
Adaptive auto-tuning of TCP pacing

Naoki Tanida1, Mary Inaba1, and Kei Hiraki1

The University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo, Japan

Abstract. Distributed computing such as cloud computing is getting
prevalent in high-performance computing. For super-large-scale compu-
tation by connecting supercomputers scattering all over the world, it is
important to optimize the communication among them. However, it is
difficult to achieve high performance in TCP communication on long-
distance paths like inter-cluster networks. It is important to limit the
maximum transmission speed properly by pacing according to the la-
tency and ever-changing condition of the network. This paper proposes
adaptive auto-tuning of TCP pacing that tunes the pacing speed dynam-
ically depending on the network situation that is difficult by static and
manual approach. We introduce two types of dynamic pacing and com-
bine them with BIC TCP congestion control in the sender. To avoid the
packet loss that causes performance deterioration, our method suppresses
burst transmission, estimates available bandwidth and limit the excess
growth of the congestion window size. In the experiments on 10 Gbps
networks with arbitrary large delay, we found our proposal improves the
TCP performance in parallel TCP communication.

Keywords: auto-tuning, transmission control protocol, congestion con-
trol, pacing

1 Introduction

The performance of computer has been advanced with the evolution of calcula-
tion and communication speed. Current supercomputers have achieved petascale
computing speed by connecting many computing nodes locally in a supercom-
puting center. To support users without system-specific knowledge, auto-tuning
technology for clusters has been well investigated in computation such as nu-
merical libraries. However, distributed computing such as cloud computing is
getting prevalent in high-performance computing because of its user-friendliness
and small restriction of power consumption and installation area. In distributed
high-performance computing, it is indispensable to speed up various commu-
nication including in-cluster low-latency communication and inter-cluster long-
distance communication, as well as calculation. Especially for super-large-scale
computation by connecting supercomputers scattering all over the world, it is
important to optimize the communication among them.

Use of the transmission control protocol (TCP) is desirable for the inter-
cluster communication, because clusters all over the world are generally con-
nected on the Internet with TCP protocol. However, it is difficult to achieve high



performance in TCP communication on long-distance paths like inter-cluster
networks. In the distributed supercomputing such as distributed astronomical
simulation [11, 19], optimization according to the distance and condition of the
network paths, especially TCP optimization, is required to achieve stable high-
performance of communication on shared network. As for TCP optimization,
there are several researches on auto-tuning of the congestion window size (cwnd).
For example, Semke et al. [14] implemented in the NetBSD kernel automatic tun-
ing of the TCP window size in the sender/receiver. They allocated proper size of
window dynamically to improve the performance of TCP, saving as many mem-
ory as possible. However, in the real distributed simulation, manual tuning of
many TCP parameters and properly limiting the maximum transmission speed
by pacing [2] are still required as we describe in Section 2. It has been almost
impossible to perform distributed supercomputing without network specialists.

When data are transferred simply from one server to the other server on
dedicated networks, the pacing speed can be tuned statically according to the
network paths. On the other hand, when multiple servers transfer data in paral-
lel and the throughput dynamically changes, it is important to tune the pacing
speed automatically and adaptively according to the latency and ever-changing
condition of the network. This paper proposes adaptive auto-tuning of TCP pac-
ing that tunes the pacing speed dynamically depending on the network situation
that is difficult by static and manual approach.

The rest of this paper is organized as follows. Section 2 describes the summary
of TCP congestion control and the necessity of pacing in high-speed long-distance
TCP communication. Section 3 presents the design and implementation of our
proposal. Section 4 includes the evaluation of our proposal. Section 5 describes
the related work and Section 6 gives conclusion.

2 Background

2.1 TCP

TCP [13, 4] is the standard transport layer protocol on the Internet. TCP is a
connection-oriented, end-to-end reliable protocol that supports flow control and
congestion control. TCP uses sliding window flow control. The receiver returns an
acknowledgment packet (ACK) to the sender to acknowledge a data packet. The
sender decreases the window when packets are sent and increases it when ACKs
are received. Thus the window slides and inflight packets, packets transmitted
from the sender and not ACKed yet, are limited to the packets in the window
(Fig. 1). The amount of data sent for round-trip time (RTT) period is limited to
the window size and this ACK-triggered RTT periodical window size control is
called self-clocking. This window size is limited by several windows: congestion
window, send window, receive window and advertised window. Especially the
congestion window is used to control throughput in TCP congestion control.

Many TCP congestion control algorithms have been proposed and improved.
The first algorithm is Tahoe [9]. The slow start, congestion avoidance and fast



packet packet packet packet packet packet packet packetACKed
window

Not sent yet
・・・ ・・・packet packet packet packet

Fig. 1. Sliding window

retransmission are adopted in Tahoe. The slow start is a strategy for controlling
a congestion window that the sender set its cwnd to 1 when a TCP session is
established and it is exponentially increased after that. The purpose of the slow
start is to prevent the traffic from suddenly inflowing to networks. The conges-
tion avoidance is another strategy for controlling the congestion window. In the
congestion avoidance phase, cwnd is linearly increased, i.e. cwnd is increased by
1 maximum segment size (MSS) for each ACK. This is called additive increase.
The slow start is used when cwnd is smaller than a certain threshold, slow start
threshold (ssthresh), and otherwise the congestion avoidance is used. The re-
ceiver returns a duplicate acknowledgment (DACK) packet when it receives an
out-of-order packet. A DACK can be interpreted that a packet is likely to be
lost. Then waiting for RTO to retransmit the packet is inefficient. Thus after the
sender receives three consecutive DACKs, it retransmits the corresponding data
packet before RTO. This is called fast retransmission. After the fast retransmis-
sion or RTO, cwnd is decreased to 1.

Reno [8] is the second algorithm. In Reno, fast recovery is added to Tahoe.
When fast retransmission succeeds, the network congestion can be considered le-
nient. Thus, after the successful fast retransmission, cwnd is only halved to speed
up the recovery. This is called multiplicative decrease. Thus, cwnd is controlled in
an additive increase multiplicative decrease (AIMD) manner. When selective ac-
knowledgment (SACK) option [12] is enabled, the receiver can acknowledge not
only the last packets received in-order but also the range of packets received.
Then the sender can retransmit only the packets that are losts. However, when
SACK is unavailable and multiple packets are lost in a window, the ACK for the
retransmitted packet acknowledges not all the packets transmitted before fast
transmission, and unnecessary fast transmission is invoked improperly.

NewReno [3] is the revised version of Reno. The fast recovery is modified in
NewReno so that it works correctly even when SACK option is unavailable [7].
NewReno keeps fast recovery until all the packets in the window at the time of
entering fast recovery are acknowledged. However, NewReno has still problem
in RTT fairness. When multiple NewReno flows with different RTT share the
same network path, a flow with smaller RTT attains more throughput than other
flows, because cwnd is increased every RTT.

Most modern algorithms are based on NewReno. BIC [18] improves RTT
fairness. In the fast recovery phase, the next cwnd is set to the midpoint be-
tween current size and the size at the last packet loss. This behavior is repeated



like binary search. This is called binary search increase. In addition, when the
distance to the midpoint from current size is too large, additive increase is used
to reduce the impact to other traffic. Thus, in BIC, binary search increase is
combined with additive increase to improve RTT fairness. This is called binary
increase. When a TCP flow controlled by a congestion control algorithm does
not take throughput out of a NewReno flow and vice versa, it is TCP friendly.
BIC is well designed with TCP friendliness in mind. BIC also improves band-
width scalability for the use on long fat-pipe networks (LFNs). BIC introduces
fast convergence to fasten balancing the fairness among TCP flows. In the fast
convergence, binary search increase is modified so as to slow down increasing
cwnd of the flow with larger window size than other flows. These algorithms
described above are classified into loss-based congestion control because they
detect the network congestion by the packet loss.

2.2 Pacing

As we described above, TCP has been improved in many aspects. However, it
is still difficult to get high throughput in TCP communication on LFNs. Many
studies have been carried out to improve the performance. Self-clocking is orig-
inally a mechanism to suppress the bursty transmission by limiting the amount
of data sent for RTT period to the window size. On LFNs, however, the window-
size data is transmitted at once in the beginning of the RTT period and no data
are sent for the rest of the RTT period. Thus TCP flows over LFNs cause RTT
periodical bursty traffic. When multiple bursty flows are merged into one flow
in a switch, large buffer is required to absorb the temporarily over-bandwidth
packets (Fig. 2). Once the packet is lost by buffer overflow, it takes much time
to recover cwnd on LFNs because it is increased in a stepwise fashion in RTT
interval. The required time to recover the same cwnd is proportional to RTT
when TCP is in the congestion avoidance phase.

SwitchRTT
Background traffic

Bursty traffic Switch buffer is too small to absorb all the excess over bandwidth

Fig. 2. Burst traffic causes the packet loss even when total traffic throughput is less
than the network bandwidth

Pacing [2] is a method to smooth the bursty traffic by allocating a proper size
of gap between packets to suppress the instantaneous maximum transmission
speed (Fig. 3). Pacing can avoid the packet loss caused by bursty traffic and



improve the TCP performance. Pacing has grown a popular solution to the
bursty behavior of the TCP flow on LFNs. However, controlling transmission
speed in userland software does not work as pacing. This is because the data are
first stored in the transmission queue in the kernel space and then they are sent
to the network as fast as the network speed.

Switch
Background traffic

RTT OKPacing

Fig. 3. Pacing

Takano et al. proposed “Precise Software Pacer (PSPacer)” [17]. PSPacer
is a software implementation of pacing in the Linux kernel. PSPacer inserts a
PAUSE frame, which is used in the flow control mechanism in IEEE 802.3 [1],
between Ethernet frames to control the transmission speed.

Controlling the size of inter-packet gap (IPG), also regulated in IEEE 802.3
[1] in the media access control (MAC) is another way of pacing. Many network
interface card (NIC) support modifying the device register to control the IPG
in its MAC. Interlayer coordination [10] is proposed as a pacing technique for
high-speed TCP communication on LFNs. IPG control is a link layer protocol
technique. In interlayer coordination, however, IPG control is used for optimizing
the TCP flow, i.e. optimizing the transport layer. The IPG-controlled NIC can
be used for only one TCP session because this is applied to all the transmission
packets of the NIC. However, this is still an effective way of pacing because it
does not wastes any CPU time or memory load.

As for parallel TCP communication, network congestion occurs by the par-
allel flows themselves. One solution is statically calculating available bandwidth
for each flow and pacing to the available bandwidth so as not to cause net-
work congestion. However, this solution cannot apply to networks where the
throughput of each flow and the number of flows are ever changing. It is shown
that hardware-based fine scheduling of the packets flowing into the intermediate
switch works as pacing and it can balance the throughput of each TCP flow and
avoids network congestion [16]. However, it is sometimes difficult to setup such
a special hardware on the network paths.



3 Adaptive auto-tuning of TCP pacing

3.1 Design

As we described above, pacing is well researched and implemented for TCP
communication on LFNs. However, existing static or special hardware approach
to pacing cannot always be applied. This paper proposes adaptive auto-tuning of
TCP pacing that tune the pacing speed dynamically depending on the network
situation that is difficult by static and manual approach. We introduce two
types of dynamic pacing and combine them with BIC TCP congestion control in
the sender. In our method, pacing speed is determined by end-to-end available
bandwidth estimation. To estimate available bandwidth, no special device is used
on the network path and no additional packet is transmitted to the network. In
addition, there is no modification in the receiver. The first type of pacing offers
three purposes: to avoid the packet loss caused by bursty traffic, to estimate the
available bandwidth precisely and to evaluate the “stability” of the background
traffic. The second type of pacing is to reduce the packet loss caused by excess
growth of cwnd. Either one of two types of pacing is always enabled. They are
switched over depending on the situation.

Congestion window pacing The first type of pacing is called congestion win-
dow pacing (CWP). CWP is the default pacing of our proposal. CWP limits the
maximum transmission speed to cwp speed = cwnd/rtt where cwp speed is the
CWP speed, cwnd is cwnd and rtt is the RTT of the network path. The first
purpose of CWP is to avoid the packet loss caused by the bursty behavior of
TCP traffic on LFNs. In the TCP session, inflight data size during RTT period
is limited to cwnd and the network stack tries to transmit all the cwnd data dur-
ing RTT period. In order to transmit cwnd data during RTT period, the sender
must transmit packets at least cwp speed and the transmission speed is limited to
cwp speed in CWP. Thus transmission speed is smoothed to exactly cwp speed
by CWP and the packet loss caused by bursty traffic is avoided. The second pur-
pose of CWP is to estimate the available bandwidth for the TCP session. In the
loss-based TCP congestion control algorithm, network congestion is detected as
the packet loss. In addition, when CWP works, the transmission speed is exactly
cwp speed. Thus the available bandwidth at the time of packet loss is estimated
precisely as cwp speed. When the packet loss is detected, cwp speed is recorded
as eab, the estimated available bandwidth at the last time of the packet loss. The
third purpose of CWP is to evaluate the “stability” of the background traffic.
When the difference of two eab at the time of consecutive packet losses is small,
the variation of background traffic can be considered small. Then the network
path is evaluated as “stable”. On the other hand, when the difference is large,
the network path is evaluated as “unstable” (Fig. 4). This evaluation is used to
determine the period of the second type of pacing.

Estimated available bandwidth pacing The second type of pacing is called
estimated available bandwidth pacing (EABP). EABP limits the maximum trans-



TimeCongestio
n window 
size stable unstable

AvailablebandwidthTimeCongestio
n window 
size

Fig. 4. Available bandwidth estimation

mission speed to eab,. The purpose of EABP is to reduce the packet loss caused
by excess growth of cwnd. When EABP works, cwnd is not increased by ACK
and the throughput is maintained. EABP begins to work when cwp speed reaches
more than 90% of the last-recorded eab and keeps working for timeeabp period.
At first timeeabp is 1 second. When the network path is evaluated as “stable”,
timeeabp is prolonged in an exponential backoff way: 1 second, 2 seconds, 4
seconds, ... (Fig. 5). On the other hand, when it is evaluated as “unstable”,
timeeabp is reset to 1 second. EABP is aborted and CWP begins to work when
the packet is lost or when timeeabp time passes. The period of EABP is limited
to timeeabp because the congestion window size should be increased when avail-
able bandwidth is increased. timeeabp is not reset even when EABP is aborted
before timeeabp passes. The “stability” is evaluated in the next CWP. This is to
avoid evaluating “unstable” faultily when the packet was lost not by the network
congestion but by other reasons such as frame check sequence error. Thus EABP
reduce the packet loss and improve the TCP throughput on LFNs where it takes
much time to recover cwnd.

EABP works
Congestio
n window 
size

Time
Fig. 5. Estimated available bandwidth pacing



3.2 Implementation

To evaluate our proposal, we implemented BICIPG as a TCP congestion control
module in Linux kernel 2.6.30.9. BICIPG source code is based on BIC module.
Pacing is implemented with MAC feature of Chelsio S310E NIC to control IPG.
IPG value written to its IPG register directly in the BICIPG module during the
TCP session. IPG value is calculated as ls ∗ (mtu+ ehs)/ps− (mtu+ ehs where
ls is the wire rate (10 Gbps in this case), mtu is the maximum transmission unit
(MTU), ps is the pacing speed (it is cwp speed in CWP and eab in EABP) and
ehs is the Ethernet header size. MTU value is gotten in BICIPG when the TCP
session is established.

In the TCP stack in Linux kernels, there are five TCP states as shown in Table
1. In addition, We defined three BICIPG states independently in the BICIPG
module as shown in Table 2. CWP works in BI CWP A or BI CWP B, and
EABP works in BI EABP. We used two hook functions to manage these state
machines and the pacing speed. The first one is bicipg state() that is called when
TCP states is changed. In BICIPG, entering TCP CA CWR, TCP CA Recovery
or TCP CA Loss is processed as the packet loss. In addition, when the new state
is TCP CA CWR or TCP CA Recovery, new eab is compared to the last eab
and the network “stability” is evaluated. The second one is bicipg ack() that
is called when ACK is received. BICIPG-specific processing is in this function:
cwp speed is recalculated with the new cwnd and rtt in CWP and the span is
checked in EABP. Fig. 6 shows the BICIPG state transition diagram. BICIPG
enters BI EABP when cwp > eab, enters BI CWP B when timeeabp passes and
enters BI CWP A at the packet loss.

Table 1. TCP stack states in the Linux kernel

TCP CA Open Normal, optimal code is running Initial state.

TCP CA Disorder
Normal, one or two packets are lost, redun-
dant code is running.

TCP CA CWR Received ECN/ECE, cwnd is being reduced.

TCP CA Recovery
In fast retransmission phase, congestion win-
dow is being reduced.

TCP CA Loss RTO, TCP state is reset.

Table 2. Pacing states in BICIPG module

BI CWP A CWP is working. Initial state.

BI CWP B CWP is working, after BI EABP time outs.

BI EABP EABP is working.



CWP_A CWP_BEABP EABP timeoutPacket lossPacket losscwp > eab
Fig. 6. BICIPG state transition diagram

4 Evaluation

4.1 Experimental setup

To evaluate our implementation, we ran a series of experiments. Fig. 7 shows the
experimental network topology. All fiber connections were 10 Gbps. Four servers
are used as send servers and the other four servers are used as receivers. All the
paths from the senders to the receivers passed through the network emulator
that adds artificial arbitrary delay to the network path. We transferred data
in parallel from the senders to the receivers and recorded the sum of payload
size received in every second as the TCP throughput. Each sender sent packets
to one receiver and vice versa. The one-way delay of the network emulator was
set to 25 ms or 100 ms. The send/receive window size were set to 300 M bytes
to satisfy the bandwidth-delay product (BDP) of the 10 Gbps-200ms networks.
MTU was set to 1500 bytes. The socket buffer size was set to 192 k bytes. TCP
congestion control module was selected by setsockopt() system call.

Switch(Force10 E600)
Network Emulator(Anue H Series)Sender ReceiverFiberVLAN configuration

Fig. 7. Experimental Network Topology

4.2 Results

First, we compared the throughput of (a) single BIC flow and (b) single BICIPG
flow on the path with 50 ms RTT and 6.4 Gbps UDP background traffic (Fig. 8).
In both cases, in the slow start phase soon after the communication was started,
the packet was lost and the throughput seems to reach only approximately 1.7
Gbps in Fig. 8 although there exists only 6.4 Gbps background traffic on the 10



Gbps network path. In the slow start phase, cwnd was doubled every RTT and
the transmission speed was rapidly increased. On the other hand, the recording
resolution of the throughput was 1 second. This is the reason Fig. 8 shows as if
the packet was lost before the network congestion. In these cases, many packets
were lost simultaneously and RTO happened. Then the slow start threshold
was set small and the TCP stack entered the congestion avoidance phase. The
congestion avoidance phase continued and cwnd had been increased in additive
increase way until the 42nd second when the throughput reached approximately
3.4 Gbps and consumed nearly all the available bandwidth in both flows. Then
the throughput was kept for approximately 5 seconds because the switch had
buffered the packets that exceeded the wire rate of 10 Gbps until the buffer
overflow. After that the packet was lost. BICIPG behaved almost the same way
as BIC until this time. However, after this second packet loss, BICIPG estimated
the available bandwidth approximately 3.4 Gbps and evaluated the network path
as “stable”. Thus EABP worked and the period of EABP was prolonged in an
exponential backoff way. During the 10 minutes communication, 47 times of the
packet loss were observed in BIC and 12 times of that in BICIPG. The total
throughput was 3153 Mbps in BIC and 3249 Mbps in BICIPG. The packet loss
was well reduced in BICIPG and the total throughput was improved more than
3%. In addition, fewer packet losses mean background traffic also lost fewer
packets. BICIPG showed better characteristic in both the performance and the
impact on background traffic than BIC in the experiments.

0500100015002000250030003500
0 100 200 300 400 500 600Throughput 

(Mbps)
Time (second)BIC

0500100015002000250030003500
0 100 200 300 400 500 600Throughput 

(Mbps)
Time (second)BICIPG

(a)

(b)
Fig. 8. Throughput: single TCP flow, 50 ms RTT, 6.4 Gbps UDP background



Then, we compared the behavior of (a) four BICIPG flows and (b) two
BICIPG flows and two BIC flows on the path with 50 ms RTT (Fig. 9). When all
the flows were BICIPG, EABP works and the packet loss is well reduced as well
as when background traffic was constant UDP flow. This can be explained as fol-
lows: When the network congestion occurs, the packets of each TCP flow are lost
and each congestion window is shrunk simultaneously. Then each TCP session
enters the congestion avoidance phase. Next, cwnd are recovered “nearly” at the
same time and EABP begins working. While EABP works in the flow which re-
covers cwnd faster than the others, all the flows recover cwnd and EABP works.
Thus EABP works well in this case too. On the other hand, when two BICIPG
flows and two BIC flows are on the same network path, EABP rarely worked.
However, BICIPG behaved almost the same way as original BIC in this case.
BICIPG invoked no performance deterioration. As a result, when EABP works,
the throughput was improved more than 2% from 9024 Mbps (Fig. 9 (b)) to
9215 Mbps (Fig. 9 (a)).

010002000300040005000600070008000900010000
0 100 200 300 400 500 600Throughput 

(Mbps)
Time (second)BICIPG BICIPG BICIPG BICIPG Total

010002000300040005000600070008000900010000
0 100 200 300 400 500 600Throughput 

(Mbps)
Time (second)BICIPG BICIPG BIC BIC Total

(a)

(b)
Fig. 9. Throughput: four parallel TCP flows, 50 ms RTT

Finally, we changed the delay of the network emulator into 100 ms and
compared the throughput of (a) four parallel BIC flows and (b) four parallel
BICIPG flows on the path with 200 ms RTT (Fig. 10).The packet loss penalty
in the performance is large in this case. During 1 hour communication, the total
throughput of BIC flows was 8568 Mbps and that of BICIPG was 8808 Mbps.
The performance improvement was approximately 3% and BICIPG transferred



additional 108 GB compared to BIC flows in a hour. Although BICIPG flows
do not seem to converge in Fig. 10 (b), they converge as well as in Fig. 9 (a) at
some time.

010002000300040005000600070008000900010000

0 500 1000 1500 2000 2500 3000 3500Throughp
ut (Mbps)

Time (second)BICIPG BICIPG BICIPG BICIPG Total

010002000300040005000600070008000900010000

0 500 1000 1500 2000 2500 3000 3500Throughp
ut (Mbps)

Time (second)BIC BIC BIC BIC Total(a)

(b)
Fig. 10. Throughput: four parallel TCP flows, 200 ms RTT

5 Related work

Several researches and implementation on auto-tuning of TCP window size ex-
ist. Fisk and Feng [6] proposed Dynamic Right-Sizing (DRS). DRS control the
advertised window size dynamically in a binary search style. The flow control
of TCP is generally based on the congestion window managed in the sender.
Meanwhile DRS controls the flow by advertised window in the receiver. Re-
cent Microsoft operating systems (Windows Vista and above ) offer two TCP
auto-tuning mechanisms. The first mechanism is auto-tuning of the receive win-
dow (RWIN) size [5]. The RWIN size is automatically changed according to the
BDP and the speed of retrieving data in the RWIN by applications. The second
mechanism is Compound TCP (CTCP) [15], a congestion control algorithm in-
troduced in Windows Vista and above. CTCP boosts the send window size when
RWIN or BDP is large. These auto-tuning of TCP window size aim to speed up
the performance of TCP communication on LFNs. However, they do not solve
bursty traffic problem on long-distance networks.



As for pacing, the software pacing implementation in the Linux kernel, PSPacer
[17], also offer dynamic pacing. However, it controls the pacing speed only by
the congestion window size to prevent burst traffic. In our proposal, CWP works
not only to prevent burst traffic as PSPacer but also to estimate the available
bandwidth. In addition, our proposal includes pacing to the estimated available
bandwidth. Our proposal is the first auto-tuning of TCP pacing including the
congestion window size control.

6 Conclusion

In this paper, we proposed adaptive auto-tuning of TCP pacing. We introduced
two types of dynamic pacing called CWP and EABP. The key idea of our pro-
posal is combining the two types of pacing with BIC, a loss-based TCP conges-
tion control. The pacing speed is determined dynamically by cwnd and RTT
in CWP, and by estimated available bandwidth in EABP. CWP avoids the
packet loss caused by bursty traffic, estimates the available bandwidth precisely
and evaluates the “stability” of the background traffic. EABP stops increasing
throughput and avoid the packet loss caused by the excess growth of cwnd. We
implemented BICIPG as a TCP congestion control module in the Linux kernel
to evaluate our method. We evaluated the performance of parallel TCP com-
munication on pseudo LFNs Our method works well not only when background
traffic is “stable” like constant UDP flow but also when it is used in paral-
lel TCP communication. The performance improvement is especially large when
the network delay is large or background traffic was “stable”. Existing researches
on auto-tuning is valid only for in-cluster calculation and communication. Our
contribution is to focus on auto-tuning of TCP pacing on LFNs to improve
the performance of inter-clusters communication for grid and cloud computing
environment.

References

1. IEEE Standard for Information technology - Specific requirements - Part 3: Carrier
Sense Multiple Access with Collision Detection (CMSA/CD) Access Method and
Physical Layer Specifications (2008)

2. Aggarwal, A., Savage, S., Anderson, T.: Understanding the performance of TCP
pacing. In: Proceedings of the Conference on Computer Communications, Nine-
teenth Annual Joint Conference of the IEEE Computer and Communications So-
cieties (2000)

3. Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control. IETF RFC 5681
(2009)

4. Braden, R.: Requirements for Internet Hosts - Communication Layers. IETF RFC
1122 (1989)

5. Davies, J.: The Cable Guy: TCP Receive Window Auto-Tuning. TechNet Magazine
(2007), http://technet.microsoft.com/en-us/magazine/2007.01.cableguy.aspx

6. Fisk, M., Feng, W.: Dynamic Adjustment of TCP Window Sizes. Los Alamos
Unclassified Report 00-3221, Los Alamos National Laboratory (2000)



7. Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast
Recovery Algorithm. IETF RFC 3782 (2004)

8. Jacobson, V.: Modified TCP congestion avoidance algorithm. end2end-interest
mailing list (1990)

9. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Computer
Communication Review 25, 187 (1995)

10. Kamezawa, H., Nakamura, M., Tamatsukuri, J., Aoshima, N., Inaba, M., Hiraki,
K.: Inter-layer coordination for parallel TCP streams on Long Fat pipe Networks.
In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing (2004)

11. Makino, J., Hiraki, K., Inaba, M., Ishiyama, T., Nitadori, K., Portegies Zwart, S.,
Groen, D., Harfst, S., de Laat, C., McMillan, S.L.W., Cosmogrid project members:
Cosmogrid. In: 9th Annual Global LambdaGrid Workshop (2009)

12. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgment
Options. IETF RFC 2018 (1996)

13. Postel, J.: Transmission Control Protocol. IETF RFC 793 (1981)
14. Semke, J., Mahdavi, J., Mathis, M.: Automatic TCP buffer tuning. ACM SIG-

COMM Computer Communication Review 28, 315–323 (1998)
15. Song, K., Zhang, Q., Sridharan, M.: Compound TCP: A scalable and TCP-friendly

congestion control for high-speed networks. In: Proceedings of Fourth International
Workshop on Protocols for Fast Long-Distance Networks (2006)

16. Sugawara, Y., Inaba, M., Hiraki, K.: Flow Balancing Hardware for Parallel TCP
Streams on Long Fat Pipe Network. In: Proceedings of 2007 International Confer-
ence on Future Generation Communication and Networking (2007)

17. Takano, R., Kudoh, T., Kodama, Y., Matsuda, M., Tezuka, H., Ishikawa, Y.: De-
sign and evaluation of precise software pacing mechanisms for fast long-distance
networks. In: Proceedings of Third International Workshop on Protocols for Fast
Long-Distance Networks (2005)

18. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast
long-distance networks. In: Proceedings of Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies (2004)

19. Zwart, S., Ishiyama, T., Groen, D., Nitadori, K., Makino, J., de Laat, C., McMillan,
S., Hiraki, K., Harfst, S., Grosso, P.: Simulating the universe on an intercontinental
grid of supercomputers. ArXiv e-prints 1001.0773v1 (2010)


