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Abstract. Recently, OpenCL, a new open programming standard for
GPGPU programming, has become available in addition to CUDA. OpenCL
can support various compute devices due to its higher abstraction pro-
gramming framework. Since there is a semantic gap between OpenCL
and compute devices, the OpenCL C compiler plays important roles
to exploit the potential of compute devices and therefore its capabil-
ity should be clarified. In this paper, the performance of CUDA and
OpenCL programs is quantitatively evaluated. First, several CUDA and
OpenCL programs of almost the same computations are developed, and
their performances are compared. Then, the main factors causing their
performance differences is investigated. The evaluation results suggest
that the performances of OpenCL programs are comparable with those
of CUDA ones if the kernel codes are appropriately optimized by hand or
by the compiler optimizations. This paper also discusses the differences
between NVIDIA and AMD OpenCL implementations by comparing the
performances of their GPUs for the same programs. The performance
comparison shows that the compiler options of the OpenCL C compiler
and the execution configuration parameters have to be optimized for
each GPU to obtain its best performance. Therefore, automatic param-
eter tuning is essential to enable a single OpenCL code to run efficiently
on various GPUs.

1 Introduction

Nowadays, GPUs (Graphics Processing Units) are used not only for graphics
applications, but also for non-graphics applications, so-called GPU computing
or GPGPU (General-Purpose computation on GPUs). Thanks to their high
floating-point operation rates and memory bandwidths, GPUs can accelerate
various science and engineering computations [1–6].

In addition to rapid improvement in GPU performance, the programming
flexibility of GPUs has improved dramatically. Particularly, CUDA (Compute



Unified Device Architecture) [7] released by NVIDIA in 2007 can significantly fa-
cilitate GPU programming, and thus has played a very important role to encour-
age broad use of GPU computing. AMD has also provided another programming
framework, ATI Stream, for its GPUs [8]. Those programming frameworks allow
a programmer to develop a GPU computing application without tricky graphics
programming techniques. However, each programming framework forces a pro-
grammer to write code in its own programming language, which extends the
standard C/C++ programming language with some special keywords. There-
fore, CUDA programs and ATI Stream programs can run only on NVIDIA’s
GPUs and AMD’s GPUs, respectively; they are not compatible.

OpenCL is a new open programming standard for various compute devices [9].
OpenCL is used to develop code not only for GPUs, but also for multi-core
CPUs, Cell Broadband Engines, and other compute devices; a programmer can
use these compute devices in a unified way. Thus, it can enable a programmer
to avoid writing a vendor-specific code, resulting in improved code portability.

However, although OpenCL allows a programmer to use various compute
devices, efficient coding and optimization methodologies for individual compute
devices are not established yet. While both CUDA and ATI Stream have inten-
sively been optimized to exploit the computing power of their own GPUs, there
is a semantic gap between OpenCL and compute devices because OpenCL is
vendor-independent and hence not specialized for any particular compute de-
vice. The sustained performance of a program developed with OpenCL might be
lower than that with CUDA. Thus, it is still unclear that OpenCL can achieve
the same performance as other programming frameworks that are designed for
particular compute devices.

In this paper, we quantitatively compare the sustained performances of OpenCL
programs with those of CUDA programs. To make a fair comparison, CUDA
codes are ported to OpenCL codes as faithfully as possible, mostly by replac-
ing CUDA’s keywords and functions with the corresponding OpenCL’s ones.
Based on the performance comparison, this paper analyzes and discusses the
main factors of causing the performance differences. In addition, this paper also
shows the difference in sustained performance between an NVIDIA GPU and an
AMD GPU. Since OpenCL can enable both GPUs to run the same code, a fair
comparison of their performances can be performed.

The rest of this paper is organized as follows. Section 2 briefly reviews
OpenCL and CUDA that are a vendor-independent programming environment
and a vendor-specific environment, respectively. Section 3 discusses several fac-
tors that cause the performance differences between OpenCL and CUDA pro-
grams and shows the evaluation results to clarify the sustained performance of
each programing environment. Section 4 shows that some parameters tuning is
required for each compute device to achieve its best performance through the
performance comparisons among three compute devices. This suggests that an
automatic performance tuning mechanism is required to improve the perfor-
mance portability of OpenCL programs. Finally, Section 5 gives conclusions of
this paper.
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Fig. 1. GPU architecture in CUDA.
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Fig. 2. GPU architecture in OpenCL.

2 Overview of OpenCL

2.1 Similarities and Differences between CUDA and OpenCL

CUDA is currently the de facto standard programming framework for GPU com-
puting. CUDA enables a programmer to access GPUs without tricky graphics
programming techniques, which are required for GPU programming with graph-
ics APIs such as OpenGL [10] and DirectX [11]. Thus, CUDA significantly fa-
cilitates GPU programming to exploit the computing power of GPUs. However,
CUDA is only available for NVIDIA’s GPUs. Therefore, GPU programming with
CUDA sacrifices the code portability to exploit the GPU computing power.

In 2009, OpenCL was announced as an open programming standard to ac-
cess GPUs and other compute devices in a unified manner. The specifications
and programming languages of OpenCL and CUDA have similarities in many
aspects. Therefore, CUDA programmers can harness their experiences and skills
to write an efficient OpenCL program.

Figures 1 and 2 show the architecture models of compute devices in CUDA
and OpenCL, respectively. These figures show that their models have similar
memory hierarchies and processing elements. One difference is that there are
texture memories and caches only in CUDA. In CUDA, the texture data on the
device memory are read-only from the processing elements and cached in the
texture cache. On the other hand, texture memories and caches are not defined
in the OpenCL specification, because OpenCL has to support not only GPUs
but also other compute devices that may not use the textures. However, as with
the texture memory of CUDA, some device memory data in OpenCL, called
images, may be cached depending on the capabilities of compute devices.

Figures 3 and 4 show the execution models of CUDA and OpenCL, respec-
tively. In CUDA, grid is a term to denote a set of all threads launched for
execution of a kernel code. A grid is decomposed into several thread blocks of
the same size, and each thread block is assigned to a Multi-Processor (MP). In
CUDA, a thread block is further decomposed into warps [7], each consisting of
32 threads. Each warp is executed on a MP in a SIMD manner.
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In OpenCL, an NDRange is an N-dimensional index space, corresponding to
a grid in CUDA. Besides, a work-group and a work-item correspond to a thread
block and a thread in CUDA, respectively. Thus, the execution model of OpenCL
is similar to that of CUDA.

Since OpenCL does not assume any particular compute device, it does not
provide any concept corresponding to the warp specific to NVIDIA’s GPUs, and
wavefronts [12] specific to AMD’s ones. By eliminating such vendor-specific def-
initions from the specification, OpenCL can support various kinds of compute
devices. In practice, however, work-items of an OpenCL program are clustered
into warps or wavefronts; work-items in a warp or a wavefront are simultaneously
executed on actual GPUs in a SIMD manner. Thus, it is still important to con-
sider vendor-specific hardware features, such as warps and wavefronts, to write
an efficient OpenCL kernel for GPUs. Accordingly, optimization methodologies
for individual GPUs may be different, even though the same programming in-
terface is used in OpenCL code.

Table 1 summarizes the memory hierarchies of CUDA and OpenCL. In
CUDA, the local memory is assigned to each thread. Only the assigned thread
can access the local memory, which is a part of the off-chip device memory and
is assigned when register spilling occurs. The shared memory is assigned to each
thread block, and only threads in the thread block can access the shared memory,
which is the small on-chip memory with a short access latency. In addition to
the global memory, every thread can access constant memory and texture mem-
ory, each of which is the read-only off-chip memory with a cache mechanism.
The global memory is the largest off-chip memory, but it needs a long access
latency as well as the local memory. OpenCL assumes almost the same memory
hierarchy as CUDA, even though their terminologies are different as shown in
Table 1.

In CUDA, a kernel code executed on the compute device is statically compiled
when the host code is compiled. On the other hand, as OpenCL uses the JIT
compilation by default, it can generate an appropriate binary code after obtain-
ing the system configuration. However, the compilation time is always included
in the execution time of the OpenCL application, and hence time-consuming
compiler optimizations may increase the total execution time.



Table 1. Memory hierarchy.

Memory accessability CUDA OpenCL Readable/Writable

thread / work-item local memory private memory R / W

CTA / work-group shared memory local memory R / W

Grid / NDRange
global memory global memory R / W

constant memory constant memory Readable
texture memory — Readable

2.2 Parallel Thread Execution

Parallel Thread Execution (PTX) [13] defines a low-level virtual machine and
instruction set architecture for general purpose parallel thread execution on
NVIDIA GPUs. The CUDA C compiler can generate PTX codes, which will
further be optimized for and translated to the GPU instructions. The translator
and deriver enable GPUs to be used as programmable parallel computers.

In CUDA, a kernel code is usually written in high-level languages such as
CUDA C and CUDA Fortran. Similarly, in OpenCL, the OpenCL C language
is usually used to describe a kernel code. In the cases of GPU computing with
NVIDIA GPUs, moreover, such a high-level kernel code can be translated into
a PTX code in both CUDA and OpenCL environments. At runtime, the PTX
code is then translated into the native code executable by the GPU device. As
PTX is a lower-level representation than CUDA C and OpenCL C, analysis of
a PTX code is helpful to discuss reasons of the performance difference in kernel
execution between CUDA and OpenCL.

3 Performance Evaluation of OpenCL Compared with
Vendor-dependent Framework

This section shows the evaluation results to clarify the difference in sustained
performance between OpenCL and CUDA programs. To make their fair com-
parison, CUDA programs are ported to OpenCL ones as faithfully as possible.
CUDA keywords and API functions are replaced with the corresponding OpenCL
ones. Then, some minor modifications are applied to the OpenCL programs if
necessary so that the programs can correctly work.

In the evaluation, two benchmark programs are selected from NVIDIA GPU
Computing SDK 3.0. One is bandwidthTest that measures sustained band-
widths between a CPU and a GPU. The other is matrixMul that measures
sustained performance of calculations of product of matrices. The size of each
matrix in the CUDA program is set to the same size used in the OpenCL one.

In addition, three CUDA programs, Coulombic Potential (CP), Magnetic Res-
onance Imaging Q (MRI-Q), and Magnetic Resonance Imaging FHD (MRI-FHD),
have been selected from the Parboil benchmark suite [14], and translated to
OpenCL programs by replacing CUDA keywords and API functions with the
corresponding ones in OpenCL. Those programs operate on data structures with



Table 2. PC specification.

CPU Intel Core i7 920

GPU
NVIDIA Tesla C1060

AMD Radeon HD 5870

Chipset Intel X58

Main Memory 12GB

Video Memory Tesla 4GB, Radeon 1GB

OS CentOS 5.4 kernel 2.6.18

Platform
NVIDIA CUDA toolkit 3.0 (OpenCL revision 1.0.48 support)

ATI Stream SDK v2.01 with OpenCL 1.0 Support

Driver
NVIDIA driver version 195.36.15

AMD driver version 10.3

Table 3. Compute device specification.

Compute device Intel Core i7 920 NVIDIA Tesla C1060 AMD Radeon HD 5870

# of processing elements 4 240 1600
Core frequency 2.67 GHz 1.3 GHz 850 MHz
Control units - 30 20

Size of a work-group 8 32 64
Memory size 12GB 4GB 1GB

Memory bandwidth 25.6 GB/s 102 GB/s 153.6 GB/s
Peak performance (float) 42.56 Gflop/s 933 Gflop/s 2720 Gflop/s

Peak performance (double) 42.56 Gflop/s 78 Gflop/s 544 Gflop/s

simple data layouts, and thereby their array accesses are predictable and uni-
form; the memory access patterns are well-suited for the GPU hardware. Ba-
sically, their kernels are able to run without waiting for memory accesses, and
hence their performance are limited by the instruction issue rates [5]. Therefore,
the compiler optimization capabilities such as common subexpression elimina-
tion and loop invariant computation motion [15] influence their performances.
All of the evaluation results are obtained using the PC shown in Tables 2 and 3.

Figure 5 shows the sustained performance for each benchmark program on
the NVIDIA GPU. The horizontal axis indicates the benchmark program names.
The vertical axis indicates the total execution times, which include the initial
setup time of kernels such as the JIT compilation in OpenCL. No compiler option
is given to the JIT compiler invoked in the OpenCL programs. This figure shows
that only the performance of the OpenCL-version bandwidthTest is almost the
same as that of the CUDA-version. The other OpenCL-version programs run
slower than the CUDA-version programs. The execution times for matrixMul,
CP, MRI-Q, MRI-FHD of the CUDA programs are about 7.1, 3.2, 6.8, and 8.7 times
shorter than those of the OpenCL programs, respectively.

The main reason why bandwidthTest behaves differently from the others is
because it does not perform any calculations although it invokes some API func-
tions for data transfers. These results suggest that the performance for invoking
OpenCL API functions is almost the same as that for invoking CUDA API ones.
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Fig. 5. Performance comparison between CUDA and OpenCL.

The CUDA programs except bandwidthTest perform much faster than the
OpenCL programs. This is because the kernel execution times of CUDA pro-
grams are considerably shorter than those of OpenCL programs. Since the CUDA
programs are faithfully ported to OpenCL ones, their kernel codes written in
CUDA C and OpenCL C are very similar. Hence, it is obvious that their perfor-
mance difference is caused by the difference between the kernel codes generated
by the CUDA C compiler and the OpenCL C compiler. Therefore, by analyzing
the matrixMul, CP, MRI-FDH, and MRI-Q kernel codes at the PTX level, the main
reason of the performance difference is discussed below.

First, the main reason of the performance difference is discussed based on
analysis of the matrixMul kernel code at the PTX level. In comparison between
two PTX codes, we found that the PTX code generated by the CUDA C compiler
is totally different from that by the OpenCL C compiler, even though those com-
pilers translate essentially-identical kernel codes into PTX codes. The OpenCL
C compiler generates a simple PTX code, while the CUDA C compiler generates
its PTX code after several optimizations.

To confirm the effects of those optimization techniques applied by the CUDA
C compiler, the same techniques are manually applied to the PTX code generated
by the OpenCL C compiler. Figure 6 shows the performance improvements of
the OpenCL program by optimizing its PTX code. The horizontal axis indicates
the optimization techniques applied to the PTX code. The vertical axis indicates
the kernel execution time.

Loop unrolling [15] is one of the most popular optimization techniques. It
can reduce not only the numbers of conditional branches and index calculations,
but also the number of memory accesses if the same memory address is accessed
across iterations. Although the CUDA C compiler automatically unrolls the loop
16 times, the OpenCL C compiler does not unroll the loop. Hence, by manually
unrolling the loop of the OpenCL-version PTX code, the total execution time of
the OpenCL program is decreased by approximately 67.8%.



0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

Default 

op!miza!on 

by compiler

Loop    

unrolling

Common 

subexpression 

elimina!on

Loop-invariant 

code mo!on

Automa!c 

op!miza!on 

by compiler

CUDA

E
xe

cu
�

o
n

 T
im

e
 (

se
c.

)

Fig. 6. Performance of matrixMul by manual optimization.

After manually unrolling the loop, the address calculation in the PTX code of
OpenCL is still different from that of CUDA. In CUDA, common subexpression
elimination [15] is adopted to avoid redundant calculations for the initial address
of an array. On the other hand, in OpenCL, the initial address is always calcu-
lated before accessing the array. Hence, the execution time of the unrolled PTX
code is further reduced by 40% by manually applying common subexpression
elimination to the PTX code so as to avoid the redundant calculations.

PTX provides a multiply-and-addition (mad) arithmetic instruction. The mad
instruction is frequently used in the PTX code generated by the CUDA C com-
piler. On the other hand, the PTX code of OpenCL executes two instructions,
add and mul, to perform the same multiply-and-add operation. As the kernel is
compute-intensive, it is likely that a reduction in the number of instructions im-
proves the performance. However, we experimentally confirmed that use of two
instructions instead of one mad instruction does not affect the performance. Even
if the combination of mul and add is manually replaced by one mad instruction,
the performance does not change. Therefore, the combination of mul and add
would internally be replaced with one mad instruction in the driver.

Loop invariant code motion [15] is one optimization technique that moves
the calculation outside the loop if the calculation result is unchanged during the
loop execution. The CUDA C compiler automatically applies this optimization
technique to the PTX code, while the OpenCL C compiler does not. Hence, by
manually applying the technique to the PTX code of the OpenCL C compiler,
the execution time is further reduced by approximately 20%.

The above discussions are based on manual optimization of the PTX code,
which is generated by the OpenCL C compiler with no compiler option. Mean-
while, the OpenCL C compiler also provides some compiler options for automatic
optimizations. By enabling the -cl-fast-relaxed-math option, the execution
time of the OpenCL-version matrixMul kernel becomes almost the same as that
of the CUDA-version kernel. Although the execution time of the automatically-
generated PTX code is somewhat longer than that of the manually-optimized
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code, the performance difference is small because almost the same optimization
techniques such as loop unrolling, common subexpression elimination, and loop
invariant motion are automatically applied to the code. The small performance
difference comes from the difference of loop invariant motion optimization. In
automatically-generated PTX, some invariant codes still remain in the loop.

Figure 7 shows the sustained performance of matrixMul, CP, MRI-FHD, and
MRI-Q. The PTX codes of the programs are manually optimized. In addition to
the results of the manual optimizations, those of the automatic optimizations
by the JIT compiler of OpenCL with -cl-fast-relaxed-math option are also
shown. In the cases of CP, MRI-FHD, and MRI-Q, we manually apply common
subexpression elimination, loop invariant motion, use of intrinsic instructions
such as mad, rsqrt, and trigonometrical instructions, because these techniques
are already applied to the PTX code of the CUDA program by the compiler. Es-
pecially, use of rsqrt instructions is effective to improve the performance in CP,
because it allows the PTX code to avoid using the division instruction, which is
one of the most time-consuming instructions. In the cases of MRI-FHD and MRI-Q,
use of trigonometrical intrinsic instructions is effective because calculations of a
trigonometrical function is costly.

In comparison among the manually-optimized OpenCL codes, the automatically-
optimized ones, and CUDA ones, the execution times are almost the same ex-
cept in the case of CP. The execution time of the automatically-optimized CP
kernel is obviously longer than those of the manually-optimized and CUDA-
version kernels. The reason is that rsqrt instructions are not utilized at all in
the automatically-optimized CP. Therefore, there is room to further improve the
automatic optimization capabilities of the OpenCL C compiler.

These results indicate that the OpenCL programs can achieve the comparable
performance with the CUDA programs by manually optimizing the PTX codes.
Automatic compiler optimizations of the OpenCL C compiler can also be helpful
to achieve the comparable performance, depending on the applications. Conse-
quently, the sustained performances of OpenCL programs can become compa-
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rable with those of CUDA programs when the OpenCL C compiler have further
matured. In this case, CUDA programs can easily be translated into OpenCL
programs by replacing the keywords and API functions with the corresponding
ones. Only by such a simple translation, we can benefit from OpenCL’s features,
reusing existing CUDA programs.

4 Performance Analysis of OpenCL on Various Compute
Devices

4.1 Performance Comparison among Various Compute Devices

This section investigates the sustained performance of different compute devices
by using OpenCL programs in order to clarify whether a single OpenCL code
can efficiently run on various compute devices.

To evaluate the sustained performances of different compute devices, NVIDIA
Tesla C1060 (Tesla), AMD Radeon HD 5870 (Radeon), and Intel Core i7 920
(Core i7) are examined in the following evaluation. The other experimental con-
ditions are the same in Section 3. NVIDIA’s OpenCL implementation is used for
Tesla, and AMD’s implementation is used for the others4. The sustained perfor-
mance of each compute device is evaluated using OpenCL-version CP, MRI-FHD,
and MRI-Q. As OpenCL is a vendor-independent programming framework, fair
comparisons among compute devices of multiple vendors can be conducted.

Figure 8 shows the evaluation results. The horizontal axis indicates the
benchmark names, the left vertical axis shows the execution times of Tesla
and Radeon, and. the right vertical axis shows the execution time of Core i7.
In each compute device, the execution times without the compiler option and
-cl-fast-relaxed-math option are measured. These results show that the sus-
tained performances of the GPUs are about 20 to 183 times higher than those
4 AMD’s implementation can use a CPU as a compute device as well as a GPU.
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of the CPU. This is because these programs involve massive data parallelism
and regular memory access patterns, resulting in efficient use of many process-
ing elements in GPUs without waiting for memory operations [5]. In comparison
between the two GPUs, Tesla outperforlms Radeon for CP and MRI-FHD, while
it does not for MRI-Q. These results indicate that their performance differences
depend on the applications.

Furthermore, the execution times with the compiler optimization option are
shorter than those with no compiler option in Tesla and Core i7. Thus, for Tesla
and Core i7, the automatic optimizations by the OpenCL C compiler is effective
to improve the performance. However, in Radeon, the both execution times with
the compiler optimization option and with no compiler option are almost the
same. The automatic optimizations by the OpenCL C compiler does not work
for Radeon. From these results, it is obvious that the OpenCL C compiler is
still under development in terms of the compiler optimization. Therefore, there
is room to improve the performance by maturing the OpenCL C compiler.

Figures 9, 10, and 11 show the sustained performance of each compute device
for CP, MRI-FHD, and MRI-Q, respectively. In the figures, the sustained perfor-
mance is measured by changing the work-group size to investigate the perfor-
mance sensitivity of each compute device to the work-group size. The work-
group size should be large enough to hide the memory latency, and a small
work-group size results in decreasing the number of active threads. However,
if the work-group size is too large, the number of active threads decreases due
to the lack of hardware resources such as the shared memory and registers in
a GPU. In each compute device, the execution times with no compiler option
and -cl-fast-relaxed-math option are measured. In each figure, the horizontal
axis indicates the work-group size, and the vertical axis shows the normalized
execution time, which is the kernel execution time of each parameter configu-
ration normalized by the execution time of the best parameter configuration.
In the case of CP, although the work-group has a two-dimensional index space
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Fig. 10. Normalized time of MRI-FHD in various work-group size.

(x, y), the kernel code assumes x = 16 and hence only y is changed from 1 to 32
in the evaluation. In MRI-FHD and MRI-Q, the work-groups are one-dimensional.
Hence, the work-group sizes are changed from 16 to the maximum number of
work-items. In MRI-FHD, the maximum number is 256. In MRI-Q, it is 512 for
Tesla and 256 for Radeon.

These figures show that the sustained performance of the CPU in every
benchmark does not depend on the work-group size. On the other hand, the
work-group size obviously affects the sustained performances of the GPUs irre-
spective of the compiler options.

Figure 9 shows that the sustained performance of CP increases until y = 4.
As the work-group size grows, the number of work-items, i.e. threads, increases.
As a result, the sustained performance improves, because executing a number
of work-items is necessary to hide the memory access latency and to keep many
processing elements busy. However, the larger the work-group size, the fewer the
number of work-groups for the kernel execution. Moreover, as all work-items in
a work-group share hardware resources of a MP, the number of work-groups as-
signed to one MP decreases in the case of the hardware resource shortage; some of
work-groups are sequentially executed if the work-group size is too large to assign
all work-groups to MPs at once. As a result, the number of work-groups running
in parallel decreases, which results in the performance degradation. Thus, the
sustained performance of CP decreases for a too large work-group size.

Figures 10 and 11 show that the performances of MRI-FHD and MRI-Q are
more sensitive to the work-group size. The sustained performances degrade for
a small work-group size, i.e. less than 32 for Tesla and 64 for Radeon due to
the same reason in the case of CP. In addition, the sustained performance for
MRI-FDH increases if the work-group size is a multiple of 32 for Tesla, and of 64
for Radeon. In the case of Tesla, 32 threads in a warp simultaneously execute the
same instruction in a single-instruction multiple-data (SIMD) manner. Similarly,
in the case of Radeon, 64 threads are packed into a wavefront and run in a SIMD
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Fig. 11. Normalized time of MRI-Q in various work-group size.

manner. Hence, GPUs efficiently run if the work-group size is a multiple of their
SIMD execution size. The results in Figures 10 and 11 coincide with these
hardware specific behaviors.

In order to compare the sustained performance between Tesla and Radeon,
Figure 12 shows the kernel execution time of each compute device for MRI-Q.
This figure shows that the optimal work-group size does not depend on the
compiler option, although automatic optimization can significantly improve the
sustained performance. In performance comparison between Tesla and Radeon
for the non-optimized programs, the faster GPU may change depending on the
work-group size. If the work-group size is larger than 144, Radeon works faster
than Tesla. On the other hand, if the work-group size becomes small, Tesla
outperforms Radeon. Accordingly, we have to adjust the work-group size for
individual GPUs, even though OpenCL allows programmers to access various
GPUs in a unified fashion.

4.2 Automatic Tuning for OpenCL among Various Compute
Devices

From the results in Section 4.1, it is demonstrated that the sustained perfor-
mance of an OpenCL program drastically changes, depending on various factors
such as compute devices, compiler optimization options, and configuration pa-
rameters for kernel execution. Since the optimal configuration of some parame-
ters, such as the work-group size, obviously depends on individual applications
and GPU devices, runtime automatic tuning would be required to enable a single
OpenCL program to run efficiently on various GPUs. However, an application
code may be written assuming a specific parameter configuration, e.g. CP as-
sumes that the width of the work-group size is 16. Therefore, automating tuning
of execution parameters needs to ensure that the code still works correctly after
changing the parameters.
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We are planning to explore the automatic performance tuning methodology
to enhance the performance portability of OpenCL applications. By exploring
the parameter space automatically based on profiling, the optimal parameter
configuration can effectively be predicted. This automatic tuning methodology
helps to exploit the potential of GPU computation.

5 Conclusions

This paper has discussed the sustained performance of OpenCL programs in
comparison with CUDA. The quantitative evaluation results indicate that the
sustained performance of every OpenCL program with the default mode is much
lower than that of the equivalent CUDA program. To clarify the reason the
performance differences between OpenCL program and CUDA one, this paper
has also analysis, and pointed out that the performance differences come from
the difference in the compiler optimization capabilities. By manually optimizing
the kernel codes of the OpenCL programs and/or using automatic optimizations
in the OpenCL C compiler, their sustained performances become almost the
same as the performances of the CUDA ones.

In addition, as OpenCL enables us to make a fair comparison between various
GPUs, this paper has compared an NVIDIA GPU with an AMD GPU in terms of
sustained performance for executing the same programs. The evaluation results
indicate that the optimization option of the OpenCL C compiler and the work-
group size need to be adjusted for each GPU to obtain the best performance.
Several other optimization factors would also depend on individual GPUs. There-
fore, although OpenCL allows us to access various compute devices in a unified
manner, we have to further optimize the code for each of those devices. We are
planning to explore the automatic performance tuning methodology based on
profiling to enhance the performance portability of OpenCL applications.
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