
Auto-tuning within the R-Stream Compiler

Kaushik Datta, Nicolas Vasilache, and Richard Lethin
{datta, vasilache, lethin}@reservoir.com

Reservoir Labs, Inc., 632 Broadway, Suite 803, New York, NY 10012

Abstract. The R-Stream compiler is an automatically parallelizing com-
piler based upon the polyhedral model. This model is a linear algebraic
representation of programs; its power, however, lies in the fact that it
can perform advanced code restructuring based on precise data depen-
dence analysis. This paper introduces a non-traditional approach to auto-
tuning in the R-Stream compiler.

In 2009, Datta (the first author of this paper) published his thesis showing
the benefits of automatic tuning for stencil codes across a variety of cache-based
multicore architectures [2]. The thesis exhibited speedups of up to 5.4× over
straightforward implementations of the stencil code. While the results show great
promise for auto-tuning, we now ask the question: how much of this technology
is already captured in any of today’s production compilers? We find that the
R-Stream compiler [3] is often able to complement or broaden the capabilities
of his code generator by being able to:

– encapsulate many of the code generator’s stencil-specific transformations
– easily apply these transformations to other stencil kernels
– maintain program semantics after every optimization
– apply these optimizations without programmer specification
– also run on distributed memory and local store architectures

One of the largest hurdles facing the stencil auto-tuning system was the fact
that the generated stencil code variants were produced using a heterogeneous
software system of C files and Perl scripts. Moreover, each script was essentially
customized to a single stencil kernel. In most cases, several optimizations were
layered together into a single script. However, for optimizations requiring drastic
code changes (e.g. SIMDization), additional scripts would be developed for that
particular kernel. Clearly, programmer productivity was low; the introduction of
new optimizations, as well as changes to the stencil shape, size, or dimensionality
would usually require new Perl scripts.

The R-Stream compiler is able to handle this situation much more elegantly.
The compiler encapsulates many of the optimizations used in the stencil auto-
tuning environment, including parallelization, different levels of tiling, loop un-
rolling, and SIMDization. Moreover, in order to boost programmer productivity,
it accepts sequential C code as input. As a result, the programmer is able to
optimize a different stencil kernel by merely changing the serial C code, not by
creating a new script.

R-Stream is a production compiler, not a code generator, so it is also able
to preserve program semantics. Unfortunately, code generators provide no such
guarantees on correctness; the resultant code needs to be manually verified by the



programmer, which is often both time-consuming and fallible. R-Stream, on the
other hand, uses an intermediate representation (IR) that can be transformed
by merely finding the solution to a system of constraints generated from the
polyhedral model [3]. As a result, preserving the program semantics after each
transformation is much simpler.

However, perhaps the most impressive aspect of R-Stream is that it is able
to apply many powerful stencil-specific transformations without human inter-
vention. For instance, time skewing is a stencil optimization introduced by Won-
nacott [4] to preserve data locality when performing multiple Jacobi sweeps.
Remarkably, the algorithm falls naturally out of the polyhedral model, since the
model schedules statement executions based on their iteration spaces and depen-
dencies. Similarly, Gauss-Seidel stencil sweeps, which are harder to parallelize
than Jacobi sweeps, are easily parallelized through the polyhedral model.

More generally, R-Stream is able to handle most loop-based codes with reg-
ular accesses, not merely stencils. It can also compile for platforms beyond the
standard shared memory architectures; this includes heterogeneous local store
architectures like GPU [1] and STI Cell. For these systems, R-Stream is auto-
matically able to generate DMA calls and perform array placement.

In order to generate the highest-performing code, R-Stream currently uses
cost models that trade-off optimizations targeting specific architectural features.
These models allow us to automatically extract coarse-grained or fine-grained
parallelism, increase or decrease locality, and restructure loops to obtain contigu-
ous memory accesses. The key difference between R-Stream and other approaches
(including other polyhedral approaches) is that we optimize these metrics jointly,
in a single pass. As a result, we are able to trade-off the very complex and sub-
tle interactions between these desired properties. For instance, using loop fusion
to augment the amount of reuse in a program frequently reduces the available
parallelism. On the other hand, reducing the parallelism may be beneficial if we
are optimizing for a single core. The cost models allow R-Stream to know and
understand these high-level program properties.

However, the cost models may still need refinement when compiling on a new
platform. This is where auto-tuning comes in. We do not plan to use traditional
search-based auto-tuning, where many different, but equivalent, code variants are
executed so as to find the best-performing one; this “black-boxing” usually does
not shed light on the attained performance. Instead, we envision that by running
certain code variants, we can assign appropriate costs to features like contiguity,
parallelism, locality, and communication via machine learning techniques. Such
an approach would let us better understand the platform, not abstract it away.

References

1. A. Leung et al. A mapping path for multi-gpgpu accelerated computers from a
portable high level programming abstraction. In GPGPU-3, Pittsburgh, PA, 2010.

2. K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD
thesis, University of California, Berkeley, Berkeley, CA, USA, December 2009.

3. Reservoir Labs. R-Stream Parallelizing C Compiler Power User Guide, 2010.
4. D. Wonnacott. Using time skewing to eliminate idle time due to memory bandwidth

and network limitations. In IPDPS ’00, page 171, Cancun, Mexico, 2000.


