
Power Tuning for High Performance Computing on

GPGPU Clusters with CUDA/MPI

DaQi Ren#†1, Reiji Suda#†2

#Department of Computer Science, University of Tokyo †JST, CREST, JAPAN
1dren@is.s.u-tokyo.ac.jp, 2reiji@is.s.u-tokyo.ac.jp

The General Purpose Graphics Processing Unit (GPGPU) is now considered as a

serious challenger of High Performance Computing (HPC) solutions because of its

suitability for massively parallel processing and vector computation. However the

energy usage of GPU has been continually increasing, high performance GPUs may

become the largest power consumer in a HPC system. SIMD/SPMD (Single

Instruction / Program Multiple Data) are parallel programming models that split up
the tasks and run simultaneously on multiple processors with different input. CUDA

Processing Element (PE) is a hardware unit composed by CPU and GPU that executes

the streams of CUDA kernel instruction, several such PE can be bus-connected and

one PE acts as a building block in the multiprocessing system. Multi-core and GPUs

provide cooperative architectures in which both SIMD and SPMD programming

models can co-exist and complement each other. MPI works as the data distributing

mechanism between the GPU nodes and CUDA as the main computing engine.

CUDA/MPI platform is becoming a important choice in data intensive HPC in varies

of applications, however much less research has been carried out to tune the power

performance of CPU-GPU PEs with integrated parallel programming paradigms.

The power of a CMOS chip can be estimated by dynamic power, short circuit
power and leakage power [1]. Dynamic power is dominant that can be evaluated by

the capacitance switches/clock, operating voltage, clock frequency and chip

temperature [1]. If a processor’s frequency and temperature are invariable, the power

is only dependent on the number of executions. This means the varying amounts of

computation energy depending on particular SIMD/SPMD task they perform at a

given time. Therefore, the design of algorithms has impacts on the amount of power

consumption and computer resources required for a given computing problem, and

the existing performance tuning approaches such as code optimizations, cache

strategy and workload parallelization can be also used for power tuning. For example

in design level one can partition and map a problem to fit CUDA memory structure in

order to well utilize fast shared memories, hiding data fetching latency and etc. we

have shown in [2] that an enhanced CUDA kernel can save 91% of the energy by a
simple kernel in matrix multiplications. Also by using parallel GPU [3], multi-threads

in a CPU core collaborate with two GPUs can decreased 22% of the energy expense

of one single GPU in computing the same problem. Other than performance

optimization, traditional power tuning approaches manage power of computing

systems by allowing manually/automatically adjust the frequency and voltage

supplied to CPU, i.e. Dynamic Frequency Scaling (DFS) and Dynamic Voltage

Scaling (DVS), which reduces both the amount of heat produced and electricity

consumed.

The power dissipation of a workload on systems composed of CPU-GPU PEs is the

sum of the power consumption of the various components. The power can be

1

modeled as () () () () where , ,

and represent the power of the system, GPU, CPU and memory including

data operation and transmission via

N M
i i j

system GPU CPU memory system GPU

i j

CPU memory

P w P w P w P w P P

P P

PCI buses, respectively. N and M is the number

of GPU and CPU that involved in the computing of workload w. and represent

the workload assigned to and , respectively. and are relate

i j

i j GPU CPU

w w

GPU CPU P P d to

each other when CUDA kernels performing on them. Above specifications show the

fundamental difference between CPU-GPU architecture and the typical CPU

environment. This difference determines the solutions in choosing a proper technique

of performance tuning and power tuning cannot be the same for above two platforms.

mailto:2dren@is.s.u-tokyo.ac.jp

The fact that there are different computing elements involved inside one PE (i.e.

CPUs and GPUs, rather than only CPUs) does not change the nature of power

optimization problems, however the typical performance tuning techniques for CPU

machine such as data-level parallelism, cache optimization and optimal instruction

scheduling have to be updated specifically for the requirements of GPGPU

architectures. Design of performance tuning mechanism for GPGPU is critically

platform-dependent, in detail it needs to solve the following problems:

1. The typical approaches of code optimization and cache strategy for CPU machine

have to be redesigned based on GPGPU architecture. In CUDA memory model

the GPU global memory is not cached; the frequently reused global data must be

manually programmed to be loaded into the fast shared memory; a fast shared
memory is shared only by threads in the same thread block. [4] This is a

fundamental different with multi-core CPU [5] where the shared memory and the

cache/memory hierarchies are dynamically partitioned among the active threads.

2. Design level optimization of GPGPU algorithms on computing parallelization and

data parallelization requires additional synchronization mechanisms because

CUDA model is lack of efficient global synchronization. Synchronization across

thread blocks can be accomplished only by a CPU host after completing CUDA

kernel calls. The cost of synchronization will become more expensive when using

parallel GPUs. Global synchronization techniques for parallel CPUs cannot be

directly applied on GPGPU because of above limiting factors.

3. A CUDA/MPI PE’s computation capacity is dependent on each individual CPU
and GPU component inside the PE, and their interconnection architectures. Load

scheduling and balancing methods for GPGPU are different with that for parallel

CPUs. MPI communication buffer and bandwidth optimization needs to refer the

target GPGPU memory characters because a host CPU and a GPU device have

separate address space.

4. The key design issues of DFS are performance prediction and frequency tuning by

which a system can assign SPMD workloads to different processer to execute on a

properly designed frequency. A CUDA kernel’s frequency is determined by the

GPU which is controlled through a CPU host. The power efficiency of a

CUDA/MPI PE is dependent on the collaboration of its CPU and GPU

components. Only increase/decrease a CPU frequency may not be able to change a
CUDA kernel’s speed. A list of CPU/GPU frequency combination along with its

corresponding predicted performance is essential for DFS mechanism in choosing

a preferable power and performance “step” option. Computation character is also

important because the power in computing different workload may be different

even on the same structure running in the same frequency.

Solution to problem 1 and 2 is suggested by using compiler design optimization to

provide language extensions and command line options to CUDA kernel code and let

CPU auto-tuning system to guide CUDA optimizations. We approach a solution to

problem 3 and 4 in program design level by manually measure the computation

powers in order to create a performance profile for each CUDA/MPI PE in the system.

The profile will include the number of component inside each PE; CPU/GPU

frequency alternatives; computation characters along with its corresponding
performance evaluation and the available “steps” for power tuning. Therefore global

power tuning mechanisms will use the profiles as guidelines to optimize a

computation in achieving the best power performance.

References

1. J. M. Rabaey. Digital Integrated Circuits. Prentice Hall. (1996)
2. Da Qi Ren, Reiji Suda, " Power Model of Large-Scale Matrix Multiplication on Multi-

core CPUs and GPUs Platform", Proceeding of PPAM 2009, Wroclaw. (2009)
3. Da Qi Ren and Reiji Suda, "Power Efficient Large Matrices Multiplication by Load

Scheduling on Multi-core and GPU platform with CUDA", Proceedings of the CSE 09, pp.
424-429, Vancouver, Canada. (2009)

4. NVIDIA, “CUDA programming guide 2.3”. (2009)
5. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic

Architecture. Intel Corporation. (2008)

