
Neural Network Assisted Tile Size Selection

Mohammed Rahman, Louis-Noël Pouchet, and P. Sadayappan

The Ohio State University
{rahmanm,pouchet,saday}@cse.ohio-state.edu

Abstract. Data locality optimization plays a significant role in reducing the exe-
cution time of many loop-intensive kernels. Loop tiling at various levels is often
used to effectively exploit data locality in deep memory hierarchies. The recent
development of frameworks for parametric loop tiling of user code has lead to a
widening of the range of applications that could benefit from auto-tuning of tile
sizes.
Current model-driven approaches suffer from limitations, such as the inability to
accurately model the complex interplay between multiple hardware components
that affect performance. Auto-tuning libraries such as ATLAS rely on extensive
empirical search for tile size optimization, which has been shown to be very ef-
fective. However, the effectiveness of such approaches for arbitrary parametrically
tiled user code has not been demonstrated.
We consider the problem of selecting the best tile sizes for arbitrary user-defined
programs, by sampling in the full space of tile sizes. We have developed a tech-
nique to build a performance predictor associated with a specific program. Our ap-
proach uses statistical machine learning to train an artificial neural network (ANN)
to predict the performance distribution of execution time for scientific kernels. We
show how this search strategy significantly improves over the variability of random
search. Our observations and results on various kernels also show promise for the
use of ANNs in predicting the runtime behavior for variations of tiling configura-
tions.

1 Introduction

Tiling [31, 32] is recognized as a critical transformation for achieving high performance
for nested loop computations. It is well known that the choice of suitable tile sizes can
have a significant impact on performance. With small tile sizes, the referenced data can
all fit in cache, but insufficient reuse may be exploited within the iterations of a tile. With
very large tile sizes, the data referenced within a tile may not fit in cache, resulting in
capacity misses. The choice of an optimal tile size is a difficult challenge. There is a
complex interplay between the capacities and latencies of caches and TLBs (Translation
Lookaside Buffer) at different levels of the memory hierarchy, as well other factors such
as hardware prefetching and the effectiveness of use of SIMD instruction sets.

Although several previous studies have considered analytical approaches to tile size
optimization [4, 7, 21, 22], none have yet been demonstrated to be sufficiently generic
and robust to be used in practice for selecting the best tile size for arbitrary programs,
ranging from sequences of BLAS operations to stencil codes.

The current state of practice with tile size optimization is empirical tuning [28, 30, 2,
24, 25]. The highly successful ATLAS (Automatically Tuned Linear Algebra Software)

system uses extensive empirical tuning at library installation time to find the best tile sizes
for different problem sizes on that machine [28]. While the effectiveness of the ATLAS
tuning strategy has been demonstrated on well-studied elementary BLAS operations, it
remains to be proven that such an approach can provide similar performance quality
when operating on arbitrary user codes that are not known a priori.

Recent advances have resulted in the development of software to automatically gen-
erate parametric tiled code [8, 18, 1, 9, 26, 19, 10, 14], where the tile sizes are denoted by
symbolic variables that can be set at runtime. A tile size optimizer in such a general
context must be able to handle arbitrary tiled codes and it is not possible to use a pri-
ori knowledge about the tiled code to design empirical search heuristics. Performing an
extensive empirical search over the combinations of problem sizes and tile sizes usu-
ally has a prohibitive time cost. On the other hand, it seems unrealistic to be able to
construct a purely analytical model for tile size optimization that is general, robust, and
accurately models the numerous machine parameters and complexities that impact the
optimal choice of tile sizes.

In this paper, we explore the use of machine learning to automatically build a suffi-
ciently accurate model based on a small number of empirical executions of parametrically
tiled code, which can be useful in predicting effective tile sizes. Rather than attempt to
model a number of factors such as cache and TLB miss counts, we simply use total exe-
cution time as the single metric that is modeled as a function of problem size parameters
and tile sizes. This model is then used to isolate a small number of predicted good tile
sizes, that are the final candidates for empirical evaluation. We show that this two-step
search technique outperforms a random search using the same total number of samples.
More importantly, we show that our approach significantly improves the worst-case sce-
nario when compared to random search, suggesting that our sampling approach may be
a viable alternative to exhaustive search.

2 Problem Statement

Loop tiling is a crucial transformation for data locality improvement, as it attempts to
speed up the computation time by partitioning the computation into blocks, such that
the data elements required by a block fit in local memory (e.g., local data cache) [31].
However, a critical problem to address when performing tiling is the computation of the
tile sizes, as it can dramatically impact performance. Small tile sizes will under-utilize the
resources (e.g., data cache) and lead to sub-optimal performance, while tile sizes that are
too large will lead to increased data cache misses and low performance. Most previous
work has attempted to use analytical models to estimate the performance as a function
of tile sizes. These models typically attempt to minimize a composite cost function using
an idealized machine execution model [11, 7, 22, 20].

Designing such a model is a very complex task, and to accurately predict the perfor-
mance requires that a number of aspects be taken into account:

– data reuse within the execution of a tile;
– data reuse between tiles;
– the layout in memory of the data used in a tile;
– the relative penalty of misses at each level of the hierarchy, which is machine-

dependent.

– the cache replacement policy;
– the interaction with other units, such at prefetching;
– the interaction with vectorization, to enable a profitable steady-state for the vector-

ized loop(s);

The current state-of-the-art in tile size selection fails to encompass in a single model all
the possible interactions, and this usually results in inaccuracy of predictions of optimal
tile sizes.

Empirical search has become a valuable alternative, in particular for the automatic
and portable tuning of high-performance libraries such as ATLAS [28]. When general-
izing to arbitrary programs to be tuned, one may proceed by successively testing, on the
target machine, numerous possible tile sizes to identify the best choice. This tuning pro-
cess is time-consuming, as it is very hard to predict the best tile sizes without traversing
a significant portion of the search space. We illustrate this with two representative per-
formance distributions with respect to tile sizes. In Figure 1, we show the performance
variation for 10648 tile size combnations for two representative benchmarks: a 2D stencil
computation (fdtd-2d) and a standard BLAS3 routine (dsyr2k), considering a 3D single-
level tiling.

0

0.1

0.2

0.3

0.4

0.5

0.6

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

1
6

:1
0

:3
0

0

2
0

:1
6

:1
2

2
5

:3
0

:2
0

0

3
0

:4
0

:8

3
5

:4
8

:1
2

8

4
2

:1
0

0
:4

4
8

:1
2

8
:6

4

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

fdtd-2d: Performance distribution with Tile Size
configurations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

dsyr2k: Performance Distribution with Tile Size
Configurations

Fig. 1. Performance distribution of fdtd-2d and syr2k

For fdtd-2d we observe that the performance distribution is not uniform, and the space
is plagued with poorly performing tile combinations. The ratio of the number of high-
performance tile combinations (which achieve 95% or more of the maximal performance)
is limited to a small fraction of the search space, below 1%. For such problems, it is
expected that a purely random approach for tile sizes selection requires sampling above
the ratio of good points to converge towards a good solution, because again of the non-
uniformity of the distribution. Worse, randomly sampling a constant number of points
can lead to the selection of very sub-optimal choices, as shown in Section 4.1. On the
other hand, for dsyr2k we observe much less performance variation between the possible
tile sizes. For such loops, a random approach is likely to quickly succeed in finding a
good point in the search space, due to the abundance of such points.

The wider availability of parametrically tiled codes implies the need to tune tile sizes
on a wide variety of codes, ranging from standard BLAS operations to stencil codes such
as fdtd-2d. Extensive empirical search is very expensive, and an alternative approach that
achieves the effectiveness of iterative tuning with a reduced search time is needed.

One major limitation of an empirical search technique based on random sampling
is the challenge of providing convergence bounds. Different performance distribution
shapes will require different sampling rates to statistically assure converge towards a
good solution. In addition, there is no knowledge extracted from this random sampling:
when facing a different problem size, repetition of the search is required.

We propose to address these problems by using a machine learning approach for the
prediction of the performance distribution of tile sizes, for a given benchmark. We decou-
ple the search of the best tile size into two steps. First, we randomly evaluate a fraction of
the search space, using empirically measured execution time for those tile sizes to train
an artificial neural network (ANN), for a given program and dataset size. Next, we use
an extensive search based on the ANN model to determine a set of predicted good points,
around the local minima of the performance distribution. These selected points are then
empirically evaluated and the best one is chosen. We show through experimentation with
seven benchmarks, that the approach is very effective in identifying tile sizes that result
in execution time within 10% of the global minimum execution time for the entire search
space.

3 Performance Prediction

We now present our modeling approach for performance prediction. We first detail our
experimental setting in Section 3.1. We present the neural network layout selection in
Section 3.2, and detail the training process in Section 3.3. We report extensive qualitative
evaluation of the performance prediction model in Section 3.4.

3.1 Experimental Protocol

Testing platform Our experimental setup focuses on the tile size selection problem for
the Nehalem architecture. Our test platform runs Linux, and is powered by an Intel Core
i7 860 running at 2.8 GHz, with data cache sizes of 32 kB / core for Level 1, 256kB /
core for Level 2, 8MB for Level 3 and a Level 1 TLB with 64 entries for small pages
(4K). Note that the technique for performance prediction we present is not biased by any
architectural parameters. So one can seamlessly apply the same approach on a different
architecture.

Benchmarks We experimented with 7 benchmarks. doitgen computes the reduction sum
of a three-dimensional matrix multiplied by a two-dimensional matrix, dgemm, dtrmm,
dsyr2k are three standard BLAS3 computations, and lu performs a LU matrix decompo-
sition. 2d-jacobi and fdtd-2d are two stencil computations that operates on 2D arrays. All
these benchmarks use double-precision floating point arithmetic.

For each benchmark, a sequence of affine loop transformations was applied to make
the loop nest(s) fully permutable, and hence tilable [3, 17]. A unique parametric tiled
code was then generated, using PrimeTile 0.3.0 [8, 18] on the transformed loop nest.
Note that for stencils, it is necessary to skew the original iteration domains to enable

tiling for all loops; this skewed and tiled version is generated seamlessly in the affine
framework and is an example of the recent advances in automatic parametric tiling.

We consider only single-level tiling, and for all benchmarks we tile the 3 outer-most
loops. We note the tile sizes for these loop levels Ti, Tj and Tk.

Compiler For all tested versions, including the original code, we used the same compiler
together with the same optimization flags. Specifically, we used GCC 4.3.2 with option
-O3, resulting in single-threaded programs, and the vectorization task is left entirely to
GCC.

Dataset We have constrained the problem such that for each benchmark, we build and
train a specific network. We do not vary the dataset size during the training process, it
has been computed to exceed L2 cache size, and all arrays have been sized to 600×600.

An important observation is that we experimented with benchmarks that have stati-
cally predictable control flow, also known as SCoP [6]. On such programs, the execution
does not depend on the value of the dataset, hence tuning for different dataset values is
not needed. For our experiments we used a dense dataset of double precision floating
point numbers.

Search space of tile sizes We perform a sampling of the space of all tile sizes, by
evaluating along each dimension 22 possible sizes from the set {1,2,4,6,8,10,12,16,
30,32,40,48,64,100,128, 150,200,256,300,400,500,600}. Since we consider a tiling
along 3 dimensions, this leads to a search space of 223 = 10648 possible tile sizes.

3.2 Neural Network Configuration

We use a fully connected, multi-layer perceptron (MLP), feed forward neural network.
Our network consists of an input layer with three input parameters (the tile sizes: Ti,
Tj, Tk), an output layer with one output parameter (predicted execution time), and one
hidden layer consisting of 30 hidden neurons. Thus, our network has 34 units with 120
connections (edges). Input values are presented to the input layer and the predicted value
is taken out of the output layer. We use a logistic activation function for the hidden layer
and a linear activation function for the output in our fully connected feed-forward neural
network. Each tile size configuration is presented as a three dimensional input vector to
our ANN. The functional relationship between input and output variables are defined by
the weights associated with the edges of the networks. These edge weights corresponding
to each connection in the network are set during the training phase of building the models.

3.3 Training the Neural Network

Training the neural network is an iterative process that involves learning the edge weights
from a sample of tuples from the search space consisting of input /output parameters.
We used rprop (resilient back-propagation) as the training algorithm to train the edge
weights of network with a learning rate of 0.001. Finally, we used SNNS (Stuttgart Neural
Network Simulator) [34] to train and develop our neural network model described here.

In the experiments presented in this section, a random sample of approximately 5%
i.e. 530 tuples from our search space of 10648 tuples are randomly selected for training
and validation of the neural network. For each of these tuples, the actual performance is

collected by running the program on the machine using the tile size specified by the tuple.
Out of these 530 tuples, approximately 10% (50 tuples) are separated for validation and
early stopping while the remaining 480 tuples are used for training the neural network.
At every certain number of epochs of training, we fed the network to predict the output
corresponding to the tuples in the validation set. We keep on training the network as we
see the improvement in prediction on the validation set measured in sum square errors.
When we see no improvement on validation set for certain number of counts, we stop
training the network to prevent it from memorizing rather than learning the patterns.

3.4 Qualitative Analysis

We report in Figure 2 to Figure 8 the evaluation of our performance prediction model. For
each benchmark, we report in the figure on the left hand side the actual performance and
the predicted performance (that is, when computed through our neural network that was
trained by randomly sampling 5% of the search space) of all tile sizes in our search space.
These are sorted from the best to the worst performance: more variations on the right side
of the graph indicates a higher error rate for tile sizes which have the lowest performance.
On the figure on right hand side, we plot the overall performance distribution, sorted
with respect to the tile sizes. The more chaotic the distribution, the more complex is the
function the ANN must learn.

0

1

2

3

4

5

6

7

5
0

0
:6

:3
0

1
0

:4
:4

0
0

4
0

0
:3

0
0

:1
0

6
0

0
:3

2
:6

0
0

6
4

:1
2

8
:4

0
0

2
:1

0
:1

5
0

1
2

:1
0

0
:4

8

4
8

:4
:4

8

6
:4

8
:1

2

1
:4

8
:4

8

1
0

0
:3

0
0

:2

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

2d-jacobi: Predicted versus Actual Performance

ExTime (Actual)

ExTime (Predicted)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

2d-jacobi: Performance distribution with Tile Size
configurations

ExTime(Actual)

Fig. 2. 2d-jacobi Evaluation

We observe that our networks are able to accurately model the execution time in
particular regarding the best performing versions (that is, points on the left size of the x
axis). For the case of complex distributions such as lu, fdtd-2d or trmm the ANN is able
to learn a function that correctly interpolates all local minima, despite a lower quality of
prediction for tile sizes that perform among the worse in the space.

We also observe that for five of the benchmarks — trmm, lu, 2d-jacobi, syr2k and
doitgen — we could predict more than 90% of our search space with less than 10%
deviation for the actual execution time, and for all benchmarks we can predict 80% and
more with less than 10% deviation. Some of the configurations leading to higher than
10% deviations are extreme cases of configurations like tile size being extremely small

0

0.2

0.4

0.6

0.8

1

1.2

1
:3

2
:1

2
8

5
0

0
:1

0
:6

2
:2

5
6

:2
0

0

1
0

0
:2

5
6

:1
0

2
0

0
:1

5
0

:1
2

8

1
0

:3
0

0
:1

0

3
2

:4
0

:4
0

6
0

0
:1

6
:8

5
0

0
:3

0
0

:1
2

8

4
8

:4
8

:6

1
0

0
:4

:2
5

6

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

doitgen: Predicted versus Actual Performance

ExTime (Actual)
ExTime(Predi…

0

0.2

0.4

0.6

0.8

1

1.2

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0
:1

6
:1

2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

doitgen : Performance Distribution with Tile Size
Configurations

ExTime(Actual)

Fig. 3. doitgen Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
0

:1
2

:8

1
6

:2
:8

1
2

:1
:4

8

4
5

:1
2

8
:6

2
0

:2
:1

6

1
2

:4
0

0
:8

3
2

:4
:4

3
0

:6
4

:1
5

0

1
0

:1
:2

5
6

1
6

:4
0

0
:4

0
0

4
0

:6
0

0
:1

2

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

fdtd-2d: Predicted versus Actual Performance

ExTime (Actual)

ExTime (Predicted)

0

0.1

0.2

0.3

0.4

0.5

0.6

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

1
6

:1
0

:3
0

0

2
0

:1
6

:1
2

2
5

:3
0

:2
0

0

3
0

:4
0

:8

3
5

:4
8

:1
2

8

4
2

:1
0

0
:4

4
8

:1
2

8
:6

4

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

fdtd-2d: Performance distribution with Tile Size
configurations

Fig. 4. fdtd-2d Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2
:8

:3
0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

dgemm: Predicted versus Actual Performance

ExTime (Actual)

ExTime (Predicted)

0

0.5

1

1.5

2

2.5

3

3.5

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

dgemm: Performance Distribution with Tile Size
Configurations

ExTime(Actual)

Fig. 5. dgemm Evaluation

(e.g. 1, equivalent to not tile the dimension). Such extreme tile sizes lead to statistically
outliers execution time making it difficult for the ANN to learn or to predict.

An important observation is that we are interested in learning the performance distri-
bution, and in particular to accurately predict which tile size will have the best execution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
2
:1

2
:1

6

3
2
:2

:1
2
8

6
4
:4

0
:1

6

2
:1

0
:1

1
:3

2
:2

5
6

2
5
6

:6
4
:4

1
0
:2

5
6

:1
2

4
:5

0
0

:1
0

3
0
:6

4
:4

0
0

6
:2

0
0

:5
0
0

2
5
6

:4
0
0
:1

6

E
x
e
c
u

ti
o

n
 T

im
e
 i
n

 S
e
c
o

n
d

s

Tile sizes (Ti:Tj:Tk)

lu: Predicted versus Actual Performance

ExTime (Actual)

ExTime (Predicted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
:1

:1

4
:2

:4
0

8
:4

:5
0
0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

lu: Performance Distribution withTile Size
Configurations

ExTime(Actual)

Fig. 6. lu Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

8
:4

:6
4

6
0

0
:1

2
8

:3
2

6
4

:4
:1

6

1
0

:4
0

0
:5

0
0

1
2

8
:2

:3
0

0

2
5

6
:2

0
0

:2
5

6

1
0

0
:4

0
:3

0
0

3
0

:3
0

0
:3

0
0

4
0

:1
0

:4

1
0

0
:3

0
0

:1
2

6
:1

2
:1

E
x
e

c
u

ti
o

n
 T

im
e

 i
n

 s
e

c
o

n
d

s

Tile sizes - Ti:Tj:Tk

dsyr2k : Predicted versus Actual Performance

ExTime(Actual)

ExTime(Predicted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

dsyr2k: Performance Distribution with Tile Size
Configurations

Fig. 7. dsyr2k Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
6

:4
:4

0

4
8
:3

2
:1

0

1
2

:3
2

:6

6
4

:2
0

0
:3

0

3
2

:1
2

8
:2

5
6

2
:6

4
:1

2
8

6
:3

0
0
:1

2

4
0

0
:3

0
:4

0
0

1
6

:4
0

0
:3

2

6
0

0
:6

4
:8

6
0

0
:1

6
:1

2
8

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 S

e
c

o
n

d
s

Tile Sizes (Ti:Tj:Tk)

dtrmm: Predicted versus Actual Performance

ExTime (Actual)
ExTime (Predicted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
:1

:1

4
:2

:4
0

8
:4

:5
0

0

1
2

:8
:3

0

3
0

:1
0

:3
0

0

4
0

:1
6

:1
2

6
4

:3
0

:2
0

0

1
2

8
:4

0
:8

2
0

0
:4

8
:1

2
8

3
0

0
:1

0
0

:4

5
0

0
:1

2
8

:6
4

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 S

e
c

o
n

d
s

Tile sizes- Ti:Tj:Tk

dtrmm: Performance Distribution with Tile size
Configurations

ExTime(Actual)

Fig. 8. dtrmm Evaluation

time. Although our results show in some cases a deviation rate which may seem unsat-
isfactory, care must be taken when interpreting these numbers. First, we are interested
in finding the best tile size, so even if their execution time is predicted with a significant
deviation, what really matters is only that they are predicted as the best size by the model.

Similarly, if the deviation occurs for average to low performing configurations, this does
not impact the selection of the best tile size. We show in the following section that this
overall error rate does not harm the efficiency of our approach to find the best tile size.

4 Searching for the Best Tile Size

We now present our strategy for selecting the best performing tile sizes. Our approach
is aimed to substitute for a simple random search algorithm for the case of single-level
tiling.

4.1 Neural Network Assisted Selection of the Best Tile Sizes

Our neural-network assisted search technique computes on the fly the performance dis-
tribution based on a first random sampling phase, for which each randomly selected can-
didate tile size in the search space is empirically evaluated. Then, instead of randomly
evaluating more points, the performance distribution is used to isolate a fraction of the
space where the best tile sizes are predicted to be good: these points are the one which
are empirically evaluated. Technically, our two-stage approach for tile sizes selection is
based on our observations of the performance distribution. We leverage the emergence
of local minima in the performance distribution, and collect a bucket of the 50 predicted
best tile sizes. We then empirically evaluate the performance of all tile sizes in this set,
keeping only the best performing one. This is detailed in the algorithm in Figure 9.

TileSizeSelection: Select the best tile size
Input:

program: a parametrically tiled program
searchSpace: set of all tile sizes in the search space
samplingRate: sampling rate for random search
bucketSize: number of candidates selected from the ANN

for the second empirical evaluation
Output:

best: a tuple of best tile size

1 ActualTime ← emptyDatabase
2 Tuples ← randomlySelectTuplesInSearchSpace(samplingRate, searchSpace)
3 foreach t ∈ Tuples do
4 executionTime ← executeProgramWithTileSize(program, t)
5 addToDatabase(ActualTime, (t, executionTime))
6 end do
7 A ← buildAndTrainANNForPerfPrediction(ActualTime)
8 PredictedTime ← emptyDatabase
9 foreach t ∈ searchSpace do
10 predictedExecTime ← getPredictedTimeFromANN(A, t)
11 addToDatabase(PredictedTime, (t, predictedExecTime))
12 end do
13 Bucket ← selectTuplesWithBestTimeInDatabase(PredictedTime, bucketSize)
14 foreach t ∈ Bucket do
15 executionTime ← executeProgramWithTileSize(program, t)
16 addToDatabase(ActualTime, (t, executionTime))
17 end do
18 best ← selectTuplesWithBestTimeInDatabase(ActualTime, 1)
19 return best

Fig. 9. Tile size selection algorithm

Procedure randomlySelectTuplesInSearchSpace selects randomly a fraction samplingRate
(eg, x%) of the search space of possible tile sizes. Procedure getPredictedTimeFromANN
evaluates with the ANN a given tile size, to obtain the predicted execution time. Proce-
dure selectTuplesWithBestTimeInDatabase selects the y best tile sizes sorted ac-
cording to their execution time.

4.2 Experimental Results

We have conducted extensive experiments to validate the benefit of this decoupled ap-
proach over a standard random search. We use the Efficiency indicator to measure the
performance of a point. The efficiency of a candidate tile sizes is defined as:

efficiency =
space optimal actual execution time

candidate actual execution time

In other words, an efficiency of 100% means the candidate is the best performing tile
sizes in the entire search space.

We report in Table 1 the efficiency of the best found tile sizes, for Random versus
ANN (our decoupled search), for different random sampling rate (samplingRate goes
from 1% to 4%). We have set bucketSize = 50. Because we use a random search strategy,
there can be a significant variation between the performance of the best tile sizes found
when doing two occurrences of a random draw of x% of the search space. To highlight
this variation, we have repeated each experiment 100 times, and report the worst, average
over the 100 runs, and best efficiency of the best tile sizes which was found by the two
methods.

The execution time for the full process of finding the best tile size is totally dominated
by the execution time of the candidate tile sizes on the machine. The complete process
(empirical evaluation of candidates, training of the network and gathering the predicted
performance) never exceeded 16 minutes on our test suite, for the highest sampling rate
for 2d-jacobi. In average, using a sampling rate of 2% our process completed in less than
5 minutes for all benchmarks.

The random points found by the Random heuristic are those used to train the ANN.
For a fair comparison, one should take into account the extra 50 points (about 0.5% of
the space) that are evaluated with our decoupled approach: 1% sampling rate for the
ANN leads to an empirical evaluation of a total 1.5% of the space, 2% sampling leads to
evaluating 2.5% of the space, etc.

A key observation is that our approach systematically outperforms a pure random
search, even when using a slightly higher sampling rate. For instance, evaluating 2% of
randomly selected points in the space shows a lower efficiency than randomly evaluating
1% of the space combined with the evaluation of 50 additional points selected by the
model – a total of 1.5% points are evaluated.

However, we believe the most significant advantage of our approach is not in pure
performance improvement over a random search. It is in the efficiency of the tile size
found in the worst case scenario. Because of the non-uniform distribution of the best
tile size, a single random draw may totally fail to discover a good tile size. However,
our decoupled approach is able to identify interesting regions based on the performance
distribution that is computed on-the-fly, efficiently driving the search to a subspace of

doitgen gemm trmm syr2k lu 2d-jacobi fdtd-2d

1%

R-best 100% 99.86% 99.69% 98.15% 99.89% 99.91% 97.75%
R-average 98.71% 96.29% 94.18% 94.80% 92.19% 94.10% 84.15%
R-worst 95.35% 69.64% 73.91% 89.81% 40.63% 17.69% 31.02%
ANN-best 100% 99.86% 100% 100% 100% 99.91% 100%
ANN-average 98.89% 96.35% 97.89% 96.01% 92.62% 98.51% 84.50%
ANN-worst 97.26% 82.93% 92.07% 89.79% 79.68% 94.23% 66.53%

2%

R-best 99.97% 99.86% 100% 98.71% 99.89% 100% 100%
R-average 98.71% 96.42% 94.26% 94.80% 92.87% 97.60% 84.10%
R-worst 86.49% 67.89% 68.40% 88.20% 45.29% 55.98% 27.30%
ANN-best 100% 99.86% 100% 100% 100% 100% 100%
ANN-average 98.89% 96.76% 98.08% 96.69% 95.34% 98.55% 88.61%
ANN-worst 97.26% 89.83% 84.93% 89.65% 85.80% 94.17% 60.65%

3%

R-best 99.97% 99.86% 100% 98.71% 99.89% 100% 100%
R-average 98.77% 96.47% 94.34% 94.80% 94.27% 98.39% 85.47%
R-worst 94.89% 63.58% 64.53% 87.99% 61.24% 84.54% 47.99%
ANN-best 99.97% 99.86% 100% 100% 100% 100% 100%
ANN-average 98.93% 97.14% 98.24% 97.17% 95.34% 98.74% 91.45%
ANN-worst 97.64% 71.74% 84.93% 92.27% 85.80% 94.50% 63.34%

4%

R-best 99.97% 99.86% 100% 98.71% 99.89% 100% 100%
R-average 98.80% 96.65% 94.89% 94.93% 92.19% 98.41% 85.55%
R-worst 96.86% 69.73% 89.21% 88.57% 52.03% 82.47% 43.74%
ANN-best 100% 99.86% 100% 100% 100% 100% 100%
ANN-average 98.99% 97.67% 98.46% 97.20% 95.79% 98.90% 93.55%
ANN-worst 98.28% 73.57% 96.19% 92.66% 85.80% 94.50% 79.26%

Table 1. Efficiency w.r.t. space optimal tile sizes of the best point found using random
(R) and Neural Network (ANN) search strategies, for different fraction of the space em-
pirically evaluated (1% to 4%). Running each experiments 100 times and considering
the worst one, the best tile size found by ANN is always significantly better than the one
discovered by R alone.

good performing points. As an extreme example for 2d-jacobi a random sampling of 2%
of the space may lead to discovering a best tile size which performs at 55% of the actual
space optimal point, while our ANN approach has a worst case efficiency of 94% when
using a sampling rate of only 1%: it leads to almost a 2× difference in execution time of
the best found point between the two methods.

Finally, let us note that for the benchmarks which have a high density of good points, a
simple random search performs well, as one could expect. We observe that by design, our
ANN-based technique performs at least as well as a standard random search. However
our technique can be used to quickly approximate the performance distribution for such
cases: if the distribution is flat, one can safely stop the search.

4.3 Discussions and Future Work

The advantage of our technique is the ability to exhibit all local minima in the perfor-
mance distribution. With such an approach, one can extract a set of candidates for empir-
ical evaluation which have a higher probability of performing well.

It is possible to address the problem of defining a convergence bound for the empir-
ical search using our technique. We show it is possible to feed a neural network during
a random sampling of the space to characterize the performance distribution. As a re-
sult, one can quickly derive the shape of the performance distribution as an additional
information that can be used to stop the tuning. This is typically profitable for simple
distributions such as dsyr2k where the benefit of extensive empirical search is very lim-
ited. On the other hand, for more complex distributions such as fdtd-2d or lu a higher
proportion of the space must be sampled to provide a statistical guarantee to discover the
best tile sizes.

We are currently investigating several degrees of generalization of our technique.
The first one is to generalize our ANN to be able to deal with other dataset sizes. We are
currently conducting extensive experiments to validate the following hypothesis.

– Considering a problem size large enough to exceed L2 cache size, the best tile sizes
for a larger dataset size is also part of the best tile sizes for the current one;

– there may be best tile sizes for the current dataset size which are not the best one for
larger dataset size.

Considering this, by collecting local minima we can ensure that only those need to
be evaluated for larger dataset sizes, dramatically reducing the search process for other
dataset sizes. At the time of writing, we have observed this hypothesis holds true for the
Nehalem Core i7 for the case of numerous benchmarks.

5 Related Work

Finding the optimal tile sizes for effective exploitation of data locality a key issue in
achieving high performance with kernels involving loop nests on platforms with a deep
multi-level memory hierarchy. This has been studied in the past through different ap-
proaches including search based techniques [29], analytical modeling of cache misses
equations [7, 4, 21, 22], and through the use of meta-heuristics like genetic algorithm and
simulated annealing [15]. However, these approaches have not been demonstrated to be
general, robust and effective. Therefore empirical tuning based on extensive search is the
approach most commonly used in practice.

In the absence of a strong analytical model, researchers in different disciplines have
used regression and neural networks for creating predictive models. It has been widely
used in the architecture and systems community as well. Ipek et al. [12] studied the
impact of hardware parameters (e.g. cache size, memory latency etc.) on the performance
characteristics of target platforms using an ANN model. Wang and O’Boyle [27] used a
machine learning based approach to predict the optimal number of threads and scheduling
policy to map an already parallelized program to a multi core processor.

Singh et al. [23] used a machine learning based approach for predicting the perfor-
mance of parallel applications - SMG 2000, a semi coarsening multigrid solver, and HPL.

Their model could predict the performance within 2% to 7% of the actual application run
time. Khan et al. [13] used predictive modeling for cross program design space explo-
ration in multi-core systems. They proposed a concept of reaction based characterization.
In reaction based characterization, a model trained on one application can not only pre-
dict the behavior against unseen parameters for the same application, but also predict
behavior for an unseen application as well.

Regarding tile sizes selection, Li and Garzaran [16] proposed a classifier learning sys-
tem for optimizing matrix multiplication. Their system determines the number of levels
of tiling and tile sizes at each level depending on the target platforms. Yuki et al. pro-
posed a framework for tile size optimization based on program features, built on training
an ANN [33]. We address in the present paper a slightly different problem, focusing on
developing an accurate performance model for variation of tile sizes for a specific bench-
mark, with emphasis on reducing the variance when randomly searching the space of tile
sizes.

Epshteyn et al. addressed the problem of efficiently using feedback from an iterative
search process to select the next candidate to evaluate [5]. They use regression curves to
approximate the performance distribution, and active learning to select good candidates
for empirical evaluation. We pursue a similar goal, using an ANN to estimate the perfor-
mance distribution instead. However our approach allows the collection of points around
all local minima in the performance distribution, and is not geared towards discovering
only the global minimum. Our preliminary experiments show that collecting local min-
ima may be an efficient pruning strategy when searching for the best tile size for large
dataset sizes.

6 Conclusion

Loop tiling is a critical transformation for making effective use of the cache hierarchy on
modern machines. Recent advances in the design of automatic frameworks for parametric
loop tiling [3, 8], combined with the ever-increasing complexity of modern architectures,
have made the tile size optimization problem a practically significant one.

Many approaches to tile sizes selection have been based on analytical models for per-
formance [4, 7, 21, 22], but have not been demonstrated to be robust and effective over a
range of benchmark kernels or applications. At the other end, auto-tuning libraries lever-
age extensive empirical search of numerous tile sizes for equally numerous problem sizes
[28, 2, 24]. Extensive empirical search is not realistic for arbitrary user-defined kernels:
as the benefit is near-optimal tile sizes, the downside is the compilation time the user
have to pay to get this performance. Furthermore, random sampling is usually discarded
for tile size selection because of the high difficulty to determine an good sampling rate
that trades adequately the search time and the efficiency of the best found tile size.

We have proposed to address the problem of tuning the tile sizes by using a Neural
Network approach for predicting the execution time of different tile sizes, for a given
benchmark. Our method is based on learning the performance distribution of tile sizes,
and can be successfully used to determine convergence bounds for random empirical
search. We used this performance model to predict the best tile sizes for a benchmark, and
we have proposed a strategy to fully substitute for a standard random search, based on a
learning on-the-fly of the performance distribution to drive the search towards interesting

sub-spaces. This technique achieves between 93% and 98% of the maximal possible
performance, and dramatically limit the statistical variance of the random search.

Acknowledgements. This work was funded in part by the U.S. National Science Foun-
dation through award 0926688 and the Defense Advanced Research Projects Agency
through AFRL Contract FA8650-09-C-7915.

References

1. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P. Sadayappan. Pa-
rameterized tiling revisited. In The International Symposium on Code Generation and Opti-
mization (CGO), 2010.

2. J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC.
In Proc. ACM International Conference on Supercomputing, pages 340–347, 1997.

3. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhe-
dral program optimization system. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2008.

4. S. Coleman and K. McKinley. Tile Size Selection Using Cache Organization and Data Layout.
In PLDI’95, pages 279–290, 1995.

5. A. Epshteyn, M. Garzaran, G. Dejong, D. Padua, G. Ren, X. Li, K. Yotov, and K. Pingali.
Analytic models and empirical search: A hybrid approach to code optimization. In Proc. of
the International Workshop on Languages and Compilers for Parallel Computing (LCPC’05),
2005.

6. P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Multidimen-
sional time. Int. J. Parallel Program., 21(5):389–420, 1992.

7. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: an analytical representation of
cache misses. In ICS ’97: Proceedings of the 11th international conference on Supercomput-
ing, pages 317–324, New York, NY, USA, 1997. ACM Press.

8. A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ramanu-
jam, and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loops. In ACM
International Conference on Supercomputing (ICS), 2009.

9. A. Hartono, M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Parametric tiled loop gen-
eration for effective parallel execution on multicore processors. In IPDPS’10: Proceedings of
the 2010 IEEE International Symposium on Parallel & Distributed Processing, 2010.

10. HiTLoG: Hierarchical Tiled Loop Generator. http://www.cs.colostate.edu/MMAlpha/
tiling/.

11. C.-h. Hsu and U. Kremer. A quantitative analysis of tile size selection algorithms. J. Super-
comput., 27(3):279–294, 2004.

12. E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. d. Supinski, and M. Schulz. Efficient
architectural design space exploration via predictive modeling. ACM Trans. Archit. Code
Optim., 4(4):1–34, 2008.

13. S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra. Using predictive modeling for cross-program
design space exploration in multicore systems. In PACT ’07: Proceedings of the 16th Inter-
national Conference on Parallel Architecture and Compilation Techniques, pages 327–338,
Washington, DC, USA, 2007. IEEE Computer Society.

14. D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadhye. Multi-level tiling: ’m’ for the
price of one. In SC, 2007.

15. T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, F. Bodin, and H. A. G. Wijshoff. A
feasibility study in iterative compilation. In ISHPC’99: Proc. of the Second Intl. Symp. on
High Performance Computing, pages 121–132, London, UK, 1999.

16. X. Li and M. J. Garzaran. Optimizing matrix multiplication with a classifier learning system.
2008.

17. The Pluto automatic parallelizer. sourceforge.net/projects/pluto-compiler, 2010.
18. PrimeTile: A Parametric Multi-Level Tiler for Imperfect Loop Nests. http://www.cse.

ohio-state.edu/∼hartonoa/primetile/.
19. L. Renganarayana, D. Kim, S. Rajopadhye, and M. Strout. Parameterized tiled loops for free.

In PLDI’07, pages 405–414, 2007.
20. L. Renganarayanan. Scalable and Efficient Tools for Multi-level Tiling. PhD thesis, Depart-

ment of Computer Science, Colorado State University, 2008.
21. G. Rivera and C. Tseng. A comparison of compiler tiling algorithms. In CC ’99: Proceedings

of the 8th International Conference on Compiler Construction, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’99, pages 168–182, Lon-
don, UK, 1999. Springer-Verlag.

22. V. Sarkar and N. Megiddo. An analytical model for loop tiling and its solution. In IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS-2000),
April 2000.

23. K. Singh, E. İpek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana. Predicting
parallel application performance via machine learning approaches: Research articles. Concurr.
Comput. : Pract. Exper., 19(17):2219–2235, 2007.

24. C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active harmony: towards automated perfor-
mance tuning. In SC, pages 1–11, 2002.

25. A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. Scalable autotuning framework
for compiler optimization. In IPDPS ’09, May 2009.

26. TLoG: A Parametrized Tiled Loop Generator. http://www.cs.colostate.edu/MMAlpha/
tiling/.

27. Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores: a machine learning based
approach. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 75–84, New York, NY, USA, 2009. ACM.

28. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In Proceedings
of the ACM/IEEE SC98 Conference, pages 1–27. IEEE Computer Society, 1998.

29. R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting
persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February
2005.

30. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software
and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

31. M. Wolfe. More iteration space tiling. In Supercomputing ’89: Proceedings of the 1989
ACM/IEEE conference on Supercomputing, pages 655–664, New York, NY, USA, 1989. ACM.

32. J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
33. T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. Eichenberger, and K. O’Brien.

Automatic creation of tile size selection models. In Symp. on Code Generation and Optimiza-
tion (CGO’09), Apr. 2010. to appear.

34. A. Zell, N. Mache, R. Hbner, G. Mamier, M. Vogt, K. uwe Herrmann, M. Schmalzl, T. Som-
mer, A. Hatzigeorgiou, S. Dring, D. Posselt, and M. R. Martin. Snns - stuttgart neural network
simulator, 1993.

