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The General Purpose Graphics Processing Unit (GPGPU) is now considered as a 

serious challenger of High Performance Computing (HPC) solutions because of its 

suitability for massively parallel processing and vector computation. However the 

energy usage of GPU has been continually increasing, high performance GPUs may 

become the largest power consumer in a HPC system. SIMD/SPMD (Single 

Instruction / Program Multiple Data) are parallel programming models that split up 
the tasks and run simultaneously on multiple processors with different input. CUDA 

Processing Element (PE) is a hardware unit composed by CPU and GPU that executes 

the streams of CUDA kernel instruction, several such PE can be bus-connected and 

one PE acts as a building block in the multiprocessing system. Multi-core and GPUs 

provide cooperative architectures in which both SIMD and SPMD programming 

models can co-exist and complement each other. MPI works as the data distributing 

mechanism between the GPU nodes and CUDA as the main computing engine. 

CUDA/MPI platform is becoming a important choice in data intensive HPC in varies 

of applications, however much less research has been carried out to tune the power 

performance of CPU-GPU PEs with integrated parallel programming paradigms.   

The power of a CMOS chip can be estimated by dynamic power, short circuit 
power and leakage power [1]. Dynamic power is dominant that can be evaluated by 

the capacitance switches/clock, operating voltage, clock frequency and chip 

temperature [1]. If a processor’s frequency and temperature are invariable, the power 

is only dependent on the number of executions. This means the varying amounts of 

computation energy depending on particular SIMD/SPMD task they perform at a 

given time. Therefore, the design of algorithms has impacts on the amount of power 

consumption and computer resources required for a given computing problem, and 

the existing performance tuning approaches such as code optimizations, cache 

strategy and workload parallelization can be also used for power tuning. For example 

in design level one can partition and map a problem to fit CUDA memory structure in 

order to well utilize fast shared memories, hiding data fetching latency and etc. we 

have shown in [2] that an enhanced CUDA kernel can save 91% of the energy by a 
simple kernel in matrix multiplications. Also by using parallel GPU [3], multi-threads 

in a CPU core collaborate with two GPUs can decreased 22% of the energy expense 

of one single GPU in computing the same problem. Other than performance 

optimization, traditional power tuning approaches manage power of computing 

systems by allowing manually/automatically adjust the frequency and voltage 

supplied to CPU, i.e. Dynamic Frequency Scaling (DFS) and Dynamic Voltage 

Scaling (DVS), which reduces both the amount of heat produced and electricity 

consumed.  

The power dissipation of a workload on systems composed of CPU-GPU PEs is the 

sum of the power consumption of the various components. The power can be 
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each other when CUDA kernels performing on them. Above specifications show the 

fundamental difference between CPU-GPU architecture and the typical CPU 

environment. This difference determines the solutions in choosing a proper technique 

of performance tuning and power tuning cannot be the same for above two platforms.  
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The fact that there are different computing elements involved inside one PE (i.e. 

CPUs and GPUs, rather than only CPUs) does not change the nature of power 

optimization problems, however the typical performance tuning techniques for CPU 

machine such as data-level parallelism, cache optimization and optimal instruction 

scheduling have to be updated specifically for the requirements of GPGPU 

architectures. Design of performance tuning mechanism for GPGPU is critically 

platform-dependent, in detail it needs to solve the following problems: 

1. The typical approaches of code optimization and cache strategy for CPU machine 

have to be redesigned based on GPGPU architecture. In CUDA memory model 

the GPU global memory is not cached; the frequently reused global data must be 

manually programmed to be loaded into the fast shared memory; a fast shared 
memory is shared only by threads in the same thread block. [4] This is a 

fundamental different with multi-core CPU [5] where the shared memory and the 

cache/memory hierarchies are dynamically partitioned among the active threads. 

2. Design level optimization of GPGPU algorithms on computing parallelization and 

data parallelization requires additional synchronization mechanisms because 

CUDA model is lack of efficient global synchronization. Synchronization across 

thread blocks can be accomplished only by a CPU host after completing CUDA 

kernel calls. The cost of synchronization will become more expensive when using 

parallel GPUs. Global synchronization techniques for parallel CPUs cannot be 

directly applied on GPGPU because of above limiting factors. 

3. A CUDA/MPI PE’s computation capacity is dependent on each individual CPU 
and GPU component inside the PE, and their interconnection architectures. Load 

scheduling and balancing methods for GPGPU are different with that for parallel 

CPUs. MPI communication buffer and bandwidth optimization needs to refer the 

target GPGPU memory characters because a host CPU and a GPU device have 

separate address space.  

4. The key design issues of DFS are performance prediction and frequency tuning by 

which a system can assign SPMD workloads to different processer to execute on a 

properly designed frequency. A CUDA kernel’s frequency is determined by the 

GPU which is controlled through a CPU host. The power efficiency of a 

CUDA/MPI PE is dependent on the collaboration of its CPU and GPU 

components. Only increase/decrease a CPU frequency may not be able to change a 
CUDA kernel’s speed. A list of CPU/GPU frequency combination along with its 

corresponding predicted performance is essential for DFS mechanism in choosing 

a preferable power and performance “step” option. Computation character is also 

important because the power in computing different workload may be different 

even on the same structure running in the same frequency.  

Solution to problem 1 and 2 is suggested by using compiler design optimization to 

provide language extensions and command line options to CUDA kernel code and let 

CPU auto-tuning system to guide CUDA optimizations. We approach a solution to 

problem 3 and 4 in program design level by manually measure the computation 

powers in order to create a performance profile for each CUDA/MPI PE in the system. 

The profile will include the number of component inside each PE; CPU/GPU 

frequency alternatives; computation characters along with its corresponding 
performance evaluation and the available “steps” for power tuning. Therefore global 

power tuning mechanisms will use the profiles as guidelines to optimize a 

computation in achieving the best power performance.  
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