
Methods of Parallel Experimental Design of
Online Automatic Tuning and their Application

to Parallel Sparse Matrix Data Structure

Reiji Suda1

the University of Tokyo / JST, CREST

Abstract. Automatic tuning is one of key technologies in high perfor-
mance computing, where parallel processing is essential. In this paper,
we propose some methods of parallel experimental design for online au-
tomatic tuning of parallel programs. In parallel processing, two kinds of
tuning should be investigated. One is local tuning, which optimizes lo-
cal tuning parameters on each processor, and the other is global tuning,
that affects executions of all processors. This paper deals with local tun-
ing, and proposes three methods. The first method we consider is SEO
(Serial Experiments Once), where each processor once measures the per-
formance of all the candidates. The second method is PEO (Parallel
Experiments Once), where the candidates are evaluated in a distributed
manner over the parallel processors. Each processor observes the perfor-
mance of a subset of the candidates that are assigned to it. Then the
performance results are collected, and the candidate of the best perfor-
mance is chosen. The third method is MPEO (Modified PEO), where
each processor can replace the candidate chosen by PEO if it performs
badly. Pros and cons of those methods are discussed, and results of ap-
plication of those methods to an online optimization of parallel sparse
matrix data structure are shown.

1 Introduction

Automatic tuning or autotuning is now regarded as one of key technologies in
the future of high performance computing. There are several reasons. First, het-
erogeneous processing architecture with high performance accelerators, such as
Cell, ClearSpeed and GPU, is becoming the mainstream of high performance
computing. Architectural divergence requires software to adapt itself to var-
ious hardware platforms. Second, the high performance is sought by means of
higher parallelism, especially a hierarchy of parallelisms: SIMD parallelism, mul-
tiple instructions, multiple threads, multiple cores, multiple nodes, and multiple
clusters. It requires a hierarchy of parallelization of algorithms, and the opti-
mal mapping of the algorithmic parallelisms to the hardware parallelisms is a
non-trivial problem. Third, the progress of the high performance computers en-
courages the trials of solving more complex problems. Programs are becoming
more and more complex, and thus hard to tune. Automatic tuning is expected
to play an essential role to solve or at least mitigate those problems.



Research directions of automatic tuning can be problem specific as ATLAS[1]
and FFTW[2], or general purpose as ABCLibScript[3], AutoPilot[4], and com-
piler technologies[5–7]. Both directions are necessary for progress of automatic
tuning technology. This paper discusses an approach to a general purpose
technique of automatic tuning for parallel processing, accompanied with
an example of application to a specific problem, that is, data structure of parallel
sparse matrix operations.

In parallel processing, two kinds of automatic tuning should be investigated.
One is tuning of local parameters or local tuning, which optimizes tuning param-
eters whose influence is local to each processor, and the other is tuning of global
parameters or global tuning, that affects executions of all the processors. Both of
those two kinds of tuning are necessary in order to attain high performance in
parallel processing. In this paper, we discuss local tuning.

We propose methods of experimental design for online automatic tuning of
local parameters in parallel programs. Experimental design is an important topic
of statistics, where the plan of experiments is optimized so to collect information
efficiently. Our assumption here is that a finite number of alternative implemen-
tations, called candidates, are predefined, and the problem is to choose one of
the candidates for each execution so that the total execution time is minimal.
We consider online automatic tuning, where the experiments are done in the
practical executions, unlike offline automatic tuning, where the trial executions
to collect performance information are separated from the practical executions.
In online automatic tuning, the costs of the experiments for performance eval-
uation are included in the total execution costs, so it is crucial to reduce the
experimental costs and to collect performance information efficiently more than
in offline automatic tuning.

The author has considered possibilities of several kinds of automatic tuning
methods of parallel programs[8]. In this paper we propose three algorithmic
implementations of (part of) those ideas, and present their applications.

The first method is SEO (Serial Experiments Once), where each proces-
sor once measures the performance of all the candidates. Each processor chooses
the best candidate for it. The second method is PEO (Parallel Experiments
Once), where the candidates are evaluated in a distributed manner over the
parallel processors. Each processor observes the performance of a subset of the
candidates that are assigned to it. Then the performance results are collected,
and the candidate of the best performance is chosen, common for all the proces-
sors. If the true best choice differs on different processors, then PEO chooses a
suboptimal candidate. The third method is MPEO (Modified PEO), which
is a modification of PEO. In MPEO each processor can replace the candidate
chosen by PEO if it performs badly, or more specifically, worse than the candi-
date that performs best among those executed on that processor. Pros and cons
of those methods are discussed, and results of application of those methods to
an online optimization of parallel sparse matrix data structure are shown.

The rest of this paper is organized as follows. In the next section, we review
basic concepts. In section 3, the algorithm we propose in this paper is described.



Section 4 will discuss the results of an application of our method to the problem
of choosing data structure of sparse matrices. Section 5 is a summary of this
paper, where future works are also discussed.

2 Automatic Tuning

2.1 Basic Terms

First, we introduce basic terms that we use in the following discussions.
Assume that the target software has a tunable parameter, and by choosing

an appropriate value for that tunable parameter, the software can adapt to
the environments. In an abstraction it is enough to consider a single tunable
parameter, since multiple tunable parameters can be treated as a single vector
of tunable parameters. We assume the set of values that can be assigned to the
tunable parameter is finite, and call the assignable parameter the candidates.

Automatic tuning is a kind of optimization, where the objective function
must be defined. The objective function can be time, precision, energy dissi-
pation, monetary costs etc., but in this paper we assume the execution time
as the objective function. Abstract automatic tuning is a problem to choose a
value from the set of the candidates, with which value assigned to the tunable
parameter, the objective function (execution time) is minimal.

In automatic tuning, the optimization is done by experiments, that is, by
evaluating the performance of the software with a candidate value assigned to
the tunable parameter. It is known that the optimization can be more efficient if
the approximate performance model known to the programmer is utilized. Ac-
tually most of the autotuning research works utilize some form of performance
model to make the optimization efficient. But in this paper we assume no a
priori knowledge, and the optimization is conducted solely by experiments, as
in some cases where the developer has not enough a priori knowledge to pre-
dict the performance as a function of the tunable parameter. Also we assume
no perturbations in the performance measurements. We[9, 10] have proposed a
Bayesian method to treat those factors — a priori knowledge on the cost func-
tions and perturbations in the measurements. It is in our future works to combine
Bayesian method with the following methods in order to treat a priori knowledge
and measurement perturbations.

Tuning can be offline and online. In offline automatic tuning, the perfor-
mance measurements and optimizations are done beforehand, separately from
the practical executions. In practical executions, no trials, no measurements,
and no optimizations are done. Online automatic tuning is a completely oppo-
site idea. There will be no trials, no measurements, and no optimizations are
done except in the practical executions. In this paper, we assume online tuning.

2.2 Methods of Automatic Tuning of Parallel Programs

As is mentioned above, we deal with tuning of local parameters of parallel
programs in this paper. In general, the optimum values of local tunable param-
eter may be different on different processors. As we assume that no a priori



P1

P2

P3P3

P4

time

Fig. 1. Iterative computations in parallel processing — the rectangles represent com-
putations, and the vertical bars represent synchronous communications.

knowledge is available, the only way to find the true optimum choice is to try
all the candidates on each processor (which leads the idea of SEO). However, in
many cases, we can expect that the performance of a candidate on a processor is
correlated with its performance on another processor in a certain degree (which
implies the idea of PEO).

To mold the ideas into concrete algorithms, we need assumptions how the
processors interact each other. In this paper, we assume a simple model of data
parallelism, as shown in Figure 1. The following model is appropriate, for ex-
ample, with Krylov iterative linear solvers. The whole computation consists of a
number of identical iterations. An iteration consists of a computation part and a
communication part, where computations are independent and communication
is synchronous. The computations of different processors may be different, but
we assume some similarity. We assume some differences and correlations of the
performance results of the candidates on the processors. In this paper, we con-
sider automatic tuning of the computation part. Thus our aim is to minimize
the execution time of the computation part on each processor.

3 Proposed Methods

In this section, we describe our methods of online automatic tuning of parallel
programs. Let P be the number of processors, M be the number of the candi-
dates, and K be the number of iterations. Let Tip be the execution time of the
computation part with the ith candidate on the pth processor.

3.1 SEO (Serial Experiments Once)

SEO evaluates all the candidates on each processor, and chooses the best per-
formed one on each processor, independently. Figure 2 shows a pseudo-code of
SEO in a SPMD (Single Program Multiple Data) model.

SEO evaluates each candidate once on each processor. Once is enough because
we assume no perturbations of measured performance. After M iterations, each



(on the pth processor)
for k = 1 to K do

if (k ≤ M) then
Assign the kth candidate to the tunable parameter

else
if (k = M + 1) then

mp = argminm{Tmp}
endif
Assign mp to the tunable parameter

endif
Do the computation
if (k ≤ M)

Tkp = the execution time of the computation
endif
Do the communication and synchronization

endfor

Fig. 2. Pseudo-code of SEO

#1P1 #2 #3 #2 #2

#1

#1

P2

P3

#2

#2

#3

#3

#3 #3

#2 #2#1

#1

P3

P4

#2

#2

#3

#3 #1 #1

#2 #2

time

Fig. 3. SEO — all candidates are tried, and the choice is done independently on each
processor.

processor finds the best value for the tunable parameter for it. The best value
on the pth processor is mp in Figure 2, and it is used in the later iterations.

Figure 3 depicts an example execution of SEO. There are three candidates,
#1, #2, and #3. In the first three iterations, those candidates are chosen in each
processor. In the fourth and the later iterations, the candidate which gave the
minimum execution time is chosen on each processor.

The advantage of SEO is that it finds the optimum choice for all the proces-
sors. Thus it will be good for the number of iterations K is much larger than
the number of the candidates M . However it tries all the candidates for perfor-
mance evaluation, and the costs of that performance evaluation will be high if
the number of the candidates M is large. So it may perform badly if the number
of iterations K is relatively small.



3.2 PEO (Parallel Experiments Once)

Next we propose PEO, where parallel experiments are employed. PEO dis-
tributes the candidates into the processors. Each processor measures the perfor-
mance of the candidates that are assigned to that processor. The performance
data is gathered, and the candidate of the best performance is chosen on all the
processors.

We assume that the computation on each processor is similar but may not
be identical. Thus some processor may have more computations than the other
processors. What we want to know is the difference of the performance of the
candidates and not the difference of the computational loads of the processors.
So it is not sensible to compare the candidates in the computing time Tip.

We propose the following method. Before execution, one of the candidates
is chosen. Let us call it the reference candidate. In the first iteration, all the
processors use the reference candidate to measure the execution time Trp, where
r represent the reference candidate. The remaining M − 1 candidates are dis-
tributed among the processors, and evaluated on the assigned processors, from
the second iteration. After all the candidates are evaluated, we define relative
performance Rip of the ith candidate executed on the pth processor as

Rip = Tip/Trp

That is, the relative performance is the execution time relative to that of the
reference candidate. Then, we calculate the minimum of Rip, and the candidate
that gives the minimum of Rip is regarded as the optimum choice.

Figure 4 shows a pseudo-code of PEO. In this code, the reference candidate
is assumed to be numbered as 1. First K0 = ⌈(M−1)/P ⌉+1 iterations are dedi-
cated to experiments, and first of it is dedicated to the reference candidate. From
the second iteration to the K0th iteration, each processor evaluates one candi-
date per iteration. In the pseudo-code, PEO assigns the candidates cyclically
to the processors. In the K0 + 1st iteration, PEO determines which candidate
performed best in the past executions. In the pseudo-code, MPI Allreduce with
MPI MINLOC known in the MPI standard is used for illustration. That library
routine collects the first arguments from all processors, and calculates the min-
imum of the first element in the collected first arguments. Then the minimum
value is assigned to the first element of the second argument, and the second
element accompanied with the minimum value is assigned to the second element
of the second argument. The latter is m, which PEO regards the best choice.
Note that this MPI Allreduce is the only communication that PEO requires.

Figure 5 depicts an example execution of PEO. The reference candidate #1
is used in the first iteration on all the processors. In the second iteration, the
other candidates #2 and #3 are evaluated in parallel. In the third and the later
iterations, the candidate with the best relative performance is chosen, which is
#2 in this case.

The advantage of PEO is the small number of experiments. Most of the candi-
dates are evaluated only on one of the processors. As SEO requires M iterations
for performance evaluation, PEO requires only K0 ≈ M/P + 1 iterations for



(on the pth processor)
K0 = ⌈(M − 1)/P ⌉+ 1 // number of iterations for experiments
for k = 1 to K do

if (k = 1) then
Assign 1st (reference) candidate to the tunable parameter

else if (k ≤ K0) then
i = (((k − 1)P + p) mod (M − 1)) + 1 // cyclic assignment of candidates
Assign the ith candidate to the tunable parameter

else
if (k = K0 + 1) then

mp = argminm{Tmp/Trp}
MPI Allreduce((Tmpp/Trp,mp), (R,m),MPI MINLOC)

endif
Assign m to the tunable parameter

endif
Do the computation
if (k ≤ K0)

c = the chosen candidate
Tcp = the execution time of the computation

endif
Do the communication and synchronization

endfor

Fig. 4. Pseudo-code of PEO

performance evaluation. Thus PEO can find an approximate optimal choice in a
less cost than SEO. The number of iterations spent for performance evaluation
in PEO is almost 1/P of that of SEO. Thus, PEO will perform well if the number
of the candidates M is large, and if the number of the iterations K is relatively
small.

The disadvantage of PEO is that the chosen candidate (m in the pseudo-
code) is not always the very optimal on each processor. Thus the asymptotic
performance of PEO may be slightly lower than that of SEO. In cases the number
of iterations K is large, the accumulated performance difference may be larger
than the difference of the costs of performance evaluation. If K is much larger
than M , then SEO will perform better than PEO.

3.3 MPEO (Modified Parallel Experiments Once)

MPEO is based on PEO. MPEO has a disadvantage that the chosen candidatem
may not be optimal on some processors. In MPEO, each processor compares m
(the chosen candidate) and the candidates known to the processor, and chooses
the latter if it seems better than m. Figure 6 is a pseudo-code of MPEO.

The only differences of MPEO from PEO are the four lines from the line
with the comment “local improvement,” and the line with comment “record
performance.” After K0+1st iteration, the performance of m (which is regarded



#1P1 #2 #2 #2 #2

#1

#1

P2

P3 #2

#3

#2

#2

#2

#2

#2

#2

#1

#1

P3

P4

#2

#3

#2

#2

#2

#2

#2

#2

time

Fig. 5. PEO — all candidates are distributed, and the choice is done based on the
performance relative to the reference.

as the global optimum) is evaluated (“record performance”). Then it is compared
with the other candidates that have already been evaluated on that processor,
and if the latter is better than the former, the latter is chosen on that processor
(“local improvement”). Thus MPEO fully utilizes the available performance data
on each processor. Again note that the only communication that MPEO requires
is a single call of MPI Allreduce.

Figure 7 depicts an example execution of MPEO. For the first three iterations,
it goes in the same way as PEO. However before the fourth iteration, the observed
performance of the candidate #2 is compared with the other candidates whose
performance has been observed on each processor. In some processors, candidates
other than #2 can be chosen in the fourth and the later iterations.

PEO will work well if the computations on the processors are identical. In
that case, each candidate shows the same performance on every processor, thus
it is enough to evaluate it on one of the processors. However, if the computa-
tion parts on the processors are different, performance measured on a processor
may not be very informative for the other processors. To obtain accurate perfor-
mance information, one has to pay the costs of experimental executions. MPEO
tries to reduce this difficulty with the minimum additional costs, without doing
any additional experiments, by choosing the best candidate from those whose
performance on each processor is already known.

Considering only of the execution times of the computational parts, MPEO
will perform better than PEO. Looking at more precisely, MPEO requires a
little more computations, one more performance measurement, and change of
the tunable parameter. Thus there can be cases where MPEO performs slightly
lower than PEO.

4 Application to Parallel Sparse Matrix Data Structure

In the previous section, we have shown three methods, SEO, PEO and MPEO
for online automatic tuning of parallel programs. From the discussion, we can



(on the pth processor)
K0 = ⌈(M − 1)/P ⌉+ 1 // number of iterations for experiments
for k = 1 to K do

if (k = 1) then
Assign 1st (reference) candidate to the tunable parameter

else if (k ≤ K0) then
i = (((k − 1)P + p) mod (M − 1)) + 1 // cyclic assignment of candidates
Assign the ith candidate to the tunable parameter

else
if (k = K0 + 1) then // approximate global minimum

mp = argminm{Tmp/Trp}
MPI Allreduce((Tmpp/Trp,mp), (R,m),MPI MINLOC)

else if (k = K0 + 2) then // local improvement
if (Tmpp < Tmp) then

m = mp

endif
endif
Assign m to the tunable parameter

endif
Do the computation
if (k ≤ K0 + 1) // record performance

c = the chosen candidate
Tcp = the execution time of the computation

endif
Do the communication and synchronization

endfor

Fig. 6. Pseudo-code of MPEO

conclude that, MPEO will perform no worse than PEO, and MPEO will perform
better than SEO when the number of iteration K is relatively small and the
number of candidates M is relatively large.

This section shows an application of those methods to parallel sparse matrix
implementation. The objective of this section is to confirm the above properties
of the tuning methods.

4.1 Sparse Matrix Data Structures

The candidates in the following experiments are the data structures of sparse
matrices. Sparse matrices are matrices whose elements are mostly zeros. In ma-
trix operations, such as the product of a matrix and a vector, zero elements have
no effect on the result. In such cases, it is enough to store and to access data
regarding only non-zero elements. By doing so, both the computational time and
the memory usage can be saved.

Several data structures for sparse matrices have been proposed. If the places
of the non-zero elements of the given matrix has some characteristics — for



#1P1 #2 #2 #2 #2

#1

#1

P2

P3 #2

#3

#2

#2

#2 #2

#3 #3

#1

#1

P3

P4

#2

#3

#2

#2

#2 #2

#1 #1

time

Fig. 7. MPEO — similar to PEO, but the candidate of the best performance observed
on each processor is chosen before the 4th iteration.

example, all non-zero elements are on a few lines parallel to the diagonal, or,
the non-zero elements appear in a 3 × 3 dense block in the matrix — then a
data structure that utilize such characteristics will be efficient. For matrices for
which none of the known characteristics applies, general data structures should
be used.

Let us predefine several data structures as candidates, and choose one for each
given matrix. There are several research works on automatic tuning of sparse
matrix data structures (e.g. [11, 12]). They build a mathematical model formula
that predicts the performance of each data structure when applied to the given
matrix. However, in this paper, we do not assume any performance model. We
rely on experiments, and use the online automatic tuning methods described in
Section 3.

4.2 Candidate Data Structures

First we discuss data structure on each processor, and then discuss how parallel
computation is implemented.

We employ a subset of sparse matrix data structures defined in a sparse solver
library lis[13]. We implemented those data structures by ourselves, rather than
using the lis library. The reason is this: lis is a sparse matrix solver, so it assumes
square matrices. However, we assume parallel processing, where matrices are
distributed into the processors with block distribution in the row direction (which
is standard in parallel iterative solvers). Then each processor treats a rectangular
submatrix. Although it is not impossible to treat rectangular matrices in data
structures for square matrices, it is better to use data structures for rectangular
matrices.

We implemented the following data structures.

1. Coordinate (COO),
2. Compressed Row Storage (CRS),
3. Compressed Column Storage (CCS),



4. Modified compressed Sparse Row (MSR),
5. Modified compressed Sparse Column (MSC),
6. Diagonal (DIA),
7. Jagged Diagonal Storage (JDS),
8. Block compressed Sparse Row (BSR),
9. Block compressed Sparse Column (BSC).

We omit the detailed definitions of those data structures, partly because none
of them is new, and partly because we do not build any performance model for
them. They are described in [13]. Just let us mention some characteristics of
those data structures.

COO, CRS and CCS are general purpose data structures. They do not store
any zero elements. Usually CRS outperforms COO and CCS in cache-based
architectures. MSR and MSC are modifications of CRS and CCS, respectively,
and perform slightly better if the diagonal elements are nonzero (as is often seen
in scientific computing). They treat diagonal elements in a way different from
the other elements. We modified the data structure (from the implementation of
lis) so that an arbitrary line parallel to the diagonal can be the treated in such a
special way. This is required when it is used in parallel processing: The diagonal
of the whole matrix may not be the diagonal of the submatrix assigned to a
processor. DIA works well if the non-zero elements are on a few lines parallel to
the diagonal. JDS is known to perform well on vector processors. BSR and BSC
assume that the non-zero elements are in submatrices with size r × c, where r
and c is constants. In our implementation, if the number of rows is not a multiple
of r, we add a few (less than r) rows in CRS form. Similarly, if the number of
columns if not a multiple of c, we add a few (less than c) columns in CCS form.
We wrote routines for the product of a matrix in BSR or BSC data structure
and a vector, where the computations with r × c blocks are fully unrolled for
1 ≤ r ≤ 4 and 1 ≤ c ≤ 4 (thus 16 routines for each of BSR and BSC, but we
don’t use those with r = c = 1). We have 7 + 15 + 15 = 37 candidates. Figure 8
plots the execution times of matrix-vector products with those data structures,
for matrix af23560 distributed over 32 processors. For this matrix BSR performs
best, but the best block sizes varies.

For parallel processing, we use MPI (so-called flat MPI). The matrix is di-
vided into several submatrices. To each processor consecutive rows are assigned.
The matrix is divided so that each processor has approximately equal number
of rows. This is known as block distribution, and one of the standard methods
of parallel sparse matrix computations. Each processor stores the submatrix as-
signed to it, and the parts of vectors which are accessed in matrix-vector product
operations. In this experiment, the vector values are not communicated among
the processors. Instead, MPI Barrier is called after the computation in each
iteration.

4.3 Online Automatic Tuning Methods

The computations in the performance evaluation are done in the following way.
First, the matrix is loaded from a file on the memory in COO data structure. The



8.E 05

1.E 04

Time COO

4 E 05

6.E 05

CRS,!CCS,

MSR MSC

2.E 05

4.E 05

BSR BSC

MSR,!MSC,

DIA,!JDS

0.E+00

1 4 7 10 13 16 19 22 25 28 31 34 37

Data!structure

Fig. 8. Performance of matrix data structures for af23560

matrix file is formatted in MatrixMarket format, from which COO is most con-
venient to convert. So we also use COO data structure as the reference candidate
in PEO and MPEO.

The COO data structure on each processor is kept in the computation. When
a data structure other than COO is used, the data structure is generated from
COO data structure. We call this operation conversion. To convert a sparse
matrix in the COO data structure into another data structure, computations
and memory are needed. We implemented conversion routines from COO to the
other data structures. To convert from COO to BSR and BSC, CRS and CCS
are used temporarily, respectively. There can be several possible algorithms of
conversions, and we employ an algorithm which requires memory and computa-
tions linear to the output data structure. Conversions are independently done
on each processor.

For the set of the candidates, we employ 37 data structures discussed in the
previous section. As is mentioned above, COO data structure is kept throughout
the iterations. In addition to COO, we keep a second data structure, say, CRS,
on memory. If another data structure than them, for example CCS, is to be
used, then CRS is destroyed, and CCS is constructed. The time for a conversion
is typically 5 to 20 times longer than the time of a matrix-vector product. Thus
trying a new data structure is quite costly.

As methods of online automatic tuning, we employ SEO, PEO, and MPEO
discussed in Section 3. As is already mentioned, COO data structure is used
as the reference candidate in PEO and MPEO. In addition, for a compara-
tive purpose, we implemented NoTune, where only COO data structure is used
throughout the iterations. It requires no conversion, so it can be efficient if the
number of iterations (K in Section 2) is very small.

4.4 Experimental Results

We use TSUBAME supercomputer in Tokyo Institute of Technology. Each node
has eight sockets of dual core AMD Opteron CPU (16 cores on a node) in 2.4



GHz, connected with 4× SDR InfiniBand. Compiler is PGI C compiler version
7.2 and the used option is -O4. OS is SUSE Linux Enterprise Server 10 SP2.

Table 1 shows the tested matrices. They are obtained from the University of
Florida Sparse Matrix Collection [15]. It is a collection of thousands of matrices,
and from that we chose a few real unsymmetric matrices which show different
characteristics. We have also tried many other matrices, and those matrices listed
in Table 1 showed representative performance characteristics. The best data
structure in Table 1 is the data structure chosen on the majority of processors
in SEO. For torso2, various data structures were chosen on different processors
in SEO.

Table 1. Test Matrices

Matrix Size Nonzeros Best Data Str. Problem

af23560 23, 560× 23, 560 460,598 BSR Fluid
ted A 10, 605× 10, 605 424,587 DIA Thermal
xenon1 48, 600× 48, 600 1,181,120 BSR Materials
torso2 115, 967× 115, 967 1,033,473 depends 2D/3D

Table 2 shows the performance results. The results are shown in the form of
α+ βn. This approximates the execution time of n iterations in ms. The figures
α and β are calculated as follows. The number of iterations is chosen as 50. Since
we have 37 candidates, the chosen method is fixed before 38th iteration in SEO,
and the last 10 iterations are executed with the finally chosen candidate. The
execution time per iteration β is determined as the average execution time of
the last 10 iterations. The startup time α is determined so that α+ 50β equals
the total execution time of 50 iterations.

First let us discuss about β, which is the execution time per iteration. In
most cases, β is larger for NoTune (without automatic tuning) than SEO and
MPEO (with automatic tuning). In many cases, SEO outperforms PEO in terms
of β. However, β of SEO and MPEO are comparable. Only from Table 2, we can
hardly say that β of PEO is consistently smaller than that of NoTune.

Next investigate on α, which represents the overheads of the experiments for
automatic tuning. It is natural that α ≈ 0 for NoTune. The overheads of SEO,
PEO and MPEO are significant. In many cases α is larger than β for two or
three orders of magnitude. This suggests that the automatic tuning is effective
when the number of iterations n is larger than 100 or 1000. Differences of PEO
and MPEO from SEO are clear. Overheads of SEO are much higher than those
of PEO and MPEO.

In summary, the proposed MPEO successfully tunes the parallel data struc-
ture of sparse matrices with much lower overheads than SEO.

As is shown in Table 2, the measured performance is unstable in some cases.
Thus our assumption that no perturbation is observed in performance evalu-
ations is not true. Sometimes the performance figures are superlinear, but we



Table 2. Performance Results — total execution time approximated as α + βn (ms)
where n is the number of iterations, 2 significant figures

Matrix P NoTune SEO PEO MPEO

af23560 4 0.0 + 2.9n 730 + 1.3n 230 + 2.1n 200 + 1.5n
af23560 8 0.89 + 0.66n 390 + 0.25n 80 + 0.32n 110 + 0.39n
af23560 16 0.0 + 0.27n 130 + 0.20n 17 + 0.20n 26 + 0.18n
af23560 32 1.1 + 0.23n 70 + 0.34n 4.4 + 0.34n 5.1 + 0.38n

ted A 4 0.0 + 3.5n 1100 + 1.2n 140 + 29n 250 + 1.1n
ted A 8 1.4 + 1.5n 690 + 0.46n 88 + 0.57n 82 + 0.41n
ted A 16 0.61 + 0.35n 250 + 0.27n 39 + 0.24n 47 + 0.20n
ted A 32 0.0 + 0.40n 71 + 0.43n 4.7 + 0.47n 12 + 0.62n

xenon1 4 17 + 4.9n 2000 + 2.6n 630 + 3.0n 640 + 2.4n
xenon1 8 1.8 + 3.1n 1100 + 1.6n 460 + 3.9n 260 + 1.5n
xenon1 16 16 + 1.2n 720 + 0.32n 140 + 1.3n 140 + 0.82n
xenon1 32 1.5 + 0.34n 490 + 0.36n 33 + 0.26n 62 + 0.23n

torso2 4 13 + 4.9n 3900 + 3.6n 2200 + 3.6n 1400 + 3.7n
torso2 8 3.4 + 3.5n 1200 + 2.0n 380 + 2.1n 380 + 2.8n
torso2 16 7.2 + 1.4n 660 + 0.58n 120 + 0.38n 130 + 0.49n
torso2 32 1.4 + 0.26n 290 + 0.26n 49 + 0.32n 72 + 0.25n

guess that they come from the instability of the performance. We have mea-
sured the execution times of the computational parts and the communication
(synchronization) parts separately, and found that the unstable execution time
is mostly due to the communication parts. The instability must be the reason
why sometimes SEO performs slightly worse than MPEO.

5 Conclusion

In this paper, we have proposed methods of parallel experiments for online au-
tomatic tuning of parallel programs. As far as the author knows, this is the first
discussion of parallel online automatic tuning of parallel programs with parallel
experiments. In our experiments, MPEO has been able to choose sub-optimal
data structures in parallel sparse matrix-vector products, while SEO can give the
optimal choice and thus be the best method for asymptotically many iterations.

In this paper, we assume that no a priori information about the performance
of the candidates is available, and that no perturbation is observed in perfor-
mance evaluation. Those factors are considered in the works such as [9] in a
Bayesian framework. Our future plans include application of Bayesian frame-
work in parallel experimental design for parallel processing.

Our algorithms discussed in this paper assume a very simple model of parallel
processing as shown in Figure 1. This model is appropriate to several important
applications of high performance computing. But it will be beneficial to investi-
gate automatic tuning methods for other parallel processing models such as task
parallel models.



Acknowledgements

This work is partially supported by Grant-in-Aid for Scientific Research “Re-
search on Mathematical Core for Robust Auto-Tuning System in Information
Explosion Era” of MEXT Japan, and Core Research of Evolutional Science and
Technology (CREST) project “ULP-HPC: Ultra Low-Power, High-Performance
Computing via Modeling and Optimization of Next Generation HPC Technolo-
gies” of Japan Science and Technology Agency (JST).

References

1. Whaley, R. C. and Dongarra, J. J.: Automatically Tuned Linear Algebra Software,
Proceedings of SC98, (CD-ROM), 1998.

2. Frigo, M. and Johnson, S. G.: FFTW: an adaptive software architecture for the
FFT, Proceedings of ICASSP ’98, Vol. 3, pp. 1381–1384, 1998.

3. Katagiri, T., Kise, K., Honda, H., and Yuba, T.: ABCLibScript: A directive to
support specification of an auto-tuning facility for numerical software, Parallel
Computing, Vol. 32, No. 1, pp. 92–112, 2006.

4. Ribler, R. L., Simitci, H., Reed, D. A.: The Autopilot performance-directed adap-
tive control system, Future Generation Computer Systems, Vol. 18, No. 1, pp. 175–
187, 2001.

5. Kulkarni, P., et al.: Practical exhaustive optimization phase order exploration and
evaluation. ACM TACO, Vol. 6, No. 1, 2009.

6. Chen, C, et al.: Model-Guided Empirical Optimization for Multimedia Extension
Architectures: A Case Study. IPDPS 2007. pp. 1-8, 2007.

7. Fursin, G., et al.: MiDataSets: Creating the Conditions for a More Realistic Eval-
uation of Iterative Optimization. HiPEAC 2007, pp. 245-260, 2007.

8. Suda, R.: Mathematical Models for Software Automatic Tuning on Parallel Pro-
cessors, Proc. Ann. Meeting of JSIAM, pp. 13–14, 2009.

9. Suda, R.: A Bayesian Method for Online Code Selection: Toward Efficient and
Robust Methods of Automatic Tuning, Proc. 2nd Int’l Workshop on Automatic
Performance Tuning (iWAPT2007), pp. 23–32 (2007).

10. Suda. R.: Mathematics of Software Automatic Tuning, Proc. IPSJ, Vol. 50, No. 6,
pp. 487–493, 2009.

11. Vuduc, R., Demmel, J. W. and Yelick, K. A.: OSKI: A library of automatically
tuned sparse matrix kernels, Proc. SciDAC 2005, Journal of Physics: Conference
Series, 2005.

12. Im, E.-J., Yelick, K., and Vuduc, R.: SPARSITY: An optimization framework
for sparse matrix kernels, Int’l J. of High Performance Computing Applications,
Vol. 18, No. 1 pp. 135–158, 2004.

13. Kotakemori, H., et. al: Performance Evaluation of Parallel Sparse Matrix–
Vector Products on SGI Altix3700, First International Workshop on OpenMP
(IWOMP2005), LNCS Vol. 4315, pp. 153–163, 2008.

14. The Matrix Market,
http://math.nist.gov/MatrixMarket/

15. The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/


