these operations are shown in figure 3, with a partition decision
made at the operation w ← Az as shown in the figure with lines through A and w. To
propagate this decision throughout the rest of the program, all operations connected to
this decision must be considered for update. In this example, the operation y ← Ax is
connected through the matrix A and so is updated with a partition of vector y.

Currently the BTO compiler requires an update to be performed in all cases. This is
not necessary when partitioning a program but is a design decision to ensure loop fusion
potential remains after introducing partition decisions. Consider again the operations
above and their dataflow graph in Figure 3.

In this example the two matrix-vector multiples can be fused to reduce the traffic
of matrix A. However, if we partition a single matrix-vector multiplication and not the
other, as shown in Figure 3 with lines through matrix A and vector w, we have lost the
ability to perform loop fusion on the set of operations. BTO can still perform loop fu-
sion if the partition decision is propagated through the rest of the program. This need to
propagate partitions affects programs that have many connected operations, most often

w

*

z

y

*

A x

Fig. 3. Example dataflow graph of the operation y ← Ax and w ← Az. A partition of the
operation w ← Az is represented with lines through A and w.

caused by common data elements. Programs that have sets of independent operations
will not be affected by this propagation requirement. In practice, this required propaga-
tion has not degraded performance.

After a program is completely updated with all partition decisions, the dataflow
graph moves on to the optimization phase. We next describe how different partitioning
versions fit into the existing optimization process.

3.5 Partitioning and the Optimization Search Space

The optimization phase of the BTO compiler is designed to generate many optimized
implementations of the input program. Similarly, we generate many partitioned imple-
mentations of the input program. The generation of partitioned versions occurs before
the existing optimization phase. Each partitioned version is then fed to the optimization
phase, which is unchanged from the description in Section 3.1.

The algorithm for generating partitioned versions is similar to that used in the opti-
mization. The process begins with the single version specified by the programmer. The
algorithm visits each node in the graph once only taking action at nodes that are op-
erations. When an operation node is found, the rules describing operation partitioning
are used to generate versions for each legal partitioning. In each version, the partition
information is propagated throughout the graph. This process repeats until all nodes in
the graph have been visited. At this point versions representing single dimension parti-
tioning have been generated. If more levels of partitioning are desired, the process can
be repeated on any or all versions.

This algorithm is designed to generate partitioned versions of the program. Decision
making about which decisions are good are intentionally left out of this process. This
will eventually be controlled by a set of rules that can easily be modified to ensure
portability and extensibility.

This algorithm has the potential to generate many duplicate versions. This is avoided
by observing that the dataflow graph remains unchanged throughout the partitioning
process, only type information is changed. We avoid duplication by creating representa-
tive strings from the type information in the graph. These strings provides a mechanism
for quickly identifying and eliminating duplicates.

At the end of the partitioning process, we have many versions of the program. Each
of these moves onto the existing optimization phase. The only difference being that now
BTO is starting with many versions as opposed to the one version without partitioning.
This has the potential to explode the optimization search space. For example if before
partitioning we were generating ten versions and BTO can find one way to partition that
problem, we can expect on the order of 20 versions. In practice with a single partitioning
pass we generate between three and 100 partitioned versions increasing our search space
significantly. On top of this, we have introduced partitions that require a size to be
selected, for example number of threads or cache tile size. So if we have 100 partitioned
versions and we need to try 1,2,3, and 4 threads, we have to consider 400 versions.

We are in the process of improving the mechanism that handles this search space.
We plan to improve our analytic model and to look at pruning heuristics reduce this
search space.

3.6 Mapping Iteration Space Representations to Code Generators

The BTO code generator only required small modifications to handle the partition in-
formation and to generate C code for cache tiles and utilize the Pthreads library for
data parallelism. In this section we describe how the internal program representation
expresses loop information and we describe how the code generator uses this represen-
tation to generate appropriate code.

Iteration Space Representation Section 3.1 shows how BTO represents a program
with a dataflow graph. Iteration spaces are represented in the dataflow graph as sub-
graphs, where each subgraph contains nodes for any get, store and arithmetic opera-
tions as well as other subgraphs that represent inner loops. Figure 4 shows the dataflow
graph of a matrix-vector multiplication where the iteration spaces are represented as
subgraphs which in this case are shown as sequential for loops. We can see that there is
a subgraph for each loop required to perform the operation. The outermost loop gets a
row from the matrix A and an element from the vector y. The inner most loop performs
a dot product with the row of A and the vector x, summing into the element of y.

As mentioned in Section 3.1 iteration spaces can map to sequential, parallel, or
cache tiling language features. With subgraphs representing iteration spaces, a parti-
tioned program will have a similar dataflow graph to the unpartitioned version, the main
difference being the addition of subgraphs for each partition that was introduced. The
code generator can convert any subgraph to either serial loops, parallel loops, or cache
tiles, while only being concerned with the depth of a subgraph. The partitioning phase
tells the code generator how many subgraphs have been introduced for parallelism and
how many for tiling. Any remaining subgraphs are assumed to be serial loops. The code
generator can then generate the correct C code based only on subgraph nesting depth.

C Code and Pthreads Currently only a Pthreads backend is implemented. The modu-
larity of the code generator and the representation of the program means other parallel
implementations can be generated by writing additional backends. This will allow for
generating code for distributed systems, GPGPUs, and vector units simply by adding

A

x

y*

A(i,j)

x(j)

A(i,:)

i j

y(i)+=

 for i from 0 to N:
 for j from 0 to N:
 y[i] += A[i][j] * x[j]

12

Fig. 4. Example dataflow graph of the operation y ← Ax with loops expressed as subgraphs.

other code generation modules. This design was selected to ensure extensibility and
portability, the decision to use Pthreads is not hard-coded into the BTO tool.

4 Results

In this section we present preliminary results for a representative set of routines. The
partitioning framework has been implemented and can automatically introduce parti-
tions for data parallelism. The code generator produces C code using Pthreads to imple-
ment the data parallel partitions. Currently the compiler generates most combinations
of loop fusion and partitioned operations. This brings the number of unique implemen-
tations that BTO must evaluate from many hundred to many thousand. Additionally,
the implementations that have a partition in them have at least one parameter that needs
searching, specifically number of threads. This grows the search space even larger to
many tens of thousands. The mechanism in place evaluating unique implementations
can not yet handle this many versions and can not automatically search those imple-
mentations with parameters. This limits the results presented in this section.

4.1 Number of Implementations Generated and Search Time

The time to identify the best implementation is a function of the number of versions
BTO creates. Here we show that even with a significant increase the number of versions
generated, we still have usable search times.

The number of unique implementations and the corresponding search time is shown
in Table 3. The number of unique implementations represents serial versions with com-
binations of loop fusions and unique methods for parallelization where each of those
implementations then has combinations of different loop fusions. The search time repre-
sents the time from beginning of compilation until the best performing implementation
is found. The empirical tests dominates this time.

As previously mentioned BTO cannot automatically search optimizations with pa-
rameters. Table 3 represents search times for a single number of threads equal to the
number of available cores only. Additionally this data represents the case when BTO

only introduces a single dimension partition to a given problem. Allowing anything
else for these two features would significantly increase the number of implementations
created and the search times.

For an auto-tuning tool to be useful it must produce a result in a reasonable amount
of time. BTO uses a hybrid analytic machine model and empirical testing to identify the
best performing implementation. Unfortunately the analytic model is not yet capable or
predicting performance for parallel implementations. This temporarily forces a search
to be completely empirical. Future improvements to the model will greatly reduce the
search times.

Kernel
Specification Unique Versions Search Time

Total (parallel) (seconds)
MADD C ← A + B 2 (1) 1.6
MMUL C ← AB 40 (39) 29.1

AATX y ← AAT x 6 (4) 2.5

BiCGK
q ← Ap

11 (8) 4.4
s← AT r

GEMVER
B ← A + u1v

T
1 + u2v

T
2

8456 (7808) 2825.4x← βBT y + z
w ← αBx

GESUMMV y ← αAx + βBx 64 (52) 95.5

DSCAL x← αx 2 (1) 1.5
VADD x← w + y + z 5 (3) 9.5

WAXPBY w ← αx + βy 13 (9) 19.9
Table 3. Number of unique implementations and search time.

4.2 Performance Results

The results in this section show extracting data parallelism from certain kernels can
provide significant speedups. We show the results produced by BTO for the serial and
parallel case as compared to existing state-of-the-art libraries.

The results presented in this section are from an Intel Core2Quad running at 2.44
GHz with 4 GB of memory. The Intel compiler version 10.1 was used with the following
flags used: -O3 -msse3. Comparison is against the Intel MKL library version 10.2.5
with four threads used. All data is gathered in 32 bit mode including use of the 32
bit MKL library. All parallel BTO implementations use four threads. Space limitations
prevent results from other systems being presented, however results are similar on an
Intel Core2Duo and a two socket, four core AMD Opteron.

The majority of operations examined here are memory bound operations and will
benefit most from improvements in memory traffic. BTO achieves this with loop fusion,
which is performed in both the serial and parallel results presented. For fused memory

bound operations, we cannot expect linear scaling. Fusion of memory bound opera-
tions decrease memory-to-processor data movement resulting in an operation bound
on cache-to-processor data movement. On the computer presented here, utilizing ad-
ditional cores increases the available bandwidth between cache and processors. This
pushes the bottleneck back to a memory-to-processor problem. Based on memory band-
width, calculations show that with operations typical of those presented here we expect
an upper bound on performance improvements of approximately 3x from four cores.
Routines with higher memory traffic to operation ratios have lower expectations.

Figure 5 shows the performance in MFlops on the y-axis (higher is better) and a
range of matrix orders on the x-axis for the AATX, GEMVER, and MMUL kernels.
The lines labeled BTO - serial represent the best performing serial implementation
produced. For AATX and GEMVER this represents a heavily loop fused implemen-
tation with reduced memory traffic as compared to the MKL approach. Operations such
as these tend to be performance restricted completely by the memory bandwidth and
reducing memory traffic generally provides the best opportunity for performance in-
creases. In AATX and GEMVER, the reduction in memory traffic enables the BTO
performance on a single core to outperform MKL when given four cores. In the case of
MMUL, there is not opportunity to reduce memory traffic through fusion, and MKL is
able to perform optimizations such as data repacking that provide a significant advan-
tage over BTO.

The lines labeled BTO - parallel represent the best performing parallel implemen-
tation. Again, for AATX and GEMVER these represent heavily loop fused implemen-
tations running in parallel. The performance difference between the BTO parallel case
and the BTO serial case we can attribute to data parallelism. In Figure 5 we see the
AATX kernel achieves slightly less than a 2x performance increase in the best case.
The GEMVER kernel sees approximately a best of a 65% speedup. MMUL improves
by as much as 6 times for a range of approximately 1000 to 2000. In this range, the data
parallelism improves cache utilization by providing additional cache space from other
cores and reducing the storage requirements of two of the matrices. For larger sizes this
effect stops occurring and we achieve approximately a 4x speedup.

Table 4 shows a summary of the performance as measured in MFlops. The first two
kernels are matrix-matrix operations, the next four kernels are matrix-vector operations
and the last three kernels are vector-vector operations. The matrix-matrix operations
improve performance from BTO serial to BTO parallel by 3% minimum for MADD
and a maximum of 6x for MMUL with a matrix order of 1000. For the matrix-vector
operations, the speedups from the serial version of BTO to the parallel version range
from a 10 percent slow down for GESUMMV with a matrix order of 1,000 to a 2.4 times
speedup with BiCGK for a matrix order of 8,000. With the exception of small orders
for BiCGK, GESUMMV, and all cases of MMUL, the BTO parallel version is able to
outperform the MKL implementations, in the best case showing a speedup of 2.7 times
faster. It is worth noting that approximately 66 percent of the overall speed up over
MKL is caused by optimizations to the serial case leaving the parallel implementation
responsible for approximately 33 percent of the improvements. BTO does not employ
optimizations that target Level 3 operations such as MMUL. Cache tiling will help our

1000 2000 3000 4000 5000 6000 7000 8000
Matrix Order

0

500

1000

1500

2000

2500

3000

P
e
rf

o
rm

a
n
ce

(M
Fl

o
p
s)

aatx

BTO - parallel
BTO - serial
MKL - parallel

1000 2000 3000 4000 5000 6000 7000 8000
Matrix Order

0

200

400

600

800

1000

1200

1400

1600

P
e
rf

o
rm

a
n
ce

(M
Fl

o
p
s)

gemver

BTO - parallel
BTO - serial
MKL - parallel

500 1000 1500 2000 2500 3000 3500 4000
Matrix Order

0

5000

10000

15000

20000

25000

30000

P
e
rf

o
rm

a
n
ce

(M
Fl

o
p
s)

mmul

BTO - parallel
BTO - serial
MKL - parallel

Fig. 5. Performance results for AATX, GEMVER, and MMUL kernel.

implementation of MMUL, however without employing data repacking and generating
our own vector code it is unlikely BTO will be competitive with MKL in these cases.

The last two kernels in Table 4 are vector-vector operations. With this type of oper-
ation we observed considerably less performance change when parallelism is extracted.
Comparing serial BTO to parallel BTO the performance changes range from a three per-
cent slow down for WAXPBY for a vector size of 1,000,000 to a nine percent increase
for DSCAL with a vector size of 1,000,000. These vector-vector operations are com-
pletely bound by memory bandwidth, something on this computer, parallelism can do
little for. When benchmarking our test system with STREAM [8] we observed about a
5% increase in usable bandwidth from memory to the processor when using all cores in-
stead of one which approximately matches the performance changes we observe. When
the parallel BTO results are compared to MKL there are performance increases ranging
up to 2.2 times faster for WAXPBY for a vector size of 10,000,000. These performance
changes are dominated by optimizations done in the serial case to reduce memory traffic
and unneeded temporary data structures.

Kernel Size BTO - serial BTO - parallel MKL - parallel

MADD 1,000 167 173 117
8,000 168 179 113

MMUL 1,000 1455 9004 24429
4,000 1290 5219 26869

AATX 1,000 1705 2550 2240
8,000 1277 2925 1280

BiCGK 1,000 1845 2090 2525
8,000 1293 3115 1304

GEMVER 1,000 1035 1224 415
8,000 1015 1470 540

GESUMMV 1,000 1360 1220 1495
8,000 1350 1640 1330

DSCAL 1,000,000 311 340 316
10,000,000 272 326 270

VADD 1,000,000 283 292 204
10,000,000 282 288 155

WAXPBY 1,000,000 710 690 388
10,000,000 710 733 328

Table 4. Summary of performance results. Performance measured in MFlops and Size represents matrix order for first six
and vector length for last three kernels.

5 Conclusions and Future Work

This paper has presented a framework for automatically introducing partitions to lin-
ear algebra operations to introduce data parallelism. The performance results from the
work show that this approach has a great deal of promise. However, there is more work
required to efficiently handle the many thousands of versions that must be evaluated to
find the best performing implementation.

As mentioned, the BTO uses a hybrid analytic and empirical search strategy. We
plan to extend our analytic model to determine when tiling for cache or extracting data

parallelism will be beneficial and to provide an appropriate tile size range that can be
empirically searched. Additionally, we plan to heuristically prune versions and param-
eter sizes based on hardware information. For example, when searching for the number
of threads that achieves the best performance, BTO can probe for the number of pro-
cessors limiting the range that must be evaluated. Similarly, we plan to probe for cache
sizes to limit tile size searches.

Acknowledgments

This research is funded by NSF grant 0846121, CAREER: Bridging the Gap Between
Prototyping and Production.

References

1. Netlib blas. http://www.netlib.org/blas/index.html
2. Belter, G., Jessup, E.R., Karlin, I., Siek, J.G.: Automating the generation of composed linear

algebra kernels. In: SC ’09: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. pp. 1–12. ACM, New York, NY, USA (2009)

3. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J., Padua,
D., von Praun, C.: Programming for parallelism and locality with hierarchically tiled arrays.
In: PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. pp. 48–57. ACM, New York, NY, USA (2006)

4. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic poly-
hedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113 (2008)

5. DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B.A., Padua, D.A.: Falcon: A MATLAB
interactive restructuring compiler. In: Proc. 8th International Workshop on Languages and
Compilers for Parallel Computing. pp. 269–288 (1995)

6. Gottschling, P., Wise, D.S., Adams, M.D.: Representation-transparent matrix algorithms
with scalable performance. In: ICS ’07: Proceedings of the 21st annual international con-
ference on Supercomputing. pp. 116–125. ACM, New York, NY, USA (2007)

7. Low, T.M., van de Geijn, R.A., Van Zee, F.G.: Extracting SMP parallelism for dense linear
algebra algorithms from high-level specifications. In: PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel programming. pp. 153–
163. ACM, New York, NY, USA (2005)

8. McCalpin, J.D.: Stream: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream/ (April 2010)

9. Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti,
F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R., Rizzolo, N.: Spiral: Code generation for
dsp transforms. Proceedings of the IEEE 93(2), 232–275 (Feb 2005)

10. Siek, J.G., Lumsdaine, A.: The matrix template library: A unifying framework for numerical
linear algebra. In: ECOOP ?98: Workshop on Object-Oriented Technology. pp. 466–467.
SpringerVerlag (1998)

11. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of software and
the ATLAS project. Parallel Computing (27), 2001

