
Improving Autotuning Efficiency and Portability
Through Feedback Diagnostics?

Qing Yi1 Santosh Sarangkar2 Apan Qasem2

1 University of Texas at San Antonio
2 Texas State University

1 The Role of Feedback

Enhancing both the efficiency and portability of empirical tuning is critically
important for existing autotuning systems to successfully explore an exponen-
tially growing search space of code optimizations. The quality of feedback plays
a key role in this success. The right choice and use of feedback metrics can help
diagnose performance problems quickly and lead to better solutions. Exploiting
feedback for faster tuning involves answering several challenging questions:

– How to collect sufficient information so that performance bottlenecks can
be easily identified? How to build performance models that effectively corre-
late different interacting factors of architectural components as well as code
optimizations to identify causes of performance problems?

– How to use enhanced search efficiency to more effectively solve NP-complete
problems faced by traditional compilers? How to enable portability of tuning
so that results of tuning similar applications or architectures in the past are
used to drive more efficient tuning of new applications/architectures?

2 Diagnosing Performance Bottlenecks

Feedback diagnostics in autotuning systems can be enhanced in several ways

1. Improve granularity by collecting measurements at loop-level [1] and in-
crease volume by utilizing available hardware performance counters [2].

2. Synthesize multiple performance metrics to create feedback that can diag-
nose causes of performance bottlenecks.

The use of synthesized or derived metrics can provide key insight into applica-
tion performance characteristics specific to a target architecture. When utilized
by a search engine, this information can significantly enhance search efficiency.
As an example, consider the search space of a 7-point stencil kernel on a quad-
core platform. Fig. 1(a) shows the execution time of different thread schedules
and Fig. 1(b) shows the same search space sorted by hardware prefetch activity

? This work is funded by the National Science Foundation under Grant No. 0833203
and No. 0747357 and by the Department of Energy under Grant No. DE-SC001770.



1 

1.5 

2 

2.5 

3 

3.5 

4 

1  9  17  25  33  41  49  57 

Ex
ec
u/

on
 T
im

e 
(G
FL
O
PS
) 

Linearized Schedule 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  33 

Ex
ec
u-

on
 T
im

e 
(G
FL
O
PS
) 

HW Prefetch State 

Fig. 1. advect3d search space

(a synthesized metric). Although the search space of different thread schedules
appears to be quite random, a clear pattern emerges when feedback is augmented
with HW prefetch information. When exploited by the search algorithm, the im-
proved diagnostic leads to an overall 70% reduction in tuning time.

3 Improving Tuning Efficiency And Portability

The tuning space grows exponentially as each additional code optimization is
parameterized. Few existing research have investigated how to handle a poten-
tial search space explosion when architectural optimizations at different levels,
e.g., blocking, unroll-and-jam, register allocation, instruction scheduling, are ex-
tensively parameterized. Compilers employ heuristics to make optimization deci-
sions precisely because trying out all the configurations is NP-complete. However,
can auto-tuning be used to help solve NP-complete problems?

To answer these challenges, the efficiency and effectiveness of auto-tuning
must be immensely improved. In particular, machine learning techniques and
new performance models need to be developed so that tuning data collected
in the past can be used to guide better decisions in the future [3], The search
process needs to be parallelized so that different optimization configurations
can be explored simultaneously. The advent of the multi-core era offers a great
opportunity for more effectively solving NP-complete problems in compilers.

References

1. D. H. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. K. Hollingsworth, P. Hov-
land, S. Moore, K. Seymour, J. Shin, A. Tiwari, S. Williams, and H. You. Harnessing
the power of emerging petascale platforms. Journal of Physics: Conference Series,
2007.

2. J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam.
Rapidly selecting good compiler optimizations using performance counters. In CGO
’07: Proceedings of the International Symposium on Code Generation and Optimiza-
tion, pages 185–197, Washington, DC, USA, 2007. IEEE Computer Society.

3. C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M. F. P. O’Boyle. Portable
compiler optimisation across embedded programs and microarchitectures using ma-
chine learning. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 78–88, New York, NY, USA, 2009.
ACM.


